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Some impactful magneticstorms

1859 September “Carrington event” (e.g. Tsurutaniet al., 2003, doi:10.1029/2002JA009504; Cliver, 2006, doi:10.1016/j.asr.2005.07.077).
One of the largest magnetic storms ever recorded. Widespread disruption of telegraph service.
1921 May “New York Railroad storm” (e.g. Hapgood, 2019, doi:10.1029/2019SW002195; Love etal., 2019, doi:10.1029/2019SW002250).
Widespread disruption of radio, telegraph, and telephone systems. Responsible for up to 3 fires in New York City and State railroad stations.
1940 March (Love et al., in preparation).
Widespread impact on U.S. long-wire communication systems. Manageable impact on U.S. electricity power grid.
1967 May (Knipp et al., 2018, d0i:10.1029/20185W002024).
Significant disruption toradio communication, notably for the U.S. military. Delores Knipp will cover this on Tuesday.
1972 August (Knipp et al., 2016, doi:10.1002/20165W001423)
Interference for U.S. electricity power grid and communication systems. Interference for U.S. military. Delores will cover this on Tuesday.
1989 Marchstorm (e.g. Allen et al., 1989, doi:10.1029/89E000409; Boteler, 2019, doi:10.1029/2019SW002278; Love et al. under review).
One of the most impactful storm ever experienced. Complete collapse of Canadian Hydro-Quebec power grid. Electric blackouts in Sweden.
>$3 to 6 billion in economic damage for Canada. Interference for U.S. electricity power grid. Damage to a high-voltage transformerin NJ.
Damage tosatellites. Disruption of geophysical surveys.



Some impactful magneticstorms

1859 September “Carrington event” (e.g. Tsurutaniet al., 2003, doi:10.1029/2002JA009504; Cliver, 2006, doi:10.1016/j.asr.2005.07.077).
One of the largest magnetic storms ever recorded. Widespread disruption of telegraph service.
1921 May “New York Railroad storm” (e.g. Hapgood, 2019, doi:10.1029/2019SW002195; Love etal., 2019, doi:10.1029/2019SW002250).
Widespread disruption of radio, telegraph, and telephone systems. Responsible for up to 3 fires in New York City and State railroad stations.
1940 March (Love et al., in preparation).
Widespread impact on U.S. long-wire communication systems. Manageable impact on U.S. electricity power grid.
1967 May (Knipp et al., 2018, d0i:10.1029/20185W002024).
Significant disruption toradio communication, notably for the U.S. military. Delores Knipp will cover this on Tuesday.
1972 August (Knipp et al., 2016, doi:10.1002/20165W001423)
Interference for U.S. electricity power grid and communication systems. Interference for U.S. military. Delores will cover this on Tuesday.
1989 Marchstorm (e.g. Allen et al., 1989, doi:10.1029/89E000409; Boteler, 2019, doi:10.1029/2019SW002278; Love et al. under review).
One of the most impactful storm ever experienced. Complete collapse of Canadian Hydro-Quebec power grid. Electric blackouts in Sweden.
>$3 to 6 billion in economic damage for Canada. Interference for U.S. electricity power grid. Damage to a high-voltage transformerin NJ.
Damage tosatellites. Disruption of geophysical surveys.
A future superstorm like that of 1859: Subject of a 2008 National Academies of Sciences report (Baker et al., 2008, doi:10.17226/12507).

Significant damage andinterference to military and civilian satellites. Widespread disruption of GPS, radio communication, geophysical surveys.

Widespread and prolonged loss of electricity, damage to grid. Economic impact impact of up to $1-2 trillion for the United States.
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Note tomorrow’s ground-effects panel: Anna Kelbert (USGS), Jenn Gannon (CPI1), Jesper Gjerloev (JHU/APL) , Arnaud Chulliat (NOAA/NCEI),
Antti Pulkkinen (NASA/GSFC), and Adam Schultz (OSU).



March 1989 magneticstorm damage to a high-voltage transformer
at a nuclear power center in Salem, New Jersey.




Compilation of reports of operational interference (“anomalies”) experienced on North American
electric-power and communication systemsduring several magneticstorms.

a) March 1989 power—grid anomalies b) August 1972 power—grid anomalies
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Operational anomaliestend to be concentrated in the Mid-Atlantic, the Northeast, and in the upper Midwest United States.

Love,J. ). & Murphy, B. S., 2022. North American electricity power-grid and communication-network anomalies forseveral magnetic
storms, U.S. Geological Survey data release, https://doi.org/10.5066/P9N4DVNT.



https://doi.org/10.5066/P9N4DVNT

When was operational interference experienced across North America duringthe March 1989 storm?
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During the March 1989 storm, operational anomaliestended to be realized during main-phase, and, especially during maximum -Dst.
These observations highlight the need for short-term forecasting and real-time monitoring and “nowcasting”.
Boteler, 2019, doi:10.1029/2019SW002278; Love et al.under review.



geomagnetic field
generated by
space current

Jo  space current of
increasing intensity

»

Love, J. J., Bedrosian, P. A. & Schultz, A., 2017. Down to Earth withan electrichazard from space, Space Weather, 15(5), 658-662,
https://doi.org/10.1002/2017SW001622.



https://doi.org/10.1002/2017SW001622

Input signal > Convolution - Output signal
time series through a filter time series
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Geomagnetic variation Impedance measured during Geoelectric hazards
recoded at observatory magnetotelluric survey mapped onto power grids
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Love, J. J., Rigler, E. J., Pulkkinen, A., Balch, C. C., 2014.
Magnetic storms and induction hazards, Eos, Trans. AGU, 95(48), 445-446, https://doi.org/10.1002/2014E0480001.
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Magnetic observatories spanningthe study region, in operationin 1989
and providing 1-minute resolution data.
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Storm-time geomagnetic disturbance displays important geographical-temporal dependence. Additional geomagnetic monitoring is needed, especially for
event-by-event mapping of voltageson individual grid lines.

Love & Finn, 2011, https://doi.org/10.1029/2011SW000684; Newitt & Coles, 2007, https://link.springer.com/referencework/10.1007/978-1-4020-4423-6.
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Geographyofimpedance amplitude and polarization at 120 seconds.

Schultz et al., 2006-2018,
. https://doi.org/10.17611/DP/EMTF/USARRAY/TA.
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Surface electromagnetic impedance can differ significantly from one location to another, depending on subsurface minerology and fluid content.

The lithosphere is relatively resistive (high impedance) in the upper Midwest and in the Eastern United States. Also polarized in the East.

The lithosphere is relatively conductive (low impedance) in Michigan, lllinois, the Appalachian basin, and much of the West.
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Comparison of March 1989 geoelectricamplitudes with power-grid operational interference

(b) March 1989 power—grid anomalies

(a) Maximum geoelectric amplitudes
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Our geoelectricamplitude map shows significant geographic differences peak amplitude for the March 1989 storm. Our map also shows correlation with a
(qualitative and anecdotal) anomalies list reported by the North American Electric Reliability Corporation for the March 1989 storm.

Though 1989 operational interference to the U.S. grid did not result in blackouts, it did result in transformer damage and significant operational “stress”.

The geoelectric hazard analysis combined withthe March 1989 anomalies record provides us with understanding of where more serious problems would
likely be manifest during an even more intense storm — the Mid-Atlantic and Northeast United States.



Maximum geoelectric amplitude (V/km)

How are geoelectric hazards organizedin geography during March 19897
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Geoelectrichazards are affected by both geomagnetic activity and surface impedance.
Over-all hazard amplitude is controlled by storm intensity.
Regional differencesinamplitude are primarily controlled by differencesinimpedance.

Love et al.under review.
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100-year 1-minute durationvoltages on the national power grid.

Lucas, et al. 2020, https://doi.org/10.1002/2019SW002329.

We estimate geoelectric field amplitudes for many storms and extrapolate a projection onto the power grid to obtain 100-year extreme-event voltages.

Some of these quasi-directvoltages would drive quasi-direct currents of hundreds or a thousand amps.
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This is plenty sufficientto damagetransformers (North American Electric Reliability Corporation, Transformer Thermal Impact Assessment, 2017).
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Real-time geoelectric hazard mapping project.

Geoelectric Field Map Experimental Pratotype V1 1989/03/13 C7:45:30UTC
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Lessons learned from magneticstorm hazard analysis can guide analysis of
hazards associated with late-phase E3 nuclear electromagneticpulse (EMP).
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Department of Energy, 2021; Gombosi et al. 2017, https://doi.org/10.1007/s11214-017-0357-5; International Electrotechnical Commission, 1996. 1000-2-9.

To resolve E3 EMP Earth-surface impedance, dense wideband magnetotelluric surveying is needed (covering at least 0.1's to 1000 seconds).

Until done, E3 EMP scenario analyses of grid voltages have significant errors -- order of 100% (Love et al. 2021, https://doi.org/10.1029/2021EA001792).
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A couple of USGS aspirations:
1. denser geomagneticmonitoring
2. dense wideband magnetotelluricsurveying of the Mid-Atlanticand Northeast U.S.
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Denser geomagnetic monitoring and would significantly improve the accuracy of maps of magnetic-storm geoelectric field hazards (Murphy et al.,
2021. http://doi.org/10.1029/20205SW002693).

Dense wideband surveying would enable realistic mapping of E3 EMP hazards across the geologically complex Mid-Atlantic and Northeast United
States-- the most densely populated part of the United States (Love et al. 2021, https://doi.org/10.1029/2021EA001792).
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Surface electromagnetic can differ significantly from one location to another, depending on subsurface minerology and fluid content.
The lithosphere is relatively resistive (high impedance) in the upper Midwest and in the Eastern United States.

The lithosphere is relatively conductive (low impedance) in Michigan, lllinois, the Appalachian basin, and much of the West.
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