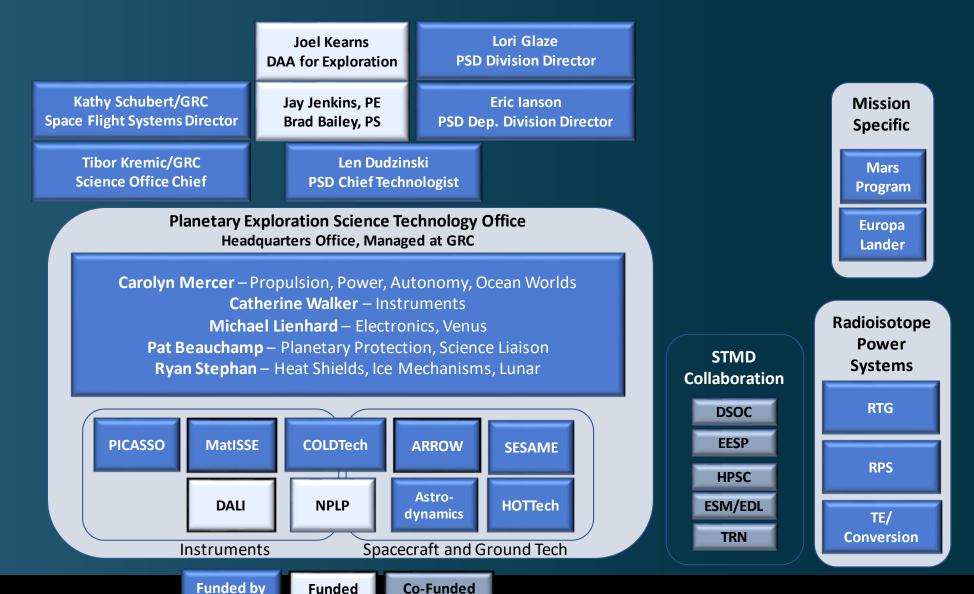


Planetary Science Division Technology Management PESTO, Radioisotope Power Systems, Mission Specific, STMD Collaborations

PSD

by ESSIO

with STMD


PESTO Created in 2017 to:

Recommend Strategic Tech Investments

Manage Technology Programs

Coordinate Investments

Promote Technology Infusion

PESTO: Community Technology Inputs – Visions and Voyages

Chapter 4 Primitive Bodies

- Continue technology developments in several areas including ASRG and thruster packaging and lifetime, thermal protection systems, remote sampling and coring devices, methods of determining that a sample contains ices and organic matter and of preserving it at low temperatures, and electric thrusters mated to advanced power systems.
- ✓ Develop a program to bridge the TRL 4-6 development gap for flight instruments.

Chapter 5 Inner Planets

- ✓ Continue current initiatives.
- ✓ Possibly expand incentives to include capabilities for surface access and survivability for challenging environments such as Venus's surface and frigid polar craters on the Moon.

Chapter 6 Mars

✓ Key technologies necessary to accomplish Mars Sample Return are Mars ascent vehicle, rendezvous and capture of orbiting sample return container, and planetary protection technologies.

Chapter 7 Giant Planets

Continue developments in ASRGs, thermal protection for atmospheric probes, aerocapture and/or nuclear-electric propulsion, and robust deep-space communications capabilities.

Chapter 8 Satellites Technology development

- ✓ Develop the technology necessary to enable Jupiter Europa Orbiter.
- ✓ Address technical readiness of orbital and in situ elements of Titan Saturn System Mission including balloon system, low mass/low-power instruments, and cryogenic surface sampling systems.

PESTO: Community Technology Inputs – Assessment Groups

Visions and Voyages, VEXAG, OPAG, SBAG, Mars Program

Outer Planets input based on the OPAG white paper "Outer Planet "Roadmap of 2009

Reference: Planetary Science Technology Plan, April 9, 2015

		NEAR TERM MISSIONS					MID TERM MISSIONS				FAR TERM MISSIONS					
	Applicable Technology		Outer Planets	Venus	Mars	Moon	Small Bodies	Outer Planets	Venus	Mars	Moon	Small Bodies	Outer Planets	Venus	Mars	Moon
SYSTEM TECHNOLOGIES	In Space Propulsion															
	Aerocapture/Aeroassist															
	Entry (including at Earth)															
	Descent and Deployment															
	Landing at target object															
	Aerial Platforms															
	Landers - Short Duration															
	Landers - Long Duration															
	Mobile platform - surface, near surface															
	Ascent Vehicle															
	Sample Return															
	Planetary Protection															
	Energy Storage - Batteries															
ES	Power Generation - Solar															
SU BSYSTEM TECHNOLOGIES	Power Generation - RPS										?					
	Thermal Control - Passive															
돗	Thermal Control - Active															
TE(Rad Hard Electronics															
EM	Extreme Temp Mechanisms															
YST	Extreme Temp Electronics															
SUBS	Communications															
	Autonomous Operations															
	GN&C															
INSTRUMENT	Remote Sensing - Active															
	Remote Sensing - Passive						• • • • • • • • • • • • • • • • • • • •									
	Probe - Aerial Platform				***************************************					••••••						
	In Situ - Space Physics				***************************************											
	In Situ Surface - Geophysical															
	Sampling															
	In Situ Surface - Long Duration - Mobile	•••••••		•		***************************************			***************************************							
							<u>. </u>									

PESTO: Planetary Science Technology Needs Based on Visions and Voyages and Planetary Assessment Groups

PSD invests primarily in:

- Instruments (broad-based calls)
- Radioisotope
 Power Systems
- Mars Technology
- Extreme Environment Tech (hot and cold)

Instruments

- 1. Instruments to Locate Regions of Habitability from Orbit/Flyby
- 2. Technologies to Sample Plumes of Ocean Worlds from Orbit/Flyby
- 3. Techs to Extract & Process Materials on Ocean Worlds for Life Detection
- 4. Instruments to Identify Biomarkers from Ocean Worlds
- 5. Instruments to Identify Microscopic Organisms in Ocean Worlds
- 6. Instruments to Identify Life Processes on Ocean Worlds
- 7. Low Volume, Low Mass, Low Power Instruments for Small Spacecraft

Ice Penetration and Sampling

- 1. Ice Penetration and Sampling: Low-Mass, Low-Power Excavation
- 2. Ice Penetration and Sampling: Sample Handling and Transport
- 3. Ice Penetration and Sampling: Deep Ice Penetration

TRN/GNC/EDL-

- 1. Pinpoint Landing and Hazard Avoidance: Europa
- 2. Pinpoint Landing and Hazard Avoidance: Titan
- 3. Pinpoint Landing and Hazard Avoidance: Venus
- 4. Pinpoint Landing and Hazard Avoidance: Mars
- 5. Pinpoint Landing and Hazard Avoidance: Planetary Landing

Heat Shield Technologies for Planetary Entry and Sample Return

- Aerocapture for Ice Giants
- EDL and Aerocapture for Small Satellites
- 3. Deployable Aeroshells

Autonomy

- System Autonomy for Planetary Exploration
- 2. System Autonomy Efficient Planetary Surface Science Ops
- 3. Reactive Science Autonomy
- 4. Autonomous Interplanetary Navigation

Planetary Protection

- 1. Expanded Bioburden Reduction Technique Toolbox
- 2. Modernizing Verification Approaches for Biological Contamination Assessments

High Data Rate Communications

- 1. High Data Rate Communications: Large Deployable Reflectors
- 2. High Data Rate Communications: Solid State Power Amplifiers

Small Satellites (ESPA-Class)

- 1. Small Satellites Communications
- 2. Small Satellites Guidance Navigation and Control
- 3. Small Satellites Electric Propulsion
- 4. Small Satellites Non-Toxic Chemical Propulsion

Computing and Avionics -

1. Radiation Tolerant, High Performance Computing, and Avionics

Low-Temperature Systems

- 1. Low Temperature Low Power Rad Hard Electronics
- 2. Low Temperature Energy Storage
- 3. Low Temperature Solar Power

High-Temperature Systems

- 1. High Temperature Electronics
- 2. Batteries
- 3. Solar Arrays
- 4. Alternative Power Generation Systems

Radioisotope Power Systems for Flyby and Orbital Power

- 1. Fuel for Radioisotope Power Systems
- 2. Next Gen RTG Technologies for RPS Flyby and Orbital Power
- 3. Dynamic RPS for Flyby, Orbital and Surface Power
- Low and Mid TRL Conversion Technologies

PESTO: Planetary Science Technology Goals and Applications

TRN, GNC, and EDL 1/6/2021

Prioritized Technology: Terrain Relative Navigation, Precision/Pinpoint Landing, and Landing Hazard Avoidance

Capability Description

- Terrain Relative Navigation (TRN) estimates position during descent by onboard registration of camera or lidar data to prior reconnaissance maps
- Precision landing uses TRN with a small divert to reach one of several known safe landing sites determined from prior recon
- Pinpoint landing uses TRN with a large divert to reach a single, small landing site (e.g. 100 m) in the unguided landing ellipse
- Landing hazard avoidance (HA) uses onboard lidar and/or camera data to avoid landing hazards not detectable from orbit
- In all cases, sensors are required to estimate horizontal and vertical velocity to enable safe touchdown velocities

Capability Status

- Mars 2020 will do precision landing with TRN with divert of up to 650 m and landing error of < 60 m
 - System uses a descent camera, doppler radar velocimeter, and FPGA coprocessor. This would also address many airless bodies.
- Europa Lander advanced technology program is addressing unique need dual mode lidar altimeter/hazard detection sensor; TRL 6 expected by e FY22. Also developing optical velocimetry to use descent camera instead doppler radar.
- SPLICE program is developing TRN, HA, and navigation doppler lidar (NI velocimetry for robotic and human lunar and other missions
- COLDTech program developed TRN algorithms and guided parafoil conce for the unique conditions at Titan
- Existing TRN and HA methods are insufficient for Venus

Mission Applications

- Current Mars Sample Return architecture calls pinpoint landing with divert of several km, to achieve landing error of < 20 m
- Current Europa Lander architecture requires landing position error < 50 m, velocity error < 0.1 m/s, hazard detection lidar with 5 cm ground pixel spacing a
 cm elevation error, from 500 m altitude. Lidar SWaP goals of 7 kg, 25000cm³, 75W
- · Landing delivery error for Titan guided descent is limited by resolution of currently available recon imagery to be a few km
- Landing hazard avoidance may be needed for landing in Venus tessera
- Applicable to any planetary landing application, including Moon, Mars, and other solid bodies
 - · Some adaptation and/or accommodation may be necessary for particularly demanding environments for individual missions (such as radiation or ther
- Technology has significant overlap with Rendezvous and Docking applications (similar sensors, software, and techniques)

- Created in 2017 bottoms-up across the Agency, vetted by HQ
- Minor updates in 2020
- Used to communicate needs across SMD and STMD, and to inform PSD solicitations
- Major update planned once new Decadal is released

Communications

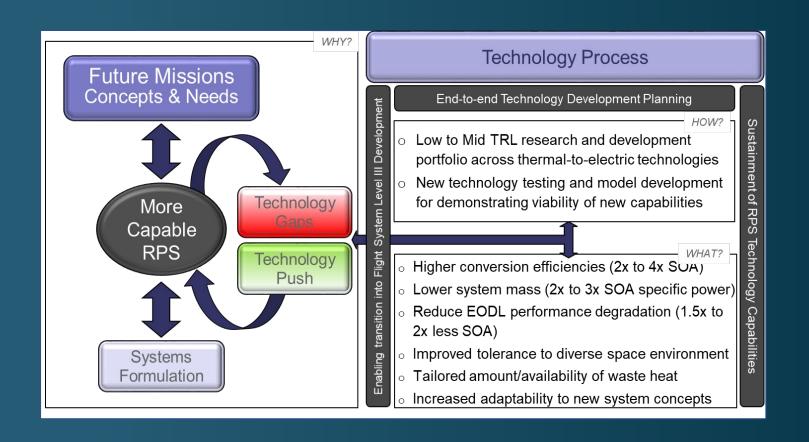
Prioritized Technology: High Data Rate Communications Solid State Power Amplifiers Last edited 08/10/20

Technical Goal

Flight qualified solid state power amplifiers for X and Ka bands

- Goal
 - o Power levels of 5-50 Watts (maybe up to 100 W)
 - Wall-plug efficiency of > 50% for X-band and > 40% for Ka-band
 - Lower mass and volume than equivalent output power TWTAs
 - o Improved manufacturability relative to TWTAs
 - o Increased reliability relative to TWTAs

Technical Status


- Travelling Wave Tube Amplifiers (TWTAs) are the workhorse space power amplifier for X and Ka-band
 - Efficiencies of > 50% are typical
 - o Power output levels up to at least 200W
- TWTAs require complex power supplies with large voltages (e.g., 300 V)
- TWTs are almost-hand-designed vacuum systems
- Sweet spot for GaN will be <100 W power output
- GaN SSPAs could significantly reduce the mass & volume and increase reliability relative to TWTAs
- Typical "production" GaN amplifiers for Ka-band are in the 10-40 W regime with 25-30% efficiency—lab devices better

Mission Applications

- Cube/SmallSats—requiring small mass and volume as well as power efficiency, usually < 50 W output power
- Outer Planets—limited primarily by prime power so 10-100 W "sweet spot" for GaN is appropriate; lower mass and volume; increased reliability over longer term
- Rovers and landers—requiring small mass and volume as well as power efficiency, usually < 50 W output power; better able to handle the mechanical "shock" of landing and roving.

https://www1.grc.nasa.gov/space/pesto/

RPS: Radioisotope Systems Program Technology Recommendation Process

NASA Assessment Groups: LEAG, OPAG, SBAG, MEPAG...

Decadal

Flight Centers/Missions

Planetary Mission Concepts Studies and NAE/NAS Decadal Surveys

Engagement

Workshops & Conferences:

NETS,
IEEE Aerospace,
AIAA Power and Propulsion,
Advanced Power Systems
for Deep Space Exploration,
International Astronautical Congress,
Lunar and Planetary Science
Conference, ...

PESTO

RPS: Radioisotope Systems Program Technology Goals and Performance Estimates

		System Efficiency	System Degradation Rate				
State of the Art (SOA)	MMRTG	6.2% at BOL	3.2%/yr*				
RPS Program	10-year Goal	10% at BOL	1.9%/yr				
Technology Goals	20-year Goal	20% at BOL	1.4%/yr				
	STM	6.65% at BOL	2.1%/yr*				
	Next Gen Mod 2	10% at BOL	Target: 1.9%/yr*				
RPS Technologies	DRPS-FISC (Stirling)	> 20% at BOL	1.3%/yr				
Current Best Estimate	DRPS-SRSC (Stirling)	> 20% at BOL	1.3%/yr				
(CBE) Predictions and	DRPS-TBC (Turbo-Brayton)	> 20% at BOL	Target: 1.3%/yr				
Targets	SmallSTEP (Stirling)	Target: 20% at BOL	Target: 1.3%/yr				
	GHOST	Target: > 15% at BOL	Target: 1.9%/yr*				
	JTEC (Ericson)	Target: > 30% at BOL	Target: 1.9%/yr				

Notes

Based upon exponential rate law

- · Goals are overarching programmatic goals across all technologies
- RPS Program is refining and updating these goals through engagement process
- Targets are for lower level TRLs that we have little data to substantiate CBEs
- BOL represents a deep space case, 250 W_a per GPHS

AMSC - American Semiconductor FISC - Flexure Isotope Stirling Converter GHOST - Group for the HOlistic Science of Thermoelectrics (GHOST) Task JTEC - Johnson Thermo-Electrochemical Converter

SmallSTEP - Small Stirling Technology Exploration Power SRSC - Sunpower Robust Stirling Converter STM - Skutterudite Technology Maturation

TAPC - ThermoAcoustic Power Converter TBC - Turbo-Brayton Converter

Technology Investments

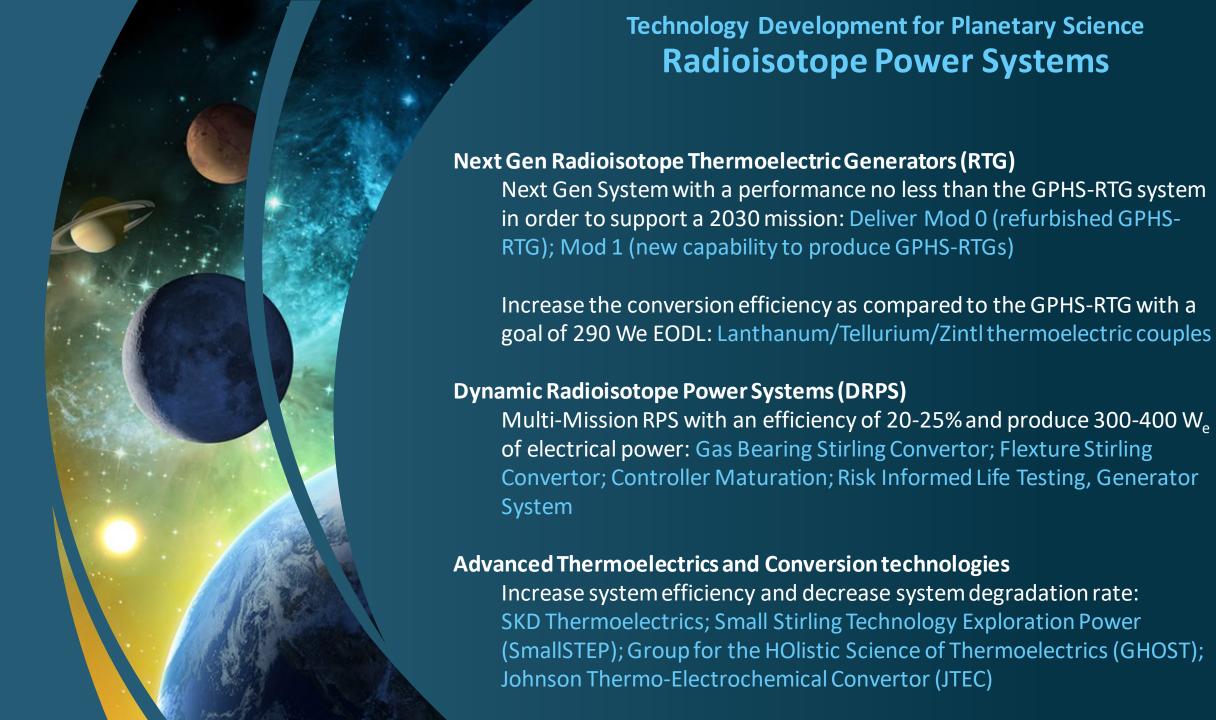
Technology Development for Planetary Science

Science Instruments, Spacecraft Technology

Radioisotope Power Systems Program

- Next Gen Radioisotope Thermoelectric Generators (RTG)
- Dynamic Radioisotope Power Systems (RPS)
- Advanced Thermoelectrics and Conversion Technologies

Planetary Exploration Science Technology Office (PESTO)


- Science Instruments (PICASSO, MatISSE, DALI, ICEE)
- High Operating Temperature Technology (HOTTech)
- Icy Satellites (COLDTech, SESAME, ARROW, Astrodynamics)

Mission Specific

- Europa Lander
- Mars 2020, Mars Sample Return

Partnerships with STMD

- Entry, Descent, and Landing Systems
- Technology Demonstrations (DSOC, EESP)
- SBIR
- **EPSCoR**

Technology Development for Planetary Science **PESTO: Scientific Instruments**

PICASSO

Any Science, Low TRL, Annual Solicitation 39 active tasks: Spectrometers, Imagers, LIDAR, X-ray Optics, UV Optics, GPR, Seismometers, Radiometers, Sample Capture, Tomography, ...

MatISSE

Any Science, Mid TRL, Bi-annual Solicitation 24 active tasks: Accelerometer, Molecular Analyzers, Radiometers, Spectrometers, Radar, LIDAR, Geochronometer, Seismometers, ...

DALI

Lunar Science, Mid TRL, Annual Solicitation 20 active tasks: Imaging Spectrometer, Mass Spectrometer, Regolith Analyzers, Seismometers, Geochronometer, Dust Transport

ICEE

Ocean World Science, Mid TRL, 2013 & 2018 14 tasks recently completed: Seismometers, Imagers, Mass Spectrometers, Raman Spectrometers, Organic Analyzers

Matisse: Ultra Compact Imaging
Spectrometer
PI: Diana Blaney

PESTO: Venus Surface and Atmosphere

Batteries, Electronics, Sensors, Communications

HOTTech-2016

Electronics and Devices for Venus Surface

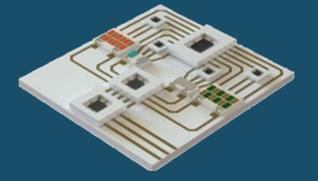
Exploration 12 tasks:

Diamond and GaN Electronics, Memory, Clocks,

Electronic Packaging, Motors, Batteries, Sensors,

Solar Cells, Surface Power

HOTTech-2021


Electrical and Electronic Systems or Components for Venus Surface Exploration

STMD Small Business Innovative Research (SBIR)

Multiple Subtopics, including Venus focus for **Aerial Platforms**

STMD EPSCoR

Venus Surface and Aerial Platform focus

HOTTech: High Temperature Chemical Sensor

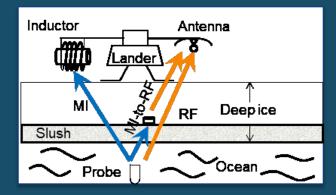
PI: Darby Makel

Technology Development for Planetary Science **PESTO: Icy Satellites**

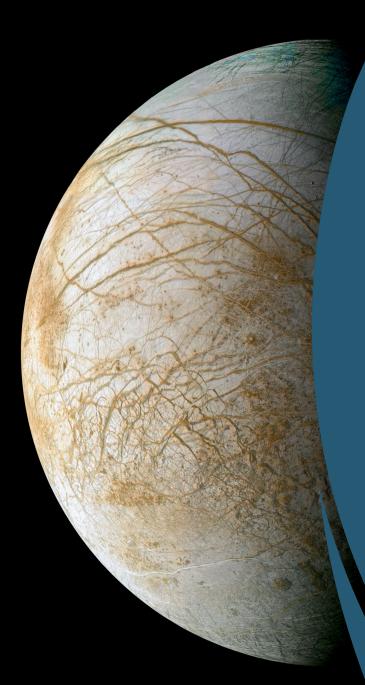
COLDTech-2016

Instruments and Spacecraft Technologies for Surface and Subsurface Exploration. 21 tasks: Detection of evidence of life; Sample acquisition, delivery and analysis systems; Deep-ice access

SESAME


"Tall Pole" technologies for Vertical Ice Transport 5 tasks: Drills, Melt Probes, Communications

ARROW


Autonomy for Ocean World Surface Systems 2 tasks: Task Planning, Adaptive Software

COLDTech-2020 (SESAME and ARROW follow-on plus)

11 tasks: Through-the-Ice Communications, Radiation Hard Electronics, Autonomy

COLDTech: Hybrid RF/MI
Transceiver for Europa
Sub-Ice Communications
PI: Michael Chang

Technology Development for Planetary Science

Mission Specific: Europa Lander

Autonomy

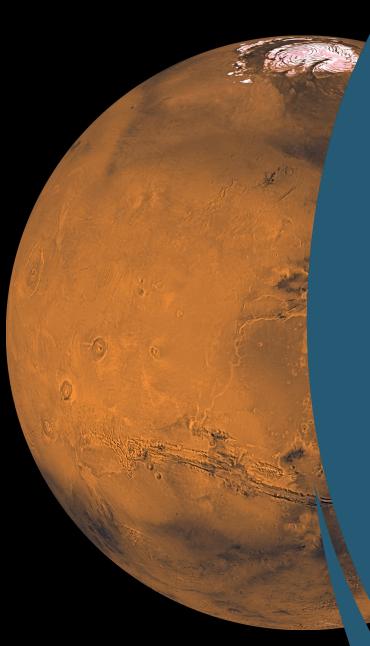
Sampling Autonomy: Develop and validate functional level autonomy for test excavation, sampling, and sample transfer

Surface Mission Autonomy: In-depth exploration of architectural and system issues that enable and constrain onboard autonomy (hardware, software, sensors, etc.)

Communications

High Gain Antenna: Mature the Europa Lander High Gain Antenna design to TRL-6

Power


Battery: Evaluate effects of long-term storage and radiation on key cell characteristics (performance, safety, Li/CF_x primary cells)

De-orbit, Descent, Landing (DDL)

LIDAR Systems: Investigate LIDAR-based map-relative localization for Europa DDL

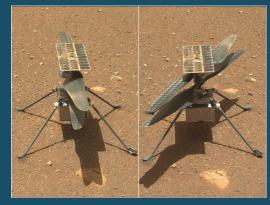
Europa Lander: High Gain Antenna (NASA JPL)

Technology Development for Planetary Science Mission Specific: Mars

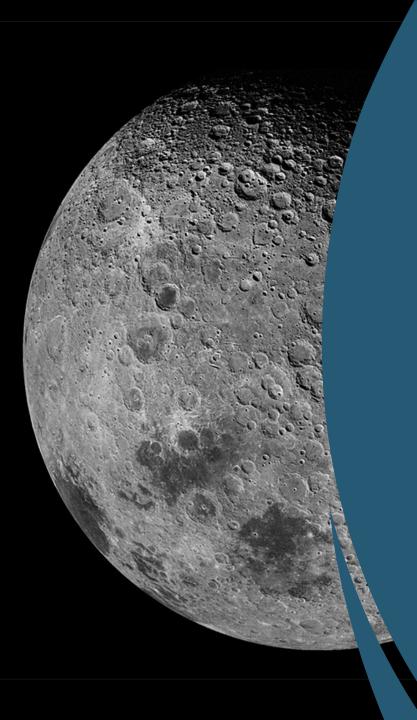
Mars 2020: Mars Helicopter

Co-funded with STMD and Aeronautics
Guidance, navigation and control; IMM solar cell
demonstration

Mars 2020: Terrain Relative Navigation


Co-funded with STMD Vision system, Target selection algorithms

Mars 2020: Autonomy


Rover driving, Robotic arm operations, Science instrument operations

Mars Sample Return:

Sample handling, Propulsion, Spring-loaded tires, Heatshield, Brazing technique, Parachute, Impact structure

Ingenuity (NASA JPL)

Technology Development for Planetary Science Space Technology Mission Directorate: The Moon and More

Technology Maturation

Lunar Surface Innovation Initiative

Power systems, Dust mitigation systems, Surface excavation systems, Extreme access mobility systems, Mechanisms and Electronics

Game Changing Technology Development Program

Entry Systems Modeling, High Performance Spaceflight Computing, Mars Entry/Descent/Landing Instrumentation, Cooperative Autonomous Distributed Robotic Exploration, Bulk Metallic Glass Gears, Extreme Environment Solar Power

Technology Demonstration Missions

Deep Space Optical Communications, Deep Space Atomic Clock, Laser Communications Relay, Terrain Relative Navigation, Solar Electric Propulsion, Green Propellant, Fission Surface Power

SBIR, EPSCoR, NIAC, ESI

Questions?