

Advances in Sample Handling and Shallow/Deep Drilling Technologies

Planetary Science Decadal Survey 2022-2032
Panel on Mars

Dr. Kris Zacny, Vice President, Exploration Systems Honeybee Robotics January 5, 2021

Honeybee Robotics

2408 Lincoln Ave Altadena, CA 91001 www.HoneybeeRobotics.com

Good reference for Planetary sampling

2009

Copyrighted Materi

Edited by Yoseph Bar-Cohen and Kris Zacny

Drilling in Extreme Environments

Penetration and Sampling on Earth and other Planets

Topics covered:

- Extraterrestrial drilling
- Ice drilling
- Sample handling
- Instruments
- Planetary protection

Ground, Ice, and Underwater

Edited by

Yoseph Bar-Cohen Kris Zacny

Advances in Extraterrestrial Drilling

Ground, Ice, and Underwater

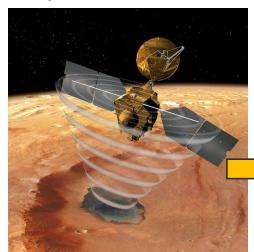
Edited by

2020

Yoseph Bar-Cohen Kris Zacny

Agenda

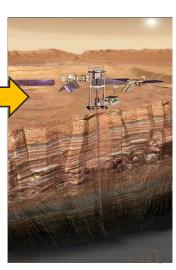
- 1. Background to drilling, sampling, sample handling
- 2. Drilling technology status
 - 1. Shallow (centimeters)
 - 2. Mid-range (meters)
 - 3. Deep (10s of meters and more)
- 3. Sample handling technology status
- 4. Other considerations: Planetary Protection and Analog Tests
- 5. Conclusions


The work presented in these slides, have been funded by NASA, unless otherwise noted.

Drilling is a final step in exploration

- We are reaching a point, where to keep exploring, we need to go below the ground.
- Drilling: Exploration in 3D + Time. Going down is going back in time.

Explore from above


Surface: 1D

Surface: 2D

Subsurface: 4D

Past, Present and "known" Future of drilling on Mars

Timeline (Decades)

2000s 2010s 2020s

MER (2003)

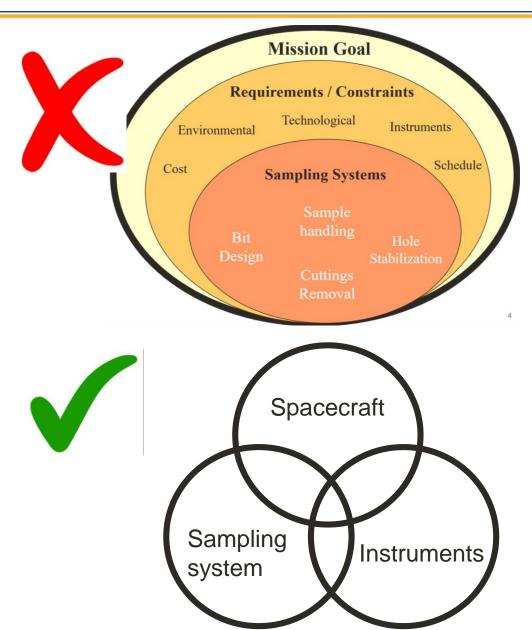
mm

Phoenix (2007)


Curiosity (2011)

Perseverance (2020)

Rosalind Franklin (2022)

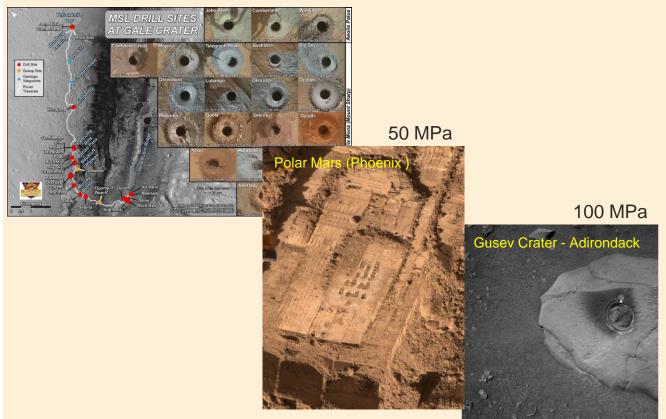


???

General thoughts and considerations

HONEYBEE ROBOTICS

- Development of a sampling system is a highly iterative process that needs to start very early on in the mission formulation. If there is no sample, there is no mission.
- Poorly designed sampling system that does not provide a sample in optimal state/position will affect science outcome.
- No two missions are alike. Only few sampling technologies can be 'built-to print' for other missions. We need to focus on identifying common approaches that can be adapted across many missions.
- There is no substitute for testing under relevant conditions (Mars chambers and in the field). Analysis or modelling does not have needed geological uncertainties to stress the system.
- Planetary Protection impacts the sampling system more than it impacts other systems (in some missions, sampling system is the only system that touches a sample).
- Beware of requirements! Very often 'nice to have' requirements are considered 'must haves' these need to be identified and de or rescoped otherwise sampling system gets too complex.


Challenges of drilling and sample handling

HONEYBEE ROBOTICS Exploration Technology

Drilling

- □ Drilling system needs to deal with "geological uncertainty" we won't know how sub-surface behaves until we get there. Stratigraphy changes on mm scale.
- ☐ Drilling system has to work with material strength spanning <1 MPa to >150 MPa (across 10^3 range), in addition to a range of depths.

10 MPa

Sample Handling

- Sample handling system has to do what humans have hard time doing: collect sample with various particle sizes and cohesion and put it inside a tiny cup or a tray
- ☐ Relying on gravity does not always works
- ☐ If sample is not presented in an optimal manner, the data will be compromised.

Sampling system and instrument is like hand in a glove – there has to be a perfect fit Imagine putting sand inside the straw

Drilling

Shallow (centimeters) drilling: many options exist

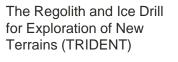


☐ Shallow drilling has seen significant technology development efforts as well as implementation in flight missions

RANCOR

■ Numerous approaches have also been developed for other Solar System bodies – these could be adapted to Mars with some degree of modifications

RoPeC


MidRange (1+ meter) drilling: TRIDEN drill

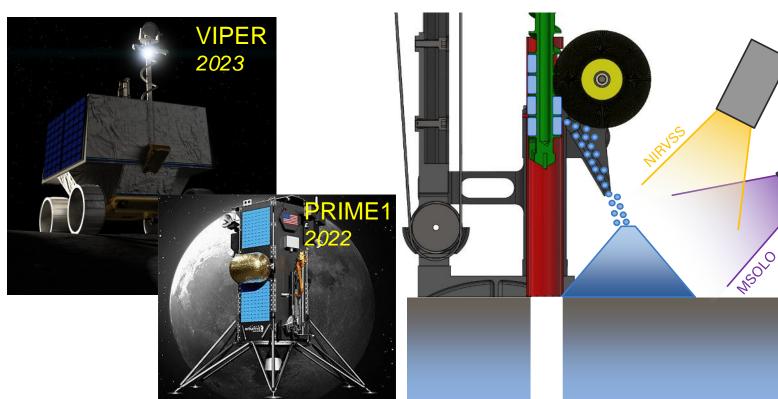
Originally for Mars Icebreaker mission (PI McKay). Considered for Mars Polar Science (Byrne/Hayne/Smith) and other missions.

□ Delivers volatile rich regolith to the surface in 10 cm 'bites' for analysis by the Mass Spectrometer observing lunar operations - MSolo (PI Captain) and the Near Infrared Volatile Spectrometer Subsystem- NIRVSS (PI Colaprete).

□ Part of Polar Resources Ice Mining Experiment-1 (PRIME-1) and Volatiles Investigating Polar Exploration Rover (VIPER).

Could be used on Mars missions.

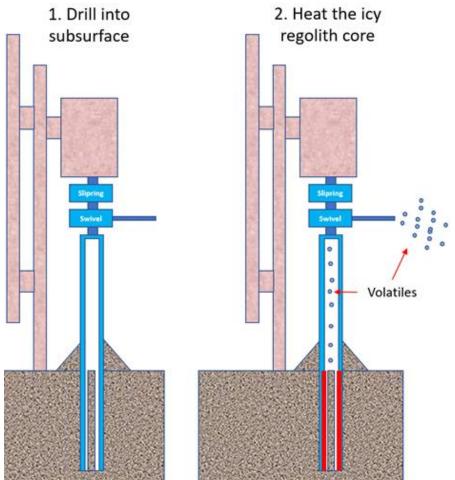
Drill Head (Auger and


ROBOTICS

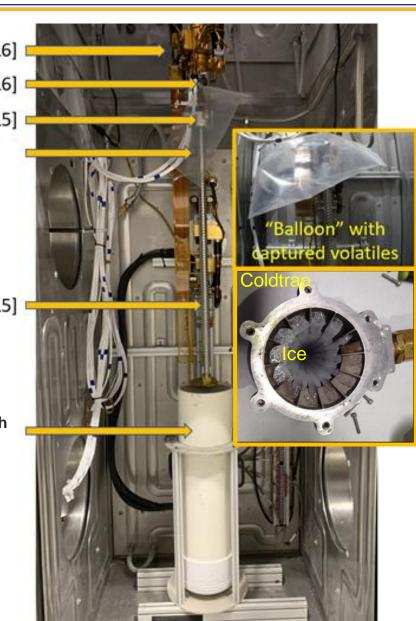
Drill String

Percussion)

Feed Stage


Sample Delivery

MidRange (1+ meter) drilling: Planetary Volatiles Extractor (PVEx)

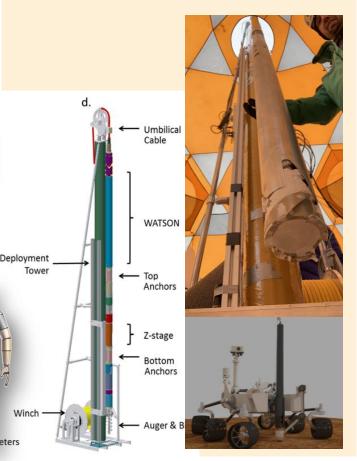

- Alternative means of delivering volatiles eliminates sample handling
- Ice melts in the core before boiling off offers opportunity for additional in-situ science
- Volatiles flow into a capture system (cold trap, gas tank, instrument).
- Developed for Mars and lunar ISRU.

TRIDENT drill [TRL6]
Sliprings [TRL6]
Swivel [TRL5]
Balloon

Heated Corer [TRL5]

NU-LHT-2M with 5wt% water

Deep (10s-100s of meters) drilling


Cable Suspended Drill

Pros/Cons

- Low mass/power
- Need stable borehole

Example:

- Used in Antarctic ice coring
- AutoGopher, WATSON

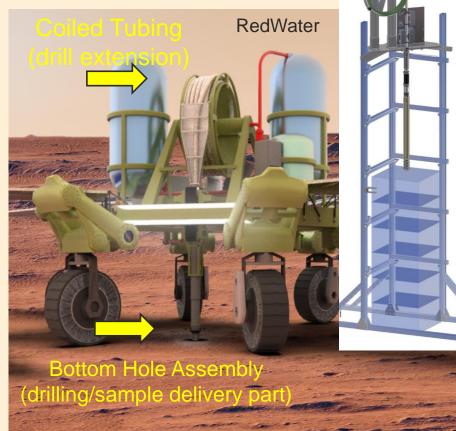
Drill string with drill pipes

Pros/Cons

- Drilling system above the hole
- Mass/power/complex robotics

Example:

- Used in Oil and Gas
- ExoMars drill


Coiled Tubing Drilling

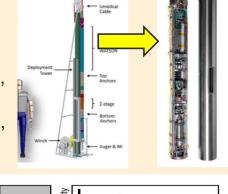
Pros/Cons

- Continuous drill pipe
- Mass/power/complex robotics

Example:

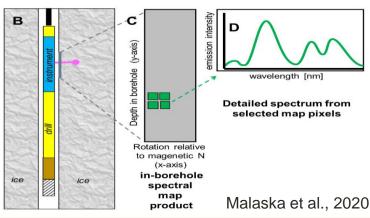
- Used in Oil and Gas
- RedWater drill, LISTER (the Moon, 2023)

Drill integrated instruments


- "Bringing an instrument to a sample vs a sample to an instrument" could significantly simplify a mission and enhance scientific data and in some cases (deep probes) will be the only plausible approach to meet science goals.
- Measurement is done in-situ, stratigraphy can be preserved on a sub-mm scale.
- Examples: Raman, deep UV fluorescence, IR, LIBS, Neutron Spectrometer, Heaters, Temp Sensors

TRIDENT drill **TRIDENT data:** Geotechnical properties of regolith Ice concentration and physical state of ice Thermal properties of regolith: thermal gradient, thermal conductivity, heat flow Heater and Temp Sensor Material strength from drilling energy Bit Temperature Sensor

WATSON life detection drill


WATSON data:

- Deep UV Raman/fluorescence (M2020 SHERLOC, PI Beegle)
- Spectral signatures were consistent with organic matter fluorescence from microbes, lignins, fused-ring aromatic molecules, including polycyclic aromatic hydrocarbons, and biologically derived materials such as fulvic acids

Bhartia et al. 2018

Sample Handling

Sample handling: Fines

Problem:

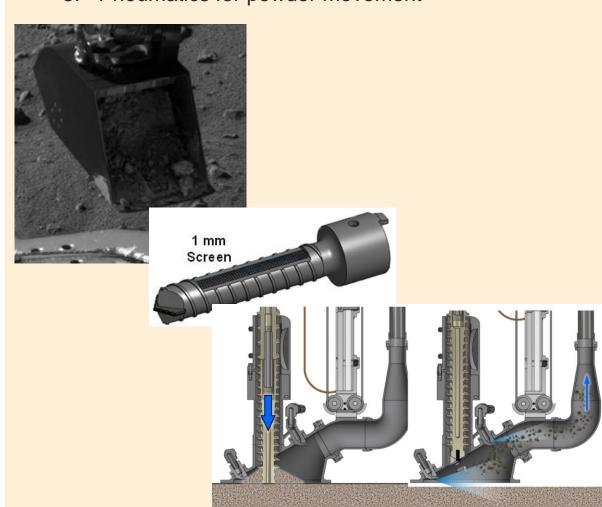
Fines pose difficulties related to: Cohesion, Adhesion, Particle Sizes, Metering, Cross-Contamination etc.

Clumps and fines

Fines

Small cup

Large cup



Look at

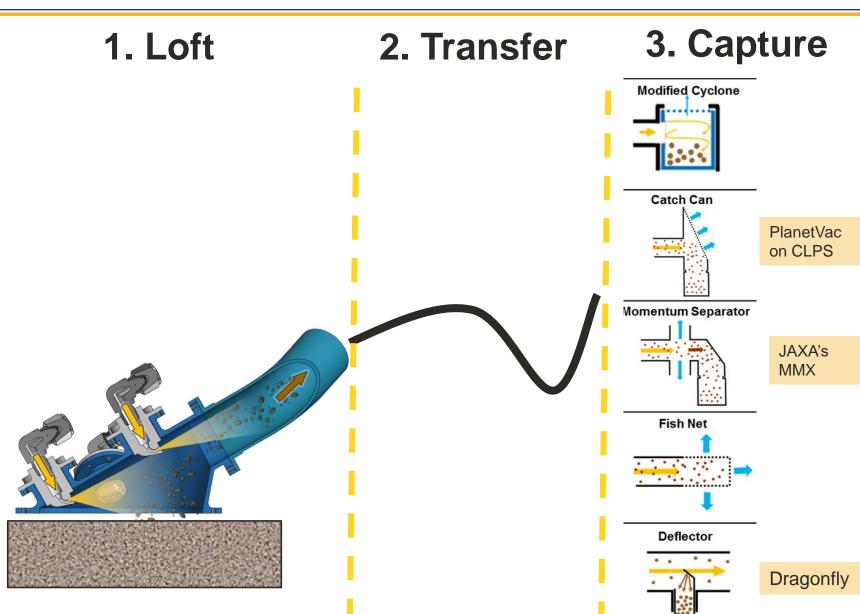
Heat up

Dissolve

- Scoops for surface regolith
- Powder Bit for drill cuttings
- Pneumatics for powder movement

Pneumatic approach can be used in numerous missions

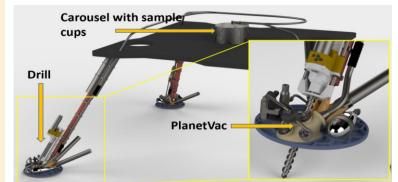
How this works:

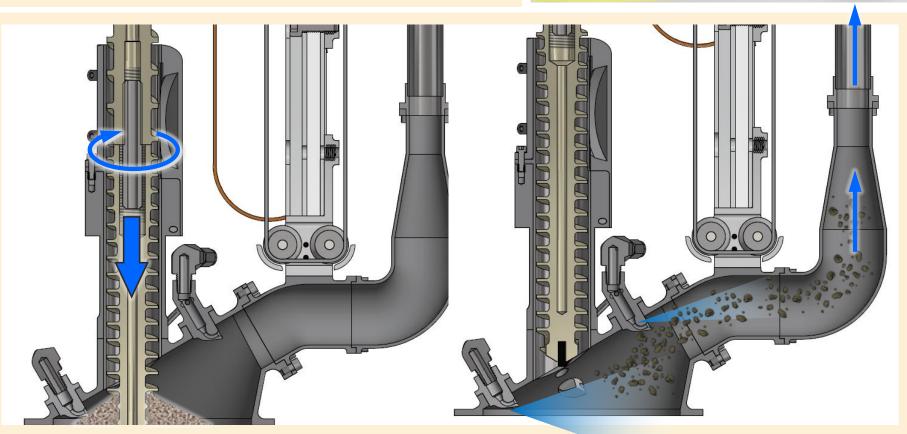

- Gas is used as a broom to sweep (loft) material via momentum exchange
- In vacuum, gas is like an explosive making pneumatic systems very efficient (1 g of gas lofts 100s grams of powder)

Heritage

- Uses cold gas propulsion components with flight proven components
- Sampling head and delivery is mission dependent TRL low to high

Benefits:

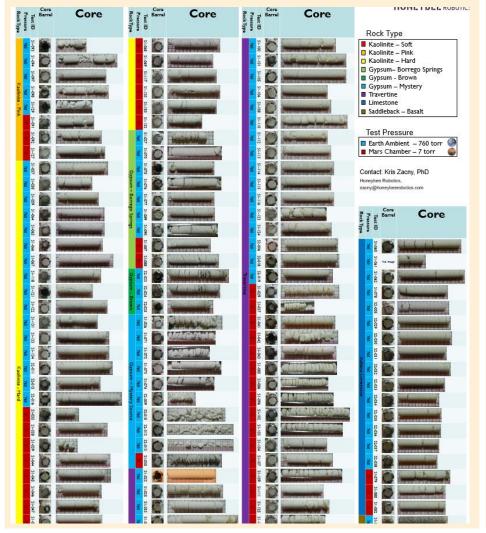

- Simple operation (actuator opens valve)
- Short sampling time
- No ground-in-the-loop needed
- Gravity agnostic works with somewhat cohesive samples
- Sample delivery location independent from sample acquisition location
- Clean transfer lines between sampling to reduce cross contamination
- Works with a range of particle sizes



Pneumatic approach can be coupled with a drill

HONEYBEE ROBOTICS
Exploration Technology

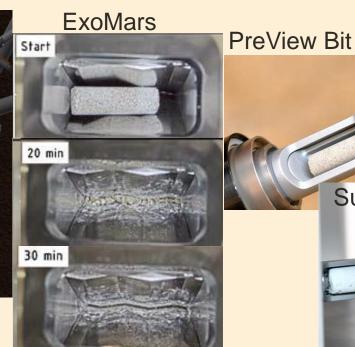
- Drill brings sample to a surface stratigraphy can be preserved
- PlanetVac delivers sample to an instrument or instrument suites
- Gas: dedicated supply (e.g., M2020 gDRT) or compressed CO2 atmosphere (e.g., M2020 MOXI)



Sample handling: Cores

Problem:

Cores are unpredictable: Intact vs. Several pieces vs. Mostly Broken up


Options:

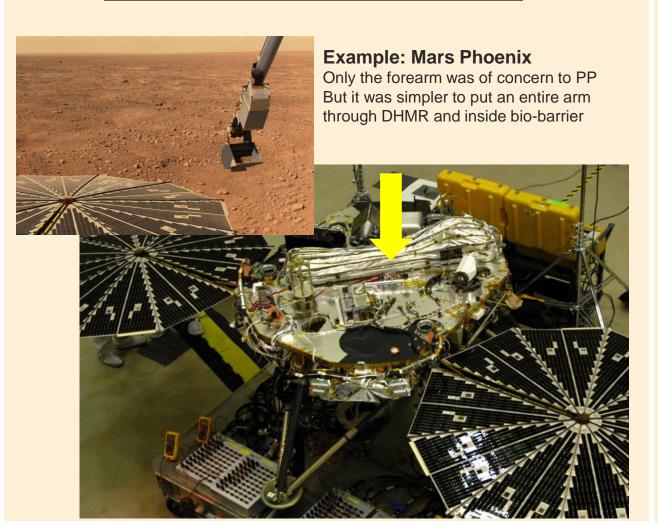
- 1. Seal and return to Earth (Mars2020, Apollo, Luna24)
- 2. Analyze in-situ (e.g., X-ray micro computed tomography)
- 3. Crush into powder for further distribution (ExoMars)
- 4. Use PreView or SLOT bits to examine in-situ
- 5. Manipulate the core (after triaging) for subsampling, thin section etc.

Mars2020

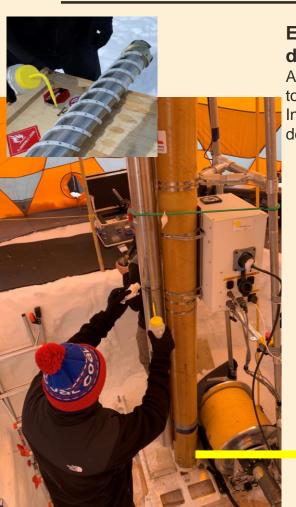
Redlich et al., 2018

PI Brinckerhoff

SubSampling

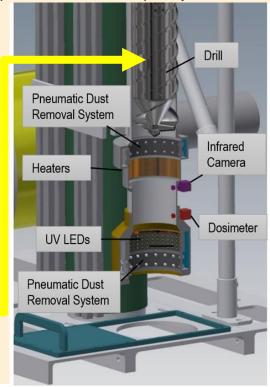

Other considerations

Planetary Protection



In most cases, sampling system is the only system that touches Special Regions

Current Status: send clean hardware

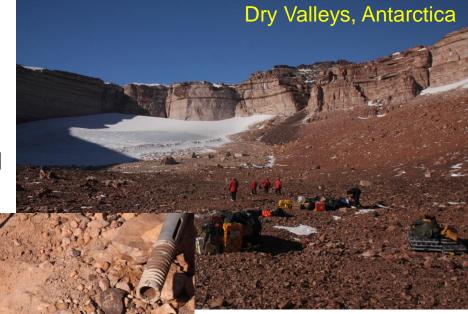


Future status: in-situ sterilization/cleaning

Example: WATSON life detection drill

Adding cleaning station to clean the drill prior to entering subsurface would simplify Integration and Test and cut the development cost and complexity

Analog field testing is critical



- From a geotechnical perspective, Mars is very similar to Earth (e.g. Peters et al., 2017, Thomson et al., 2013)
- There are numerous locations on Earth that are very good analogues for Mars: Dry Valleys, Atacama etc.
- It's imperative to test drilling hardware in analog locations and subject it to 'geological uncertainty' that nature can offer; we cannot come up with all the test scenarios in a lab.
- If we fail on Earth, we are bound to fail on Mars.

Rocks

- Perchlorates
 - Ice cemented ground and ice buried underneath desert pavement
- Ice cemented ground as hard as concrete

Conclusions

- Depth regimes:
 - Shallow drilling is relatively mature. There are many 'tools in the toolbox' to choose from to meet mission requirements.
 - Suitable for Discovery, New Frontiers, and Flagship mission class
 - Mid Range drilling regime is mature for lunar drilling. Some modifications needed to adapt "Moon" drill to "Mars" drill. PP/CC requirements would need to be considered for some Mars missions.
 - Suitable for Discovery, New Frontiers, and Flagship mission class
 - Deep drilling regime requires significant technology development.
 - Suitable for New Frontiers, and Flagship mission class
- Sample handling is very challenging and requires significant technology development. Focus on technologies that can be applied to more than one mission.
- Planetary Protection significantly affects sampling system. Technology for in-situ sterilization or en-route sterilization should also be considered and developed.

