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1859 September “Carrington event” (e.g. Tsurutani et al., 2003, doi:10.1029/2002JA009504; Cliver, 2006,  doi:10.1016/j.asr.2005.07.077).
One of the largest magnetic storms ever recorded. Widespread disruption of telegraph service.

1921 May “New York Railroad storm” (e.g. Hapgood, 2019, doi:10.1029/2019SW002195; Love et al., 2019, doi:10.1029/2019SW002250).
Widespread disruption of radio, telegraph, and telephone systems. Responsible for up to 3 fires in New York City and State railroad stations.

1940 March (Love et al., in preparation).
Widespread impact on U.S. long-wire communication systems. Manageable impact on U.S. electricity power grid.

1967 May (Knipp et al., 2018, doi:10.1029/2018SW002024).
Significant disruption to radio communication, notably for the U.S. military. Delores Knipp will cover this on Tuesday.

1972 August (Knipp et al., 2016, doi:10.1002/2016SW001423)
Interference for U.S. electricity power grid and communication systems. Interference for U.S. military. Delores will cover this on Tuesday.

1989 March storm (e.g. Allen et al., 1989, doi:10.1029/89EO00409; Boteler, 2019, doi:10.1029/2019SW002278; Love et al. under review).
One of the most impactful storm ever experienced. Complete collapse of Canadian Hydro-Quebec power grid. Electric blackouts in Sweden.
>$3 to 6 billion in economic damage for Canada. Interference for U.S. electricity power grid. Damage to a high-voltage transformer in NJ.
Damage to satellites. Disruption of geophysical surveys.
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Damage to satellites. Disruption of geophysical surveys.

A future superstorm like that of 1859: Subject of a 2008 National Academies of Sciences report (Baker et al., 2008, doi:10.17226/12507).
Significant damage and interference to military and civilian satellites. Widespread disruption of GPS, radio communication, geophysical surveys. 
Widespread and prolonged loss of electricity, damage to grid. Economic impact impact of up to $1-2 trillion for the United States.
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Widespread and prolonged loss of electricity, damage to grid. Economic impact impact of up to $1-2 trillion for the United States.
Such an event has not been experienced in the context of modern technology, but we know from history that its future occurrence is plausible.
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The possible occurrence of such a storm has motivated the creation of the Space Weather Operations Research and Mitigation (SWORM) working 
group under the Office of Science and Technology, EOP. Executive orders 13744 (2016) and 13865 (2019). The PROSWIFT Act (2020).
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Note tomorrow’s ground-effects panel: Anna Kelbert (USGS), Jenn Gannon (CPI), Jesper Gjerloev (JHU/APL) , Arnaud Chulliat (NOAA/NCEI), 

Antti Pulkkinen (NASA/GSFC), and Adam Schultz (OSU).
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March 1989 magnetic storm damage to a high-voltage transformer 
at a nuclear power center in Salem, New Jersey.



Compilation of reports of operational interference (“anomalies”) experienced on North American 
electric-power and communication systems during several magnetic storms.

Operational anomalies tend to be concentrated in the Mid-Atlantic, the Northeast, and in the upper Midwest United States.
Love, J. J. & Murphy, B. S., 2022. North American electricity power-grid and communication-network anomalies for several magnetic 
storms, U.S. Geological Survey data release, https://doi.org/10.5066/P9N4DVNT.

https://doi.org/10.5066/P9N4DVNT


When was operational interference experienced across North America during the March 1989 storm?

During the March 1989 storm, operational anomalies tended to be realized during main-phase, and, especially during maximum -Dst.
These observations highlight the need for short-term forecasting and real-time monitoring and “nowcasting”.
Boteler, 2019, doi:10.1029/2019SW002278; Love et al. under review.



Love, J. J., Bedrosian, P. A. & Schultz, A., 2017. Down to Earth with an electric hazard from space, Space Weather, 15(5), 658-662, 
https://doi.org/10.1002/2017SW001622. 

https://doi.org/10.1002/2017SW001622
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Magnetic storms and induction hazards, Eos, Trans. AGU, 95(48), 445-446, https://doi.org/10.1002/2014EO480001.
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https://doi.org/10.1002/2014EO480001


Magnetic observatories spanning the study region, in operation in 1989
and providing 1-minute resolution data.

Storm-time geomagnetic disturbance displays important geographical-temporal dependence. Additional geomagnetic monitoring is needed, especially for 
event-by-event mapping of voltages on individual grid lines.

Love & Finn, 2011, https://doi.org/10.1029/2011SW000684; Newitt & Coles, 2007, https://link.springer.com/referencework/10.1007/978-1-4020-4423-6.

https://doi.org/10.1029/2011SW000684
https://link.springer.com/referencework/10.1007/978-1-4020-4423-6


Geography of impedance amplitude and polarization at 120 seconds.

Surface electromagnetic impedance can differ significantly from one location to another, depending on subsurface minerology and fluid content.

The lithosphere is relatively resistive (high impedance) in the upper Midwest and in the Eastern United States.  Also polarized in the East.

The lithosphere is relatively conductive (low impedance) in Michigan, Illinois, the Appalachian basin, and much of the West.

Schultz et al., 2006-2018,
https://doi.org/10.17611/DP/EMTF/USARRAY/TA.

Kelbert, et al, 2011, 
https://doi.org/10.17611/DP/EMTF.1.

https://doi.org/10.17611/DP/EMTF/USARRAY/TA
https://doi.org/10.17611/DP/EMTF.1


Comparison of March 1989 geoelectric amplitudes with power-grid operational interference

Our geoelectric amplitude map shows significant geographic differences peak amplitude for the March 1989 storm. Our map also shows correlation with a 
(qualitative and anecdotal) anomalies list reported by the North American Electric Reliability Corporation for the March 1989 storm.

Though 1989 operational interference to the U.S. grid did not result in blackouts, it did result in transformer damage and significant operational  “stress”.

The geoelectric hazard analysis combined with the March 1989 anomalies record  provides us with understanding of where more serious problems would 
likely be manifest during an even more intense storm – the Mid-Atlantic and Northeast United States.



How are geoelectric hazards organized in geography during March 1989?

Geoelectric hazards are affected by both geomagnetic activity and surface impedance.
Over-all hazard amplitude is controlled by storm intensity.
Regional differences in amplitude are primarily controlled by differences in impedance.
Love et al. under review.



100-year 1-minute duration voltages on the national power grid.

Lucas, et al. 2020, https://doi.org/10.1002/2019SW002329.

We estimate geoelectric field amplitudes for many storms and extrapolate a projection onto the power grid to obtain 100-year extreme-event voltages.

Some of these quasi-direct voltages would drive quasi-direct currents of hundreds or a thousand amps.

This is plenty sufficient to damage transformers (North American Electric Reliability Corporation, Transformer Thermal Impact Assessment, 2017).

spaceweather.com

https://doi.org/10.1002/2019SW002329


Real-time geoelectric hazard mapping project.



Lessons learned from magnetic storm hazard analysis can guide analysis of 
hazards associated with late-phase E3 nuclear electromagnetic pulse (EMP).

Department of Energy, 2021; Gombosi et al. 2017, https://doi.org/10.1007/s11214-017-0357-5; International Electrotechnical Commission, 1996. 1000-2-9.

To resolve E3 EMP Earth-surface impedance, dense wideband magnetotelluric surveying is needed (covering at least 0.1 s to 1000 seconds).

Until done, E3 EMP scenario analyses of grid voltages have significant errors -- order of 100% (Love et al. 2021, https://doi.org/10.1029/2021EA001792).

https://doi.org/10.1007/s11214-017-0357-5
https://doi.org/10.1029/2021EA001792


A couple of USGS aspirations:
1. denser geomagnetic monitoring
2. dense wideband magnetotelluric surveying  of the Mid-Atlantic and Northeast U.S.

Denser geomagnetic monitoring and would significantly improve the accuracy of maps of magnetic-storm geoelectric field hazards (Murphy et al., 
2021. http://doi.org/10.1029/2020SW002693).

Dense wideband surveying would enable realistic mapping of E3 EMP hazards across the geologically complex Mid-Atlantic and Northeast United 
States-- the most densely populated part of the United States (Love et al. 2021, https://doi.org/10.1029/2021EA001792).

http://doi.org/10.1029/2020SW002693
https://doi.org/10.1029/2021EA001792
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