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Secondary minerals on Mars can
transform our understandlng of Mars
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Clay minerals in Jezero crater
and Nili Planum

Key locations in study
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These clay minerals carry within
them a history of their formation
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X-ray amorphous material at
Gale crater

NASA/JPL-Caltech



Contain history of alteration
since formation
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Contain history of alteration

since formation
* Fe-rich allophane
* pH ~8
e 57 days

Ralston et al., In revision



These signatures can be
examined |n returned samples




Synthesis experiments to
Interpret these results




Modeling allows a quantitative
analysis of field conditions

Reactive

transport
model
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Modeling can address many questions
about past aqueous conditions

e \What was the pH and
composition of the
solutions?

 How long did they
nersist?

 How many different
solutions were present?

Image Credit: NASA/JPL-Caltech
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Formation of bulk Stimson
unit and fractured zones
"Greenhorn{ .
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Image creditENASA/JPLL-Caltech/MSSS
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Formation of Big Sky from Bagnold
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Formation of Greenhorn from Big
Sky parent material
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Long term water in Gale crater

A Eolian deposition near B_ Stimson acidic b C ‘altered fractures
{Rn;k:p‘pst‘,-' Gobabeb)  neutral (Big Sky, Okoruso) fluids (Greenhorn, Lubango)
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Carbonates In Jezero crater
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Goudge et al. (2017)



Laboratory dissolution rate laws
to support modeling

magnesite
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Hausrath (2019): dissolution rate laws from Saldi et al. (2009);Duckworth and
Martin (2004);Bandstra and Brantley (2008); Gainey et al. (submitted); Palangri
and Kharaka (2004); and Wogelius and Walther (1992)



Laboratory precipitation rates

calcite (Jimenez-Lopez et al., 2001)
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Figure after Hausrath and Albright Olsen (2013)



Conclusions:

* Fine scale analyses of returned samples
(e.g. synchrotron, TEM) particularly of
secondary phases will transform our
understanding of Mars

o Synthesis experiments to interpret these
measurements

 Numerical modeling to quantitatively
Interpret observations from Mars

 Dissolution and precipitation experiment to
enable such modeling
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