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Understanding Lunar Bombardment:
A Critical Decadal Survey Goal

“The ancient lunar surface
may give us insights into:

—Giant planet migration
—Last stages of planet formation

—The unknown nature of the ’
primordial Earth!

—Early lunar evolution

—....and much much more!



Context for Lun'a bslrt:lmen;
A:Brleﬁ—hsto\y of F’Ia'f' @,-\i Forrrzigie)n]
and M]Lgr iEjor)



Giant Planet Formation: Pre-1990’s View
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Outer planets formed near present locations.



Giant Planet Formation: Pre-1990’s View
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N Pluto and Neptune

Outer planets formed near present locations.
Pluto in Neptune’s 2:3 resonance at high inclination. Why?



Kuiper Belt Provides Proof of Migration
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Neptune migration needed to capture objects in resonance.
To get right Kuiper Belt structure, need disk 1000x larger.

Sample references: Malhotra (1993); Nesvorny and Vokrouhlicky (2017)



Kuiper Belt Provides Proof of Migration
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Neptune migration needed to capture objects in resonance.
To get right Kuiper Belt structure, need disk 1000x larger.

Sample references: Malhotra (1993); Nesvorny and Vokrouhlicky (2017)
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Giant Planets Form in Different Configuration
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Gas giants form between 5 to ~20 AU. Massive comet population
existed beyond Neptune out to ~50 AU.
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It has to lead to the current giant planet system and Kuiper belt.

Background/new papers: Fernandez& Ip (1986); Malholtra(1995); Thommes et al. (1999; 2003); Tsiganis et
al. (2005); Brasser et al. (2011); Nesvorny & Morbidelli (2013); Roig & Nesvorny (2014)



Gilant Planet Instability (GPI)

Nesvorny & Morbidelli (2013)

Eccentricity

b
L7
=
—
=
j=]
=
o
k=
o
k=]

Semimajor axis (AU)

Tsiganis et al. (2005); Gomes et al. (2005)

“Nice model” describes how Jupiter-Neptune migrated to their orbits
after a possible delay of a few Myr to many hundreds of My.
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Early GPl and a Lost Neptune

—20 Myr | Most successful simulations
come from 5 giant planets, with
an extra Neptune ejected.

But... KBO constraints suggest
Instability occurred early.

Terrestrial planet formation
il must include effects of giant
planet migration.
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Nesvorny & Morbidelli (2013); Nesvorny et al. (2018; 2020); Clement et al. (2018)



Terrestrial Planet Formation with GPI
time= 0 Myr
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Terrestrial Planet Formation with GPI

Moon forms when two
half-Earths hit at 43 Myr
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Terrestrial Planet Formation with GPI

time= £ Myr
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Terrestrial Planet Formation with GPI
time= 3 Myr
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Terrestrial Planet Formation with GPI
time= 4 Myr
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Terrestrial Planet Formation with GPI
time= 0 Myr
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Terrestrial Planet Formation with GPI
time=50 Myr
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Best Run (So Far)

Venus Earth
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Bombardment next step... Nesvorny et al. (2020)



Early Lunar Bombardment
Highlights




Interpretation Complications

Lunar Formation: Probably at ~4.5 Ga, though some argue for ~4.4 Ga.
Magma Ocean: Did it last tens or hundreds of Myr?

Bombardment: Leftover planetesimals, comets, asteroids hit Moon.
What was the impact flux, and when did basins start being recorded?

Animations: GSFC/Jacob Kegerreis/Durham University






Nearside Dominated by Magmatic Feature

GRAIL: Lunar nearside is a “square” magmatic region with giant rifts.

— Heated by high concentrations of radioactive elements; Most older terrains
have been erased. Possible formation by an impact?

—Basins produced inthis hotterregion are naturally larger.
Miljkovi¢ et al. (2013); Andrews-Hanna et al. (2014); Zhu et al. (2019)



Current Status of “Late Heavy Bombardment”

Imbrium Basin [ .
(3.9 Ga)

-

i {1 Orientale Basin
' (3.7-3.8 Ga)
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40 basins, but two of three largest and younges are < 3.9 Ga.
D >90 km crater spatial densities of several basins match Imbrium

(e.g,. Crisium, Serenitatis, Humorum). Comparable age?
Neumann et al. (2015); Bottke and Norman (2017); Evans et al. (2018)



South Pole Aitken is the Oldest Basin

The oldest basins by superposition is South Pole-Aitken basin
(~2400 km). SPA’s absolute age is unknown.

Wilhelms (1987); Neumann et al. (2015)



Bombardment Models

Cataclysm
Declining
Bombardment
Hybrid

straints

Impact Flux

3.9 Ga Time

= Cataclysm? Declining Bombardment? Hybrid? Other?
= Oldest dated terrains are 3.2-3.9 Ga. We need > 3.9 Gal

Sample review: Bottke and Norman (2017)



Lunar Bombardment from LRO & GRAIL

D > 150 km Cra
Nearside a

= Question: Does the farside’s impact record go back to the formation of

the Moon (4.5 Ga) or the overturn of lunar mantle (maybe 4.35 Ga)?
Neumann et al. (2015); Evans et al. (2018)



Oldest Craters/Basins on Lunar Farside

Ancient Farside
Craters Do Not Match
Main Belt SFD (g = -3)!

Pre-Nectarian
Craters
(Marchi et al. 2012)
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D > 150 km Craters
Found on Oldest
Farside Terrains

(e.g., Neumann et al. 2015)
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Shallow size distribution (q =-2). Asteroid belt is wavy with g =-3.

Marchi et al. (2012); Neumann et al. (2015); Bottke and Norman (2017); Bottke et al. (2018)



Ancient Lunar Bombardment

Size Distribution of
Primordial Disk

Matches Primordial Disk

‘ Shape Derived
“, From Trojan
.\ SFD;KBOs

Cumulative NuNger

Models Suggest
~1000-4000
Pluto-Sized Bodies
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Power law slope of farside craters/basins may match impactors from
the primordial comet disk. Evidence for early giant planet instability?




Lunar Bombardment Addresses
Key Decadal Survey Science Questions

The NRC’s 2007 report, " The Scientific Context for the Exploration of the Moon"
made understanding the Moon’s bombardment history their top science goal.

It was thetop priority scienceconcept ofthe 2018 LEAGreport “Advancing the
Science of the Moon: Report of the Specific Action Team”

Applications to 2020 Decadal Survey sciencetopicsinclude:

Origins: Protoplanetary Disk Evolution, Accretion, Origin of Earth & Inner SS Bodies

Processes: Impacts and Dynamics, Solid Body Interior and Surface Evolution,
Structure and Evolution of the Giant Planets

Habitability & Life: Origins of Terrestrial Life, Habitats






Backup Slides



Big Issues to Explore

New Early Instability Models GRAIL Data: Ancient Relaxed Basins

Grimaldi, topography Grimaldi, Bouguer gravity
AN S0 5kmm b 400 mGal g
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Bodies on Earth
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Early giant planet instability -- What hit the Moon early?
When did recorded time start for basins? Basin relaxation?

Sample references: Nesvorny (2018); Conrad et al. (2018); Evans et al. (2018); Nimmo (2019)
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