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Introduction

Mars exploration capabilities
have progressed dramatically
over more than two decades of
continuous robotic presence at
Mars

— Orbital

* High-bandwidth remote sensing
* Landing site reconnaissance

¢ Telecommunications relay
infrastructure

— Surface

e Increased landed mass
* Increased mobility

» Improved landing accuracy

 Enhanced sampling capabilities
Addressing the next layer of
Mars science guestions will
demand new exploration
capabilities and associated
technology investments over the
coming decade
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Enabling Technologies for Mars Sample Return

Mars Ascent Vehicle
Baseline Design

oS MPA

- ‘. Fairing

MAYV Payload

Assembly
2nd Stage

Payload (OS) 14kg
Orbit 380 km

e Launch Orbiting Sample (OS) into 380 km
circular orbit

» Two-stage (guided, unguided) solid motor
vehicle
15t-stage electromechanical Thrust Vector Control
— 2"d-stage spin/de-spinmotors
— Monoprop Reaction Control System

 MAV Payload Assembly (MPA)

— Ejectable fairing
— Orbiting Sample (OS)

1st Stage

Planetary Protection/Containment Assurance

Earth Return
Module
(ERM)

Earth Entry
= Vehicle (EEV)

ting
Sample
(0s)

Earth Return Orbiter
(ERO) ESA

A

Capture, Containment and Return System
(CCRS) Concept

— Capture and Containment Module
e Capture OS in Mars orbit, constrain & orient
» Break-the-Chain and Containment Assurance
« Transfer contained OS to Earth Entry Vehicle

— Earth Return Module
« MMOD protection

« Earth Entry Vehicle for robust delivery to landing

site
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Access to New Regions on Mars

e Mars in situ missions to date have been
limited to surface and near-surface
(<10 cm) access in regions compatible
with current lander/rover capabilities

* Next phases of Mars exploration can be

enabled by capabilities for accessing  Exposed lce Scarps

new regions

— Extended mobility

» Accessing diverse geologic environments
— Extreme terrains

* Gullies and RSLs

» Exposed scarps

» Polar Layered Deposits
— Subsurface

* Sounding for subsurface groundwater

 Drilling to depths relevant for determining
modern-day subsurface habitability

Deep Subsurface TEM
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Extended Mobility - Long-Range Rovers

« MEPAG and MASWG both advocate exploring the %

diversity of Mars surface environments 2

«  Options i

— Multi-rovers — high costof multiple vehicles and EDL T ik A i
syste ms Medusae Fossae Formation traverse example (825 km)

— Long-range rover — need to achieve drive distance
capabilities of 100-1000 km to span distinct geologic units

* Prior capabhilities: MSENAVCER
Total Drive Duration | Avg Rate | Max Drive
(km) (yn) (km/yr) Sol (m) E
Spirit 7.7 6.2 1.2 124

Opportunity 45 14 3.2 220 Bulk metallic glass gears in planetary gearboxes
Curiosity 24.1 8.4 2.9 142

« Long-range mobility target: >1 km/sol drive capability Deep learning-based terrain classification
— Could achieve >350 km/Mars year, assuming 50% drive sols

» Key technology needs for achieving long-range mobility:

— Heaterless, high-speed mobility actuators (30 cm/sec drive
speed) employing bulk metallic glass gears

— Onboard autonomy enabling map-based position estimation, et e
terrain classification, and rapid recovery from driving faults

— High-performance, low-SWaP avionics

- . I o .
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L. Matthies, A. Kennett, M. Ono, Rover Map-based position ' Long-range autonomous drive demo
estimation in JPL Arroyo

L. Kerber, A. Fraeman, R. Anderson/JPL




Axel Rover Concept

o Tethered mobility system enables
access to slopes >>25 deg

e >100m rappel distance

* Instrument bays in each wheel can
accommodate multiple instrument
payloads

e Key technical challenges:
— Robust tether management

— Instrument accommodation and
deployment

— Autonomous tethered navigation in
complex slope environments

Issa Nesnas/JPL
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Mars Rotorcraft Concept

« Mars rotorcraft offer a compelling
new platform for in situ exploration
— Mesoscale access

» Greater range than rovers
o Better resolution than orbiters
— Extreme terrain access
» Slopes, gullies, scarps, ...
— Atmospheric boundary layer access

« Key challenges

— Extremely low Mars atmospheric
density

— Autonomous flight navigation and
landing
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Ingenuity Mars Helicopter Technology Demonstration

1.2m diameter rotor

e Solar powered - up to one
90-second flight per day

* Flight Range up to 300 m

« Heightsupto 10 m

e Autonomous flight & landing
« Blade design for thin

atmosphere | .
: . Total Mass <1.8K
« Able to survive cold Martian /" Rotor Speed: 19009_]2800 RPM ™
nights Blade Tip Mach Number: < 0.7
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Mars Science Helicopter Concept ™
4

 JPL & ARC are currently studying how
to move beyond MHTD to a fully
capable Mars Science Helicopter
platform

 Reference Design
— Up to 30 kg system mass
— Hexacopter configuration (also studying Mars Science Helicopter Concept
co-axial option)
— Advanced navigation capabilities
« Autonomous Landing Site Detection
o All-Terrain Navigation
* Long-range Map-based Navigation
— Assessing mid-air delivery system for
low-cost mission concepts not requiring
a base lander
— Key technology needs:
» Aerodynamic design & modeling
» High specific power & energy batteries
* Low-SWaP avionics and instruments

Range {km/Flight)

Field testing of Earth-based demonstrator UAV

Bob Balaram/Teddy Tzanetos/Roland Brockers/JPL Pre-Decisional Information— For Planning and Discussion Purposes Only
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Subsurface Access

e The Martian subsurface

IS a prime target for 1 mm
astrobiology
— Shielded from surface | 1 c¢m =
radiation environment 15
— Potential for liquid 10 ¢ S
water aquifers e
— Potential modern Tm S
habitable environment =
and abode for extant 10m o
life @
100 m = X7
See the PSADS White Paper “Deep Trek: H
Science of Subsurface Habitability & Life 1 km @ (?) Putative Brine Lake?2
ohn Ma1s - AWindow into Subskurface Lifein | Ty e e
the Solar System”, V. Stamenkovic, K. - . i
Lynch, P. Bgston,\]. Tarnas, etal) 10 km aUigning! Theoretical Pure Water Table

Microbial production?
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Remote Sensing — Transient Electromagnetic Sounding

« Transient Electro-Magnetic (TEM) sounding
provides capability of detecting and
characterizing Martian groundwater

— TH,OR (Transmissive H,0O Reconnaissance)
iInstrument concept in development at JPL
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~1,000 PSI liquid CO, output from hammer drive compressor

- -
Com pression cylinder
D e e p D r I I I I n g CO, gas compressed to ~100 PSI to drive hammer

« Wireline drill concept for accessing depths of
10s-100s mwith low mass and power

* Leverage demonstrated, highly reliable,
terrestrial rotary-percussive drill technology,
with key innovations for use on Mars:

— Reduced drill bit diameter (3 cm)
— Reduced mass and power (<100 kg, <100 W)
— Autonomous operations ke on oo o sy o Bk

— Use of compressed liquid CO, (extracted from Mars 200 71l 0, s JPL COzPowered Wireline Drll Concept
atmosphere) to power drill

— Same CO, — upon vaporizing — serves to flush
cuttings from borehole into bailing bucket

— Sub-mm fused silica capillary serves as wireline
and also as conduit for pressurized CO,

— All downhole parts rated for > 350°C, enabling
straightforward sterilization
e Instrument options
— Borehole fiber for UV/Raman spectroscopy

— Sample delivery to lander deck for TLS for
iIsotopologue analysis, or more sophisticated
organics analyzers (e.g., MOMA, SAM)

Honeybee Wireline Drill Prototypes

Drilling Lander Configuration Courtesy: K. Zacny

(Artist’s Concept)
D. Ruffatto/JPL Pre-Decisional Information— For Planning and Discussion Purposes Only
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AREQO TGL: High Orbit Concept Case Study

Areostationary Trace Gas Localizer

Low-Cost Access to Mars

« Small Mars spacecraft missionscan
achieve compelling science at a fraction of

65D =118 km x 118 km

Dlscovery COStS - ~1900 patches
]

— Leverage emerging commercial
Cubesat/Smallsat spacecraft subsystems

— Formulate science mission concepts with
focused instrument payload suite

— Utilize low-cost methods to deliver small
spacecraft to Mars
* Piggyback on Mars-bound mission primary mission
* Rideshareto GTO or Earth escape Surface/Subsurface Concept Case Study
* Launchon new class of small low-costLVs (e.g., SHIELD Impact Lander Concept
Firefly, Relativity)

— Mars small spacecraft missions can be further
enabled by improved relay capabilities to s drag i
support both landed and orbiting small
spacecraft

Total Mission Cost s N0 &
IV  Vew Smallsat Discovery New Frontiers
Class payloac Nose with crushable
$55M $500M + ELV $900M + ELV

$200M S600M $1B




Summary

New capabilities are needed to enable the next era of Mars exploration

Examples presented here:

— Key MSR technologies
« Mars Ascent Vehicle
» Back Planetary Protection/Containment Assurance
— Enhanced surface access
» Rotorcraft
» Tethered rovers
e Long-range rovers
— Accessto the Martian subsurface
« TEM remote sensing
e Deep drilling
— Small spacecraft missions
» Cost-effective opportunities to continue compelling Mars science in parallel with Mars Sample Return

Focused NASA technology investments will be essential to establish these
capabilities



Jet Propulsion Laboratory
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