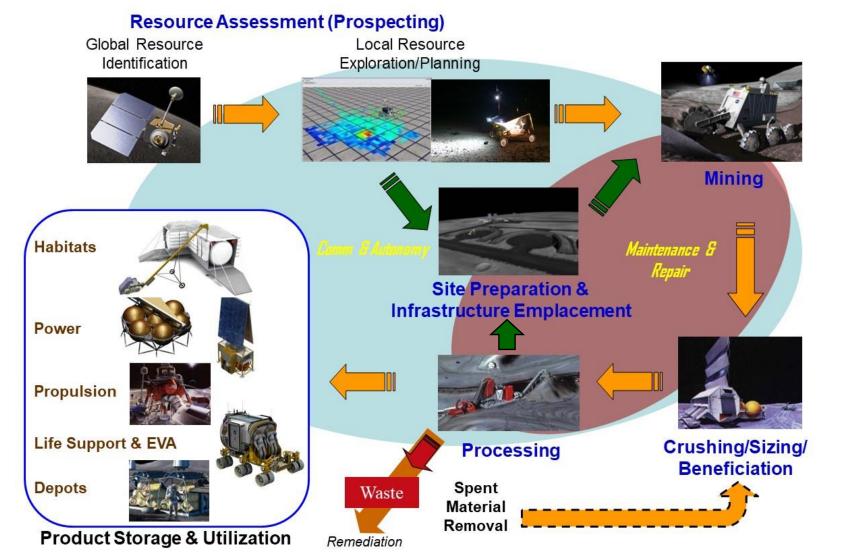


What is ISRU and the Challenges

ARTEMIS: Humanity's Next Giant Leap

Moon to Mars

- Returning Americans to the Moon: 1st Woman & 1st Person of Color
- Learning to live and work on the Moon
- Translating lessons learned so that the United States has capabilities and operational experience for a mission to Mars
- Inspires the next generation of explorers, researchers, scientists, and engineers worldwide


"The United States will lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations"

Space Policy Directive One

What Is In Situ Resource Utilization (ISRU)? **Prospect to Product**

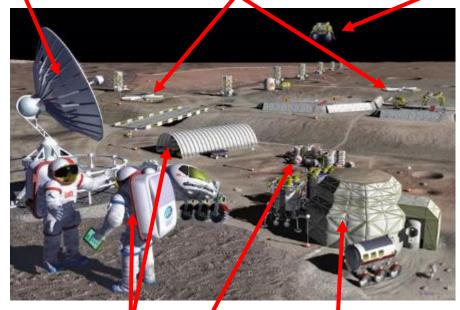
ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

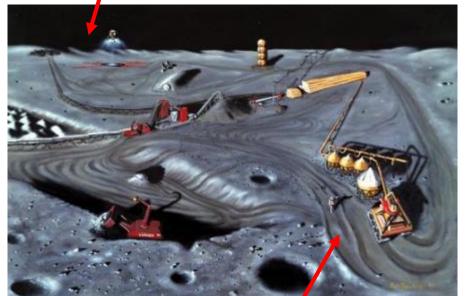
- "ISRU" is a capability involving multiple elements (mobility, product storage and delivery, power, crew and/or robotic maintenance, etc.) to achieve final products
- 'ISRU' does not exist on its own. By definition, it must connect and tie to users/customers of ISRU products and services.

> Lunar ISRU Purpose

- Sustain and Grow Human Lunar Surface Exploration
- Reduce the Risk and Prepare for Human Mars Exploration
- Expand Terrestrial & Enable Economic Expansion into Space

ISRU Must Operate as Part of A Larger Architecture

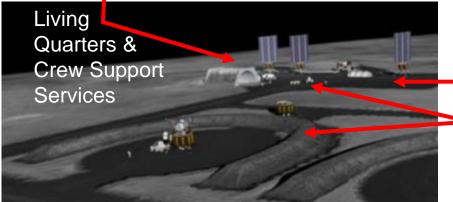

Communications


- To/From Site
- Local

- **Power**:
 Generation
 - Storage
 - Distribution

Transportation to/from Site:

- Navigation Aids
- Loading & Off-loading Aids
- Fuel & Support Services

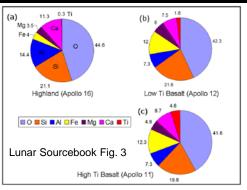


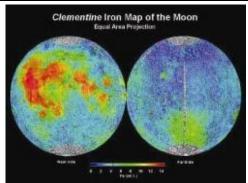
Areas for:

- i) Excavation
- ii) Processing
- iii) Tailings

Maintenance & Repair

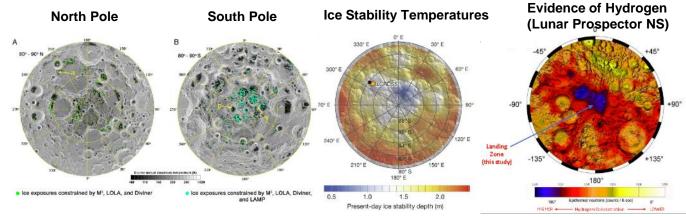
Logistics Management




Roads

Construction and Emplacement

Lunar Resources Regolith, Solar Wind Volatiles, Polar Water/Volatiles



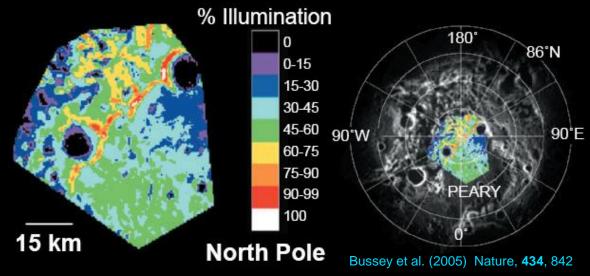
Lunar Regolith

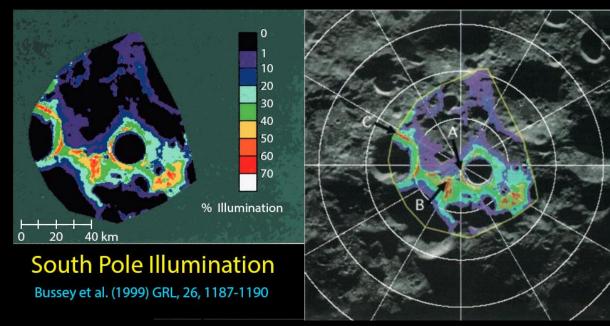
- >40% Oxygen by mass; numerous metals (Fe, Al, Ti)
 - Silicate minerals make up over 90% of the Moon
- Mare Basalt
 - 15-20% Plagioclase, 15-24% Pyroxene, 3-4% Olivine,2-10% Ilmenite, 45-53% Agglutinate glass
- Highland/Polar area
 - >75% Anorthite, Pyroxene, 7% Olivine
- Pyroclastic Glass
- KREEP (Potassium, Rare Earth Elements, Phosphorous)
- Solar Wind Implanted Volatiles

Fegley and Swindle 1993

Volatile	Concentration ppm (µg/g)	$\mu g/g$) Average mass per m ³ of regolith (
H	46 ± 16	76					
³ He	0.0042 ± 0.0034	0.007					
⁴ He	14.0 ± 11.3	23					
С	124 ± 45	206					
N	81 ± 37	135					
F	70 ± 47	116					
C1	30 ± 20	50					

Polar Water/Volatiles


- LCROSS impact estimated 5.5 wt% water along with other volatiles
- Green and blue dots show positive results for surface water ice and temperatures
 <110 K using orbital data.
- Spectral modeling shows that some icebearing pixels may contain ~30 wt % ice (mixed with dry regolith)
- Without direct measurements, form, concentration, and distribution of water is unknown


_	
	Concentration (% wt)*
H₂O	5.5
CO	0.70
H ₂	1.40
H₂S	1.74
Ca	0.20
Hg	0.24
NH ₃	0.31
Mg	0.40
SO₂	0.64
C₂H₄	0.27
CO ₂	0.32
CH ₃ OH	0.15
CH₄	0.03
ОН	0.00
H ₂ O (adsorb)	0.001-0.002
Na	
	O

NASA Artemis is Focused on the Lunar South Pole

"Peaks of Eternal Light" and "Permanently Shadowed Regions" exist on the lunar poles

ISRU Development and Implementation Challenges

Space Resource Challenges

- R1 What resources exist at the site of exploration that can be used?
- R2 What are the uncertainties associated with these resources? Form, amount, distribution, contaminants, terrain
- R3 How to address planetary protection requirements?

 Forward contamination/sterilization, operating in a special region, creating a special region

ISRU Operation Challenges

- O1 How to operate in extreme environments?

 Temperature, pressure/vacuum, dust, radiation, grounding
- O2 How to operate in low gravity or micro-gravity environments?

 Drill/excavation force vs mass, soil/liquid motion, thermal convection/radiation
- O3 How to achieve long duration, autonomous operation and failure recovery?

No crew, non-continuous monitoring, time delay

O4 How to survive and operate after long duration dormancy or repeated start/stop cycles with lunar sun/shadow cycles?

'Stall' water, lubricants, thermal cycles

ISRU Technical Challenges

- T1 Is it technically and economically feasible to collect, extract, and process the resource?
 - Energy, Life, Performance
- T2 How to achieve high reliability and minimal maintenance requirements?

Thermal cycles, mechanisms/pumps, sensors/ calibration, wear

ISRU Integration Challenges

- I1 How are other systems designed to incorporate ISRU products?
- 12 How to optimize at the architectural level rather than the system level?
- I3 How to manage the physical interfaces and interactions between ISRU and other systems?

Top 3 ISRU Development and Mission Insertion Challenges

Resource Uncertainty and Impact on ISRU Development & Implementation (R1, R2)

- Limited information (LCROSS) on actual lunar water/volatile characteristics requires development of several options in parallel or significant delays in polar ice mining will occur
- Current science missions, including VIPER, will help with understanding polar water/volatiles, but more is required to determine if the water resources are economically minable 'reserves'

Achieving Long Duration, Autonomous Operation in Mission Environments (O1, O3, T2)

- Current SOA technologies and systems for ISRU are not adequate; limited testing and scale of processing to date
- ISRU requires long duration operations (years) which makes Earth-based development and certification testing under mission environments with adequate simulants difficult and expensive
- Surviving and operating in permanently shadowed polar regions while interacting with abrasive regolith is critical for polar water prospecting and mining

Insertion into Lunar and Mars Human Mission Architectures (I1)

- Transportation and lander elements need to be designed from the start with ISRU propellants and surface refueling in mind.
- Transition strategy from Earth-supplied propellants/depots to Lunar-supplied propellants required
- Mars human architectures are extremely risk averse to incorporating Mars water resources into the architecture, even with lunar ISRU efforts applicable to Mars

ISRU Operation Challenges – Further Details

Operation in severe environments

- Efficient excavation of resources in dusty/abrasive environments; Wide variation in potential resource hardness, density/porosity, etc.
- Methods to mitigate dust & dust filtration for Mars atmospheric processing
- Extreme temperature changes (PSR ingress/egress) and/or extremely low temperatures (PSRs)
 - Material selection, embrittlement, thermal management, etc.
- Radiation & regolith charge: grounding/electrostatics
- Vacuum operation and exposure: electronics/power systems, reactor pressures/leakage, cold welding, etc.

Operation in low/micro-gravity

- Low-gravity on Moon/Mars
 - Low reaction force excavation in reduced and micro-gravity
 - Granular material flows differently in low-g; increase in electrostatic/friction effects
 - Liquid slosh is amplified
 - Kicking up dust is amplified; dust settling is different
 - Rotational inertia is not reduced, but gravity to resist tipping is reduced!
 - Fluidized & molten reactors impacted by gravity and thermal convection differences
 - Unknown impact on biological processing
- Micro-g environment for asteroids and Phobos/Deimos
 - Anchoring/weight-on-bit for resource extraction
 - Material handling and transport completely different than Moon/Mars techniques
 - Feedstock, product, and reactant separation: Gas/liquid, gas/solid, and liquid/solid reactors and separation
 - Friction, cohesion, and electrostatic forces may dominate in micro-g
 - Unknown impact on biological processing

ISECG ISRU Gap Assessment* Strategic Knowledge Gaps (SKGs) – Resource Assessment & Operations

- Reviewed 2016 LEAG Strategic Knowledge Gap (SKG) Special Action Team (SAT) Review
- Focused on Two of the Three Themes
 - Theme 1 Understand the Lunar Resource Potential
 - Theme 3 Understand How to Work and Live on the Lunar Surface

Each SKG assessed for the 5 major ISRU Functions and Products

Each SKG defined at one or more sub-element for ISRU

Each SKG Linked to one or more Architecture Phase and Objective

			*				•	
Polar Water (& polar volatiles)	Solar Wind Volatiles	O ₂ from Regolith	Construction & Manufacturing	ISRU Ops	Strategic Knowledge Gap Title	Strategic Knowledge Gap Subelements	Categorization & Min. Gap Closure Approach	Architecture Integration
					I. Understanding the Lunar Resource Potential	Breakdown/Narative	Science/Technology Ground/Flight	;
					B. Regolith (Earth Testing)		Ground/Flight	
	L	M				Measure volatiles and organics returned in "pristine" Apollo samples. Measure the extent of disruption of volatiles during handling and processing	Science/Ground	
	L	М				Science/Ground		
· //-			**		 	Multiple measurements of unorsurbed self-at death at mater and decemeter scales (laterally) and 0 2m depth. Need to measure abundance of solar wind gases or H species at the 10 ppm level. Need capability for multiple analyses at different locales and subsurface depths		
	M					Knowledge of hydrogen-resources in Mare and Highland regolith at non-polar locations: location, type, concentration in different minerals, energy to release	Science/Flight	\$1.1, 1.2, 1.3, 1.4, 1.5, 1.8
	н				Quality/quantity/distribution/form of H species and other volatiles in	Knowledge of hydrogen-resources in non-PSR regolith at polar locations: location, type, concentration in different minerals, energy to release tied to physical/mineral characterization	Science/Flight	S1.1, S1.2, S1.3, S1.5, S1.8
	M			1	mare and highlands regolith	Science/Flight & Ground		
	M					Losses of volatiles (solar wind deposited) in regolith during excavation and processing	Technology/Flt Demo	S1.2, S1.5

H = High Impact - Important for initial sustained operation at the lunar polar region (according to Artemis program)

M = Medium Impact - Important for longer-term sustained operations or for non-polar regions

 $L = \mbox{Low Impact}$ - Limited importance to area of ISRU; limited impact to the architecture

ISRU Operations

- Definition: The SKG is applicable to all ISRU areas as well as potentially other surface activities., e.g. communication and navigation
- Impact is assessed for each ISRU area. A single impact designation in the ISRU Ops column means all other colored columns have the same priority

*Final report

https://www.globalspaceexploration.org/wordpress/wp-content/uploads/2021/04/ISECG-ISRU-Technology-Gap-Assessment-Report-Apr-2021.pdf

Lunar ISRU Development And Demonstration Plans

NASA Space Technology Mission Directorate (STMD) Strategic Framework

Lead	Thrusts	Outcomes	Primary Capabilities
Ensuring American	Rapid, Safe, and Efficient Space Transportation	 Develop nuclear technologies enabling fast in-space transits. Develop cryogenic storage, transport, and fluid management technologies for surface and in-space applications. Develop advanced propulsion technologies that enable future science/exploration missions. 	Nuclear Systems Cryogenic Fluid Management Advanced Propulsion
global leadership in Space Technology • Lunar Exploration building to Mars and new discoveries at extreme locations • Robust national space technology engine to meet	Expanded Access to Diverse Surface Destinations	 Enable Lunar/Mars global access with ~20t payloads to support human missions. Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies. Develop technologies to land payloads within 50 meters accuracy and avoid landing hazards. 	Entry, Descent, Landing, & Precision Landing
national needs U.S. economic growth for space industry Expanded commercial enterprise in space	Live Sustainable Living and Working Farther from Earth	 Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities Sustainable power sources and other surface utilities to enable continuous lunar and Mars surface operations. Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface. Technologies that enable surviving the extreme lunar and Mars environments. Autonomous excavation, construction & outfitting capabilities targeting landing pads/structures/habitable buildings utilizing in situ resources. Enable long duration human exploration missions with Advanced Life Support & Human Performance technologies. 	Advanced Power In-Situ Resource Utilization Advanced Thermal Advanced Materials, Structures, & Construction Advanced Life Support & Human Performance
	Explore Transformative Missions and Discoveries	 Develop next generation high performance computing, communications, and navigation. Develop advanced robotics and spacecraft autonomy technologies to enable and augment science/exploration missions. Develop technologies supporting emerging space industries including: Satellite Servicing & Assembly, In Space/Surface Manufacturing, and Small Spacecraft technologies. Develop vehicle platform technologies supporting new discoveries. Develop transformative technologies that enable future NASA or commercial missions and discoveries 	 Advanced Avionics Systems Advanced Communications & Navigation Advanced Robotics Autonomous Systems Satellite Servicing & Assembly Advanced Manufacturing Small Spacecraft Rendezvous, Proximity Operations & Capture

Lunar Surface Innovation Initiative (LSII) Overview

In-Situ Resource Utilization

Collection, processing, storing and use of material found or manufactured on other astronomical objects.

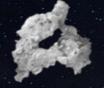
- Sub-scale ice mining and O2 extraction demonstrations targeted for mid-2020's
- ISRU Pilot Plant demonstration by late 2020's

Surface Excavation & Construction

Enable affordable, autonomous manufacturing or construction.

- Targeting a Small Pilot Lunar Surface Excavation demonstration in mid-2020's
- Scaled Construction demonstrations in midand late-2020's

Sustainable Power


Enable continuous power throughout lunar day and night.

- Regenerative Fuel Cell (RFC), Wireless Charging, Chemical Heat Integrated Power Source (CHIPS), and Lunar Surface Solar Arrays demonstrations in mid-202's
- Targeting Fission Surface Power demonstration in late 2020's

Extreme Access

Access, navigate, and explore surface/subsurface areas.

 Subsystem and component-level demonstrations throughout the 2020's, including the Cooperative Autonomous Distributed Robotic Explorer (CADRE) in 2023

Lunar Dust Mitigation

Mitigate lunar dust hazards.

 Targeting multiple Lunar Dust Mitigation demonstrations (component and subsystem-level) starting in early 2020's

Enable systems to operate through out the full range of lunar surface conditions.

 Targeting demonstrations on Lunar Night and Material Survivability, Lunar Exposure Platform (Lunar MISSE), Planet & Lunar Environment Thermal Toolbox Elements (PALETTE), COLDArm, starting in early 2020's

Strategy For ISRU Insertion into Human Exploration Maximize Ground Development – Use Flight for Critical Information and Eliminate Risk

Know Customer Needs and Gaps

- Work with Artemis elements, Moon/Mars Surface Architecture, and International Partners
- Work with Industry/Academia: Lunar Surface Innovation Consortium

Perform Ground Develop of Hardware and Systems until Flight

- Initiate a full range of ISRU & other discipline technologies across all TRLs (Technology Pipeline) to enable ISRU capabilities
- Develop lunar ISRU components and subsystems with a Mars-forward application
- > Engage Industry, Academia, and the Public to lay the foundation for long-term lunar economic development

Reduce Risk of including ISRU into Human Lunar Exploration By Utilizing CLPS Missions

- Understand lunar polar resources for technology development, site selection, mission planning
- Obtain critical data (ex. regolith properties, validate feasibility of ISRU process)
- Demonstrate proof-of-concept and reduce risk
- Demonstrate critical ISRU hardware and validate Pilot/Full scale designs
- Perform End-to-End ISRU Production Pilot Mission at sufficient scale to eliminate risk of Full-scale system
- Demonstrate use of ISRU Derived Products: Ascent vehicle, hopper, fuel cell, crew O₂, ...

> ISRU must first be demonstrated on the Moon before it can be mission-critical

 NASA STMD is breaking the 'Chicken & Egg' cycle of past ISRU development priority and architecture insertion issues by developing and flying ISRU demonstrations and capabilities to the Pilot Plant phase.

Lunar ISRU Mission Consumables: Polar Water and Oxygen from Regolith

Water (and Volatiles) from Polar Regolith

- Form, concentration, and distribution of Water in shadowed regions/craters is not known
 - Technologies & missions in work to locate and characterize resources to reduce risk for mission incorporation
- Provides 100% of chemical propulsion propellant mass
- Polar water is "Game Changing" and enables long-term sustainability
 - Strongly influences design and reuse of cargo and human landers and transportation elements
 - Strongly influences location for sustained surface operations

Oxygen from Regolith

- Lunar regolith is >40% oxygen (O₂) by mass
- Technologies and operations are moderate risk from past work and can be performed anywhere on the Moon
- Provides 75 to 80% of chemical propulsion propellant mass (fuel from Earth); O₂ for EVA, rovers, Habs.
- Experience from regolith excavation, beneficiation, and transfer applicable to mining Mars hydrated soil/minerals for water and in situ manufacturing and constructions

Current Plan: Lead with Water Mining/Follow with O₂ from Regolith Dual Path

- Perform PRIME-1 CLPS and VIPER to begin to understand lunar polar water availability
- Develop O₂ from Regolith high-fidelity ground demo in a TVC in parallel
- Utilize results from these activities to inform the 2-3 subsystem tech demos in the 2024-2026 timeframe which will culminate in the scalable pilot.

Key Questions to Address to Determine Path

What do we need to demonstrate to relevant scale ISRU on the Lunar surface?

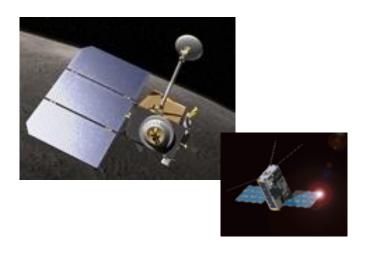
Polar Water Mining Path

- Are there sufficient quantities and concentrations of accessible ice to produce desired amounts of O₂ and H₂?
 - Access PSRs or other locations with potential ice deposits
 - Access sub-surface icy regolith
 - Assess ice concentration at multiple sites to estimate quantity
- Can lunar ice be extracted and converted into O₂ and H₂?
 - Excavate icy regolith
 - Extract water from icy regolith
 - Assess purity and contaminates in water
 - Electrolyze water to produce O₂ and H₂

Oxygen from Regolith Path

- Can clean O₂ be produced from regolith found near the lunar poles?
 - Excavate granular material
 - Process regolith/benefaction
 - Extract Oxygen
 - Purify product

Pilot Plant

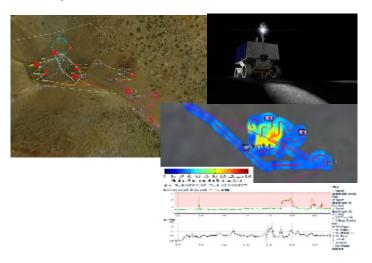

- Can sufficient quantities propellant be produced stored?
 - Produce propellant at a rate of 100's to 1000's of kg per year
 - Liquefy all products
 - Store products for >1 year
- Can the system survive the environment?
 - Operate without crew intervention for 1-5 years
 - Survive eclipse periods
 - Operate with abrasive regolith
 - Operate in permanently shadowed region temperature environment (40 to 100 K)

Resource Assessment for ISRU

Remote Assessment

Orbiters, CubeSats

Goals:


- Obtain data on terrain, minerals, and water resources to select landing sites of consideration
- ii. Obtain data at resolution to plan surface Exploratory Assessment of terrain and resources

Instruments

- Better mineral resolution for chemistry and hydration
- Passive and active subsurface hydrogen and layer

Exploratory Assessment

Rovers, Hoppers, Aerial Vehicles, Impactors, Instrumented Landers

Goals:

- Obtain data on physical/mineral characteristics and water/volatiles.
- ii. Obtain sufficient data to determine if the site warrants a Focused Assessment of resources

Instruments

- Should cover physical/geotech, chemical/mineral, and volatile characterization
- Passive and active subsurface assess

Focused Assessment, Mapping, & Planning

Rover or Crew

Goals:

- Ensure sufficient resources exist in form and location expected
- ii. Build 3-D interpretation of data to define resource for mining operations

Instruments

- Should cover physical, chemical/mineral, and volatile characterization
- Passive and active subsurface assess

Resource Assessment is Need for Artemis Base Camp site selection and long-term ISRU Commercialization

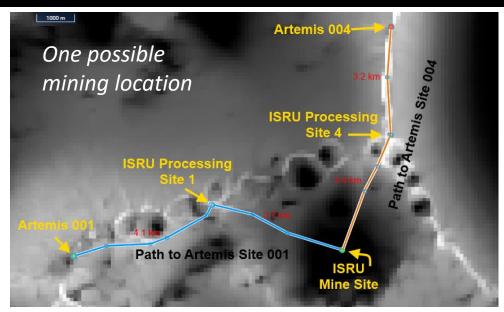
Polar Ice Resource Assessment – Current Development

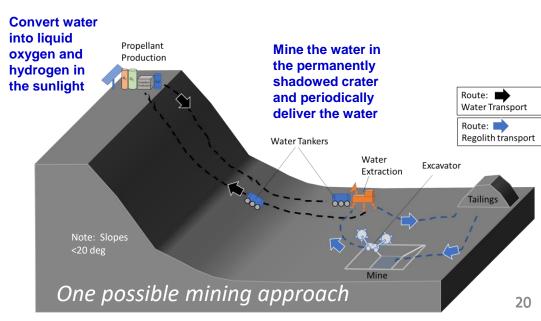
 Acquire Icy Regolith Samples FLEET: Fundamental Regolith Properties Project - Bulk water stability – NASA GRC Characterization of Lunar Polar Volatiles for Curation and ISRU – NASA JSC ColdARM – JPL - GCD Trident Auger – Honeybee Robotics - VIPER WRANGL3R - Water Regolith ANalysis for Grounded Lunar 3d Reconnaissance - Univ of Texas El Paso - LuSTR Instruments for Physical/Geotechnical Characterization Material Characterization while Drilling on Lunar/Martian Surface – ESI with CSM - 	× Astrobotic 2021	× × Massten 2022 (SP)	Firefly 2023	IM Prime-1 2022 (SP)	imes Ast. VIPER 2023 (SP)	Selected for CLPS (by SMD and STMD) Mineral Characterization NIRVSS - InfraRed Spec L-CIRIS - Compact InfraRed Imaging System eXTraterrestrial Regolith Analyzer for Lunar Soil - XRD/XRF Ultra-Compact Imaging Spectrometer - Shortwave IR
Completed - High TRL Rover Lidar – NASA GSFC - Moon-Mars Ice Challenge – NASA LaRC - Percussive Hot Cone Penetrometer and GPR – Mich Tech - LuSTR Instruments for Mineral Characterization - Fundamental Regolith Properties Project - Bulk water stability – NASA GRC - Recent SMD & CLPS Selections	Х	x		X		Volatile - Direct Measurement MSolo - Mass Spectrometer PITMS - Inntrap Mass Spectrometer CRATER - Laser-based Mass Spectrometer Hydrogen Measurement NSS - Neutron Spectrometer NMLS - Neutron Measurement at the Lunar Surface NIRVSS - InfraRed Spec (surface and bound H ₂ O/OH) Imager
 Instruments for Ice/Volatile Characterization Polar Resources Ice Mining Experiment-1 – NASA KSC & Honeybee Robotics - GCD Light Water Analysis & Volatile Extraction (Light WAVE) – NASA JSC - GCD Locating and Identifying Lunar Volatiles using Heat and Mass Transfer – CSM – NSTGRO Mobility and Instruments for Resource Assessment L-Puffer/CADRE – JPL; Mini-rover w/ TBD instruments MoonRanger – SMD DALI; Mini-rover w/ camera (2022) NeuRover – SBIR Phase II; Mini-rover w/ neutron spectrometer Robotic Technologies Enabling the Exploration of Lunar Pits – Phase III Carnegie Mellon Mobile Autonomous Prospecting Platform (MAPP) – Lunar Outpost 	X	×	× × ×	×	×	Heimdall - Digital Video Recorder/4 Cameras Physical Properties/Acquisition LISTER - Heatflow Probe Electrodynamic Dust Shield (EDS) PlanetVac - Pneumatic Transfer SAMPLR - Arm Scoop ColdARM - Arm Scoop Trident - Auger Drill PVEx - Coring Drill MicroRovers CubeRover (SBIR) MoonRanger (LSIPT) L-PUFFER/CADRE (JPL) NeuRover (SBIR)

Polar Ice/Water Mining — Overview & Current Development

Three main Polar Ice/Water Mining Methods under development/consideration:

1. Excavation/Acquisition and Processing Reactor


- Lunar Auger Dryer ISRU (LADI) NASA JSC GCD Active
- Aqua Factorem (Ice Crystal Sifting) UCF NIAC Phase I completed
- Lunar Ice Mining Using a Heat-Assisted Cutting Tool Sierra Lobo - SBIR Phase I – completed


2. Subsurface Heating - Contained

- PVEx Honeybee Robotics SBIR Phase II completed
- Thermal Management for Lunar Ice Miners (w/ PVEx) -Advanced Cooling Technologies – SBIR Phase I/II - Active

3. Subsurface Heating/Ablating and Volatile Release Capture

- Ablative Arc Mining for In-Situ Resource Utilization UT El Paso
 LuSTR Active
- Lunar Polar Propellant Mining Outpost TransAstra NIAC Phase II - Active
- Lunar Water Extraction Techniques and Systems TransAstra –
 SBIR Phase I Active
- Thermal Mining of Ices on Cold Solar System Bodies CSM NIAC Phase I - completed



Oxygen (Metal) from Regolith - Overview & Current Development

Over 20 processes have been identified to extract oxygen from regolith

- Components required range from TRL 3 to TRL 9
- Previously focused on Mare regolith; now Highland
- Typically, as processing temps increase, O₂ yield increases, and technical and engineering challenges increase

Oxygen Extraction Methods under development/consideratio...

- Carbothermal Reduction w/ Methane
 - Carbothermal Reduction Reactor Design Sierra Nevada Corp (SNC) 2 SBIR Phase IIIs, and COPR Tipping Point– Active
 - CaRD Carbothermal Reduction Demonstration GCD JSC Active
- 2. Molten Regolith Electrolysis (MRE)
 - Molten Regolith Electrolysis Lunar Resources NASA SBIR Phase I/II and NSF SBIR Phase II Active
 - Molten Regolith Electrolysis Tech Maturation KSC GCD and ECI Active
- 3. Ionic Liquid Reduction and Electrolysis reactors for O₂/metals
 - RRILE Resource Recovery with Ionic Liquid for Exploration MSFC GCD Active
 - Ionic Liquid-Assisted Electrochemical Extraction of Oxygen Faraday Technology SBIR Phase I Completed
- 4. Plasma Hydrogen Reduction
 - Plasma Hydrogen Process feasibility assessment KSC CIF Active
 - Plasma Hydrogen Reactor design and control KSC GCD FY22
- 5. Moon to Mars Oxygen and Steel Technology (CO/H₂ Reduction) Pioneer Astronautics SBIR Phase II Sequential Active
- 6. Carbothermal/Vapor Pyrolysis with Solar Concentrator Blueshift SBIR Phase I Completed

Water Processing – Overview & Current Development

Three main Water Electrolysis technologies under development/consideration:

- 1. Proton Exchange Membrane (PEM)
 - IHOP PEM Water Electrolysis/Clean-up Paragon BAA Active
 - Regenerative Fuel Cell Project GRC GCD/TDM Active
 - Lunar Propellant Production Plant (LP3) Skyre –TP Active
- 2. Solid Oxide Electrolysis (SOE)
 - Lunar Ice Processing CSM/OxEon TP Active
 - Redox Tolerant Cathode for Solid Oxide Electrolysis Stacks OxEon Phase II SBIR Active
 - Production of Oxygen and Fuels from In-Situ Resources on Mars OxEon BAA Active
- 3. Alkaline (Dirty Water)
 - Dirty Water Alkaline Electrolysis Teledyne BAA Active
 - Advanced Alkaline Reversible Cell pH Matter ACO Active
 - Advance Alkaline Reversible Cell/Dirty Water pH Matter TP Active
 - BRACES

 Bifurcated Reversible Alkaline Cell for Energy Storage

 pH Matter

 TP Active

Water Capture and Cleanup under development/consideration

- Lunar water simulant definition NASA CIF and Simulant Project Active
- Fundamental Regolith Properties, Handling, and Water Capture NASA GCD Active
- ICICLE ISRU Collector of Ice in a Cold Lunar Environment-IHOPP –Paragon SBIR Phase I/II Active
- IHOP PEM Water Electrolysis/Clean-up Paragon BAA Active
- Thermal Management for Lunar Ice Miners (w/ PVEx) Advanced Cooling Technologies SBIR Phase II Active

ISRU Lunar Development and Demonstration Timeline

Reconnaissance, Prospecting, Sampling

Resource Acquisition & Processing

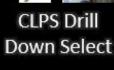
Pilot Consumable Production

Sub-system Demonstrations: Investigate, sample, and analyze the environment for mining and utilization.

Follow The Natural Resources:

Demonstrations of systems for extraction and processing of raw materials for future mission consumables production and storage.

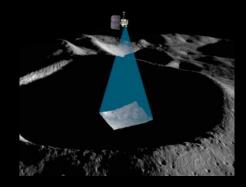
Sustainable Exploration:
Scalable Pilot - Systems demonstrating
production of consumables from in-situ
resources in order to better support
sustained human presence.

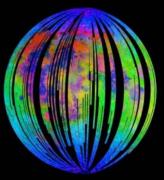


High-fidelity Simulant Production Oxygen from Lunar Simulant Ground Demos

Polar Resources Ice Mining Experiment (Prime-1) on CLPS Volatiles Investigation Polar Exploration Rover (VIPER)

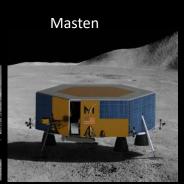
ISRU Subsystem Consumables Extraction Demos Scalable Pilot - ISRU Systems for Consumable Production


Lunar Science & Resource Assessment

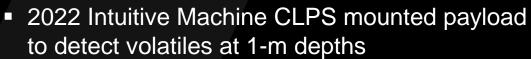


Orbital Missions

ShadowCam on Korean Pathfinder Lunar Orbiter



Surface Missions



PRIME-1 & VIPER

First Steps toward surface understanding of Polar Water and Volatiles

Polar Resources Ice Mining Experiment (Prime-1) on CLPS

- Instruments include:
 - Mass Spectrometer Observing Lunar Operations (MSolo)
 - The Regolith and Ice Drill for Exploring New Terrain (TRIDENT)

- 2023 Astrobotics CLPS at South Pole
- Measure volatiles at the lunar poles and acquire new key data on lateral and vertical distribution
 - Neutron Spectrometer System (NSS)
 - NIRVSS IR Spec
 - Msolo Mass Spec
 - TRIDENT Drill
- Build lunar resource maps for future exploration sites
 - Long duration operation (months)
 - Traverse 10's km

In Situ Propellant & Consumable Production Phases of Evolution and Use

Demonstrate, Build Confidence, Increase Production and Usage

10 to 30 mT Range for Initial Full-Scale Production

				~						
	Demo	Pilot	Crewed Ascent	Full Descent	Lockheed Martin ⁶ 2 Stage Single Stage		Dynetics ⁶	Single	Human	Commercial
	Scale	Plant	Vehicle ¹	Stage ¹			Single Stage/	Stage	Mars	Cis-Lunar
			3 Stage Ard	h to NRHO			Drop Tanks	to NRHO ²	Transportation ³	Transportation ⁴
Timeframe	days to months	6 mo - 1 year	1 mission/yr	1 mission/yr	per mission	per mission	per mission	1 mission/yr	per year	per year
Demo/System Mass ⁵	10's kg to low 100's kg	1 mt O ₂ Pilot 1.3 – 2.5 mt Ice Mining	1400 to 2200 kg	2400 to 3700 kg				Not Defined	Not Defined	29,000 to 41,000 kg
Amount O ₂	10's kg	1000 kg	4,000 to 6,000 kg	8,000 to 10,000 kg	10,000 kg	33,000 kg	32,000 kg	30,000 to 50,000 kg	185,000 to 267,000 kg	400,000 to 2,175,000 kg
Amount H ₂	10's gms to kilograms	125 kg		1,400 to 1,900 kg	2,000 kg	7,000 kg	Methane Fuel	5,500 to 9,100 kg	23,000 to 33,000 kg	50,000 to 275,000 kg
Power for O ₂ in NPS	100's W	5 to 6 KW	20 to 32 KW	40 to 55 KW				N/A	N/A	N/A
Power for H ₂ O in PSR	100's W	~2 KW		~25 KW				14 to 23 KW		150 to 800 KW
Power for H ₂ O to O ₂ /H ₂ in NPS		~6 KW		~48 KWe				55 to 100 KWe		370 to 2,000 KWe

NPS = Near Permanent Sunlight

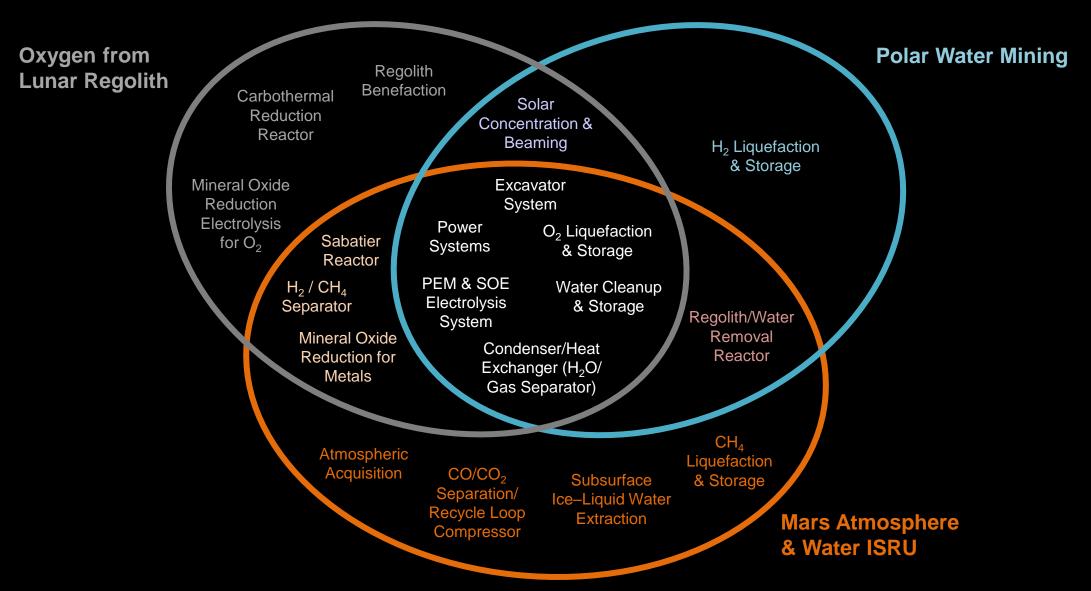
¹Estimates from rocket equation and mission assumptions

PSR = Permanently Shadowed Region

- Table uses best available studies and commercial considerations to guide development requirements/FOMs
- Table provides rough guide to developers and other surface elements/Strategic Technology Plans for interfacing with ISRU
- Significant Scale up will be required for long-term commercial operations

 $^{^2}$ Estimates from J. Elliott, "ISRU in Support of an Architecture for a Self-Sustained Lunar Base "

³Estimate from C. Jones, "Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign"


⁴Estimate from "Commercial Lunar Propellant Architecture" study

⁵Electrical power generation and product storage mass not included

⁶ APL Lunar Surface Innovation Consortium Suppy-Demand Workshop, 9/17/2020

ISRU Technology Synergy

Lunar ISRU – Mars Forward

- Multiple technologies and subsystems are in work and planned that are applicable to both Moon and Mars ISRU (as well as regenerative fuel cells and life support systems)
- Lunar ISRU operational experience and mission validations will reduce the risk and prepare for Human Mars Exploration
 - Resource assessment and mapping
 - Robotic deployment of hardware and systems
 - Remote and autonomous operations
 - Product liquefaction, storage, transfer, and usage
- With proper attention to production rates, modularization, and interfaces, almost the same subsystem modules and excavators can be utilized on both Moon and Mars missions

Lunar Production Target

10 mt O₂ / yr or 15 mt H₂O / yr

Lunar ISRU

- Resource acquisition
 (225 1360 kg / day)
- Oxygen production (2.0 kg O₂ / hr)
- Water electrolysis
 (2.8 kg H₂O / hr)

Mars ISRU

- Resource acquisition (720 – 2660 kg / day)
- Oxygen production
 (2.2 2.7 kg O₂ / hr)
- Water electrolysis
 (3.0 kg H₂O / hr)

Mars Production Target

23 mt O_2 only or 28 mt O_2 & 7 mt CH_4 per mission (~26 months)

ISRU Perspective I Presentation Takeaways

ISRU has significant challenges and knowledge gaps to overcome to be successful

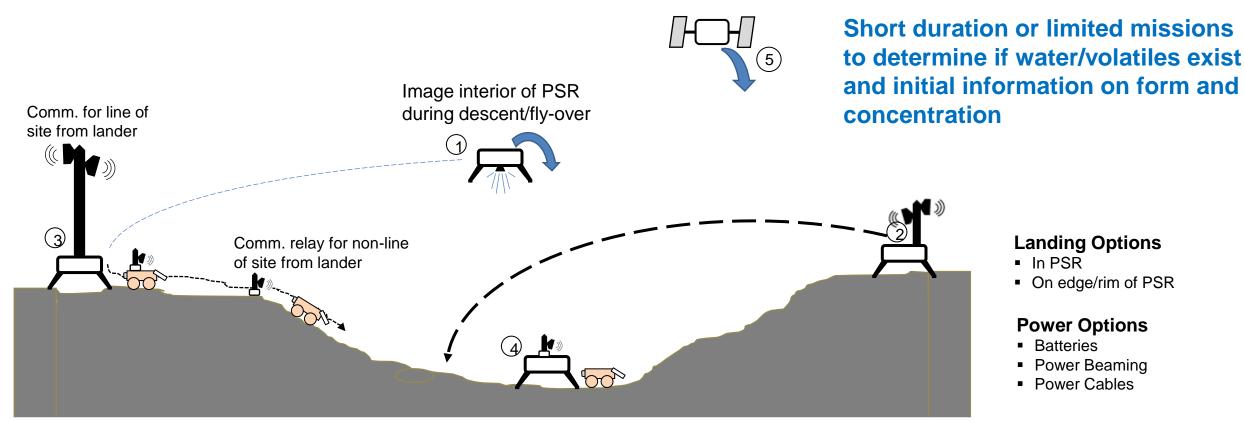
- Understanding Resources, Environments, and Environmental Impacts on hardware and processes is Critical

Resource assessment instruments are being developed and flown

- Most CLPS missions so far are not aimed at polar water/volatile assessment
- VIPER (and PRIME-1) will provide significant improvement in polar water/volatile understanding
- More missions to different locations and more resource assessment is needed

Technologies are being developed for both Oxygen Extraction and Polar Ice Mining

- Due to uncertainty in form, concentration, and distribution of polar water/volatiles, multiple options are being pursued in parallel until further resource information is available for down selection
- The Mining Water path schedule is dependent on VIPER mission success
- Technologies and demonstrations are aimed at supporting scale up for commercial operations.


Lunar ISRU development and operation are Mars Forward

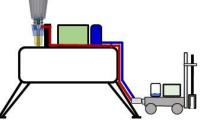
- Similar technologies and production rates
- Deployment and operation on the Moon are

Polar Resource Assessment – Exploratory Evaluation Options

Landing Options

- In PSR
- On edge/rim of PSR

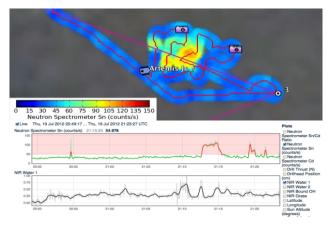
Power Options


- Batteries
- Power Beaming
- Power Cables
- Ejectable/deployable payloads into PSR during descent/fly-over: Payloads are short-lived stationary or mobile assets
- Ejectable/deployable payloads into PSR after landing near PSR: Payloads are short-lived stationary or mobile assets
- Payloads deployed after landing next to PSR. Communication from orbit, lander, or relay deployed at PSR rim.
- Land directly in PSR. Communication from lander. Payload is attached to lander or deployable for short duration operation
- Fly over PSR. Payload is ejected/deployed for short duration operation

Polar Resource Assessment – Detailed Resource Mapping Options

Long duration missions to assess the extent, concentration, and distribution of water/volatiles for mine planning operations

- Lander images terrain outside and in PSR during descent to update knowledge of terrain
- Rover traverses into permanently shadowed crater and begins resource assessment


- Rover returns to lander for periodic recharging
 - Deliver water/volatile samples for analysis and possible crew return to Earth
- Rover measures the following while traversing:

TBD m traversed

in Crater

- Terrain features, rocks
- Surface minerals.
- Surface water/hydroxyl,
- Subsurface hydrogen-sources and potentially subsurface features while traversing

Rover traverses in 'search pattern' mode if high concentrations of surface or subsurface hydrogen-source measured

- Ground personnel map data and identify locations for subsurface resource assessment
- Rover commanded to specific location and performs geotechnical and direct measurements of subsurface minerals & ice/volatiles

Landing Options

- In PSR or in shadowed crater
- On edge/rim of PSR

Power Options

- Nuclear reactor, batteries on rover
- Advanced RTG on rover with batteries
- Solar arrays in sunlight, batteries on rover

ΓBD m to crater

Solar arrays in sunlight, fuel cell on rover

Communication & Navigation Options for Rover

PSR

- Orbital relay to Earth via Gateway or communication satellite
- Line of site or Non-line of site communication relays from rover-to-lander, with lander-to-Earth direct or thru relay

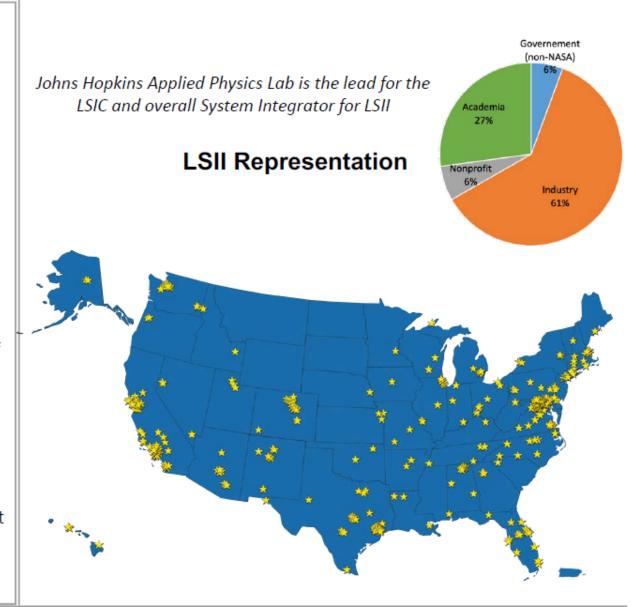
Note: Need near continuous communications to allow for tele-operation

What is the Lunar Surface Innovation Consortium?

Nationwide alliance of universities, commercial companies, non-profit research institutions, NASA, and Other Government Agencies with a vested interest in our Nation's campaign to establish a sustained presence on the Moon.

Objectives

- Identify lunar surface technology needs and assess the readiness of relative systems and components.
- Make recommendations for a cohesive, executable strategy for development and deployment of the technologies required for successful lunar surface exploration.
- Provide a central resource for gathering information, analytical integration of lunar surface technology demonstration interfaces, and sharing of results.
- Foster growth of a diverse community and networking among members.



Lunar Surface Innovation Consortium (LSIC)

More than 1,000 active participants from over 300 organizations across 44 states, increasing monthly

- · Held 3 bi-annual consortium meetings
 - National kick-off Feb. 2020
 - Fall meeting Oct. 2020
 - Spring meeting May 2021
- Conducted 3 thematic Workshops in 2020-2021:
 - ISRU Supply Demand Workshop on Sept. 2020
 - over 200 participants
 - Dust Mitigation Workshop on Feb. 2021
 - · over 350 participants
 - Lunar Mapping for Precision Landing Workshop March 2021
 - over 400 participants
- · Awarded 6 LuSTR Grants for ISRU and Power
- Active participation in monthly Focus Groups
- Conducted a Lunar Surface Power Report to assess the current stage of STMD-funded power-related technologies for LSII
- Conducted a Lunar Surface In- Situ Resource Utilization
 (ISRU) Technology and System Integration Assessment to identify gaps
 that remain in the development and maturation of ISRU technologies
 needed to meet NASA goals
- Performed a Lunar Simulant Assessment to understand the availability
 of existing lunar simulants that may be used in technology development
 efforts for lunar surface operations.
- Expanded APL support to provide System Integration across all six LSII capability areas

University & Public Involvement ISRU & Construction Related Challenges

Printed 3D Habitat Challenge

- Design, build habitat elements, and 3D print a subscale habitat
- Phase III completed 2019

CO₂ Conversion Challenge

- Convert CO₂ into sugars
- Phase I completed
- Phase II launched Sept 2019

Watts on the Moon Challenge

- Solutions for energy distribution, management, and/or storage
- Launched Sept. 2020

Break the Ice Challenge

- Excavate icy regolith in PSR
- Phase I launched Nov. 2020

Lunar PSR Challenge 2020

- completed Jan. 2021
- Exploration of PSR regions
- Technologies to support ISRU in PSRs
- Capabilities to explore & operate in PSRs

Lunar PSR Challenge Results

- 8 university teams; mobility, power beaming, tether, and wireless charging, instrument, and tower
- Winner: MTU superconducting cable deployment

Lunar Dust Challenge 2021 – launched Sept. 2020

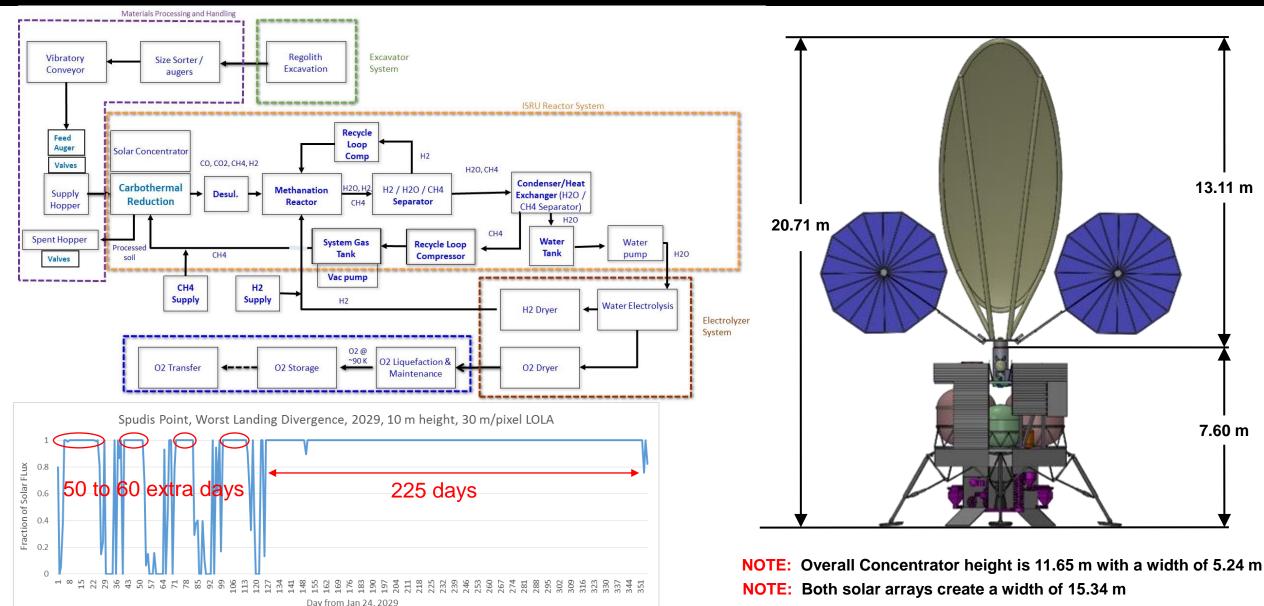
- Landing Dust Prevention and Mitigation
- Spacesuit Dust Tolerance and Mitigation
- External Dust Prevention, Tolerance
- and Mitigation
- Cabin Dust Tolerance and Mitigation

Moon Mars Ice Challenge

- Yearly, university, started in 2017 for Mars ice; added Moon in 2019
- Understand subsurface stratigraphy/hardness
- Extract subsurface water
- 10 teams compete in final 2 day event at LaRC

Lunabotics Robotic Mining Competition

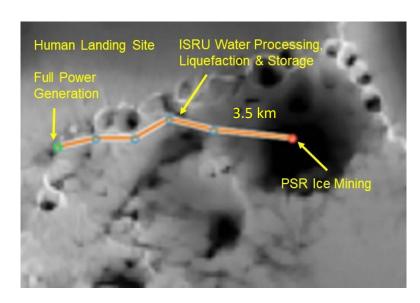
- Yearly, university, started in 2007 following Lunar Excavation Centennial challenge
- Design and build robotic machines to excavate simulated lunar soil (in 30 min.)
- Teams compete at KSC


Oxygen from Regolith – Full Scale System Design & Concept of Operation (7.4 continuous months/year)

- Assumed lander had 3.6 mT payload capability and <u>all hardware needed to produce and store O₂ are on a single lander
 </u>
 - 2nd lander required to deliver mobile O2 storage and transfer unit
- Each ISRU module (there are two) produces 15.6 kg of O₂ per day (3500 mt O₂ per year per module)
- ISRU plant, excavation zone, and dump zone form triangle with 100 m each leg
- Each Excavator
 - Provides 4 deliveries of 35 kg per day to ISRU plant (20 mins total per delivery)
 - Provides 3 disposal runs of 40 kg per day to clear out the two ISRU modules (17 mins total per disposal run)
 - Is charged every 4.5 days (1 kWhr discharged maximum 80% 50 charge cycles per operating year)
 - Operates via tele-operation/supervised-autonomy with a communication link through the lander to Gateway to Earth
- Electrolysis subsystem converts H₂O into O₂ and H₂
 - 0.65 kg/hr of O₂; H₂ recycled back to methanation reactor
- Oxygen is liquefied and stored in the descent stage LO₂ tank (single system for all ISRU modules)
 - 1.3 kg/hr of O₂ (total from two ISRU modules) liquefied and placed in lander tanks
- Solar Concentrator: 22.2 kWth energy delivered to ISRU reactors (2) via fiber optic at 1800 °C
- Electrical Power: <u>15 kWe</u> (entire system, with 30% growth)
 - Two Ultraflex arrays at 5.4 m diameter
 - Regenerative fuel cell used for nighttime survival during ISRU standby mode (4.6 'winter' months)

Oxygen from Regolith – Full Scale System Point of Departure Carbothermal Reduction (7+mT O₂/year)

Mining Polar Water: Initial Production Plant Concept



Five Systems for Lunar Ice Mining

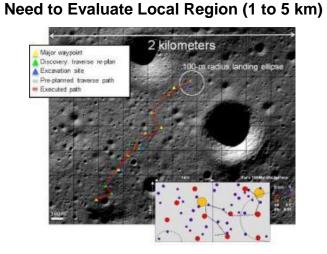
- 1. Ridge ISRU: Water transfer, cleaning, storage, and electrolysis, and water tankers
- 2. Ridge Cryo: Stationary O₂/H₂ liquefaction and storage, transfer, mobile O₂/H₂ tankers
- 3. Ridge ISRU Power: Solar array, regenerative fuel cell (nuclear reactor is optional)
- 4. PSR ISRU: excavator(s), regolith processing to extract water, water collection/capture, water transfer
- 5. PSR Power: ~25 KW
 - Nuclear reactor & power cart/cable (1.5 km) in PSR
 - Power transfer from Ridge ISRU Power System via power cart/cable (5 km) or power beaming

Nominal Mission

- 15,000 kg water / year (225 days continuous); 13,336 / 1667 kg (O₂/H₂)
 - H₂ production is the driver for O₂/H₂ propulsion systems
 - 10,000 kg $O_2/1667$ kg $H_2 = 6:1$ Ox/Fuel MR for propulsion
- Water source: 5% water ice particles mixed and frozen in with regolith, underneath a 20 cm desiccated layer
- Water transported from PSR to Ridge-based plant via water tanker tbd (>20) times per year
- Nom. traverse path <15 deg. slopes between Ridge and PSR ISRU Systems

Site selected for Ice Mining Study Only

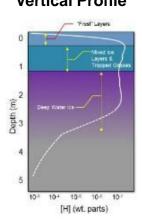
The 'Economics' of ISRU

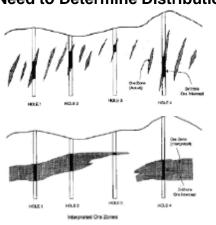


The Economics of ISRU depends on the <u>Location</u> and <u>Amount/Distribution</u> of the Resource, the <u>Infrastructure and Difficulty of ISRU</u>, and the <u>Amount/Frequency</u> of the product

Location

- Resource must be assessable: slopes, rock distributions, surface characteristics, etc.
- Resource must be within 'reasonable' distance of mining infrastructure: power, logistics, maintenance, processing, storage, etc.
- Product produced must be within 'reasonable' transportation distance of user: Transportation of product to 'Market' must be considered


Resource Must Be Known


Need to Determine Form

Need to Determine Vertical Profile

Need to Determine Distribution

Infrastructure and Difficulty of ISRU: infrastructure needed for ISRU must allow for Return on Investment (ROI) for:

- Mass ROI mass of equipment and unique infrastructure compared to bringing product and support equipment from Earth.
- Cost ROI cost of development and certification of equipment and infrastructure compared to elimination of launch costs or reuse of assets (e
- Time ROI time required to notice impact of using product use compared to Earth delivered product
- Mission/Crew Safety ROI increased safety of product compared to limitations of delivering product from Earth

Amount/Frequency of product needed must justify investment in extraction and processing

Requires long-term view of exploration and commercialization strategy to maximize benefits: mass/year product vs mass of Infrastructure