

NASA Space Weather Program

Space Weather Program Goal: Advance the science of space weather to empower a technological society safely thriving on Earth and expanding into space.

- NASA plays a vital role in space weather research by providing unique, significant, and exploratory observations and data streams for theory, modeling, and data analysis research, and for operations. SMD/HPD is uniquely poised to support needs of the National and International space weather enterprise and the Agency's Artemis mission.
- Various executive (NSW SAP) and legislative (PROSWIFT Act) mandates direct NASA to address research and application aspects of space weather. Operational agencies have a mandate to fulfill their mission, but NASA has the flexibility to "push the envelope"
- Making use of these unique capabilities and directly addressing the legislative mandate, HPD has established the new NASA Space Weather Program, a national resource to unify space weather research and drive our understanding of its risks, impacts and mechanisms into new realms.

Space Weather Program Pillars

Investigation

Activities:

HERMES, Solar Necklace, ESA L5, SNIPE, CSA AOM, Orbital Debris, Pipeline Instruments, SW Op Center

Goals 1, 2, 3

Theme 1:

Coordinate a whole-of-solarsystem approach to **observing** and modeling space weather

Transition

Activities:

ROSES, CCMC, SWPC Testbed, SBIR

Goals 4, 6

Theme 2:

Support operational partners by transitioning sound and innovative science

Exploration

Activities:

HERMES, M2M, MSL RAD

Goals 5, 6

Theme 3:

Enable the safe **exploration** – both human & robotic – of the solar system.

Application

Activities:

Define and build user community, training, applied projects, decision support tool development

Goals 4, 6

Theme 4:

Deliver societal benefit through the **application** of space weather decision support

Space Weather Program Activities

HERMES & Gateway

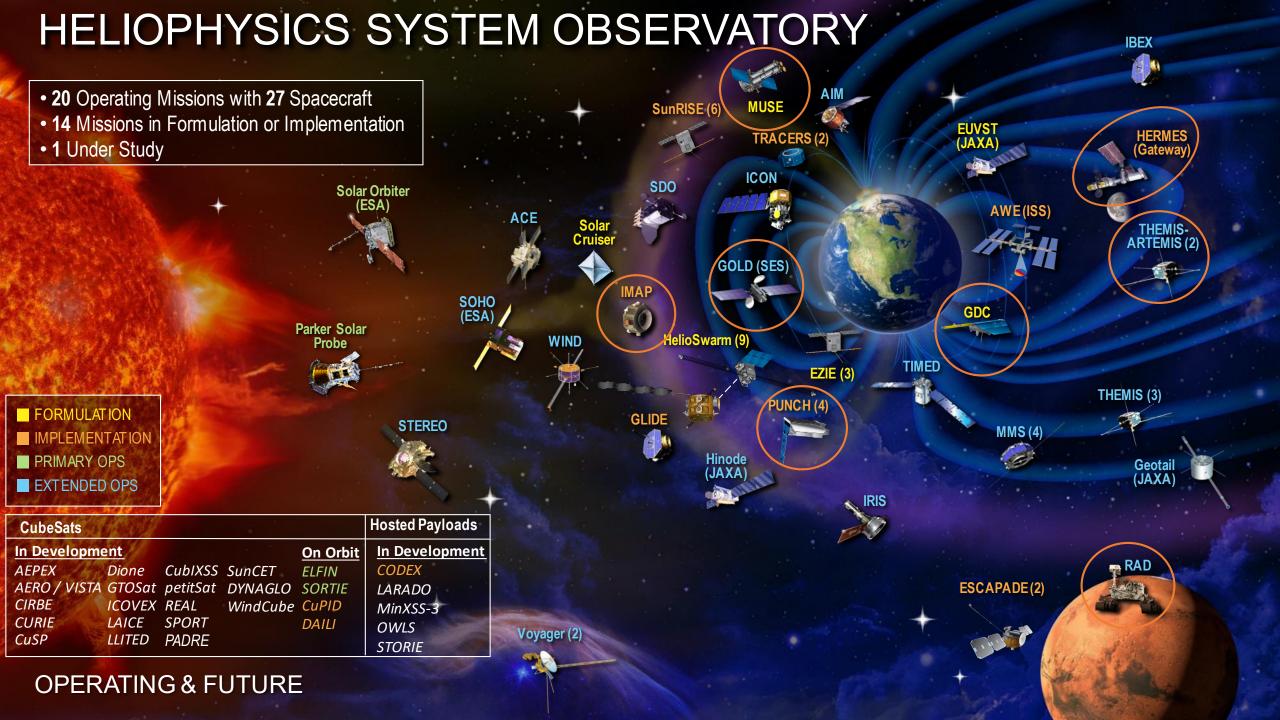
- The NASA space weather instrument suite, led by HPD, will observe solar particles and the solar wind. A second scientific payload is a radiation instrument package, built by the European Space Agency.
 - NASA Suite: HERMES (Heliophysics Environmental and Radiation Measurement Experiment Suite)
 - ESA Suite: ERSA (ESA Radiation Sensors Array)
 - ESA/JAXA Suite: IDA (Internal Dosimeter Array)

Space Weather Research to Operations / Operations to Research (R2O2R)

- A yearly element conducted on behalf of NASA, NOAA, and NSF under a tri-agency agreement.
- ROSES-22 focused topics:
 - High-Latitude Radiation Exposure
 - Downstream Updating of Solar Wind & CME Forecasts

Space Weather Program Activities Cont.

Space Weather Centers of Excellence


 The purpose of these Centers will be to provide significant long-term investment in research and infrastructure development to address major challenges in space weather in an integrated multidisciplinary fashion, explicitly and fundamentally incorporating R20 and O2R.

Small Business Innovation and Research (SBIR)

- NASA's SBIR program seeks to transform scientific discovery into products and services through innovations that have the potential for infusion into NASA programs and missions, the potential for commercialization into NASA relevant commercial markets, and that have a societal benefit.
 - Phase II Selections: (1) Parallelization Toolkit for NASA CCMC (2325), (2)
 Advanced Climatology Innovations for Space Radiation Environments (3081).

Heliophysics System Observatory

 Effectively leverage current and forthcoming HPD Observatory assets to address Space Weather goals

Space Weather Gap Analysis

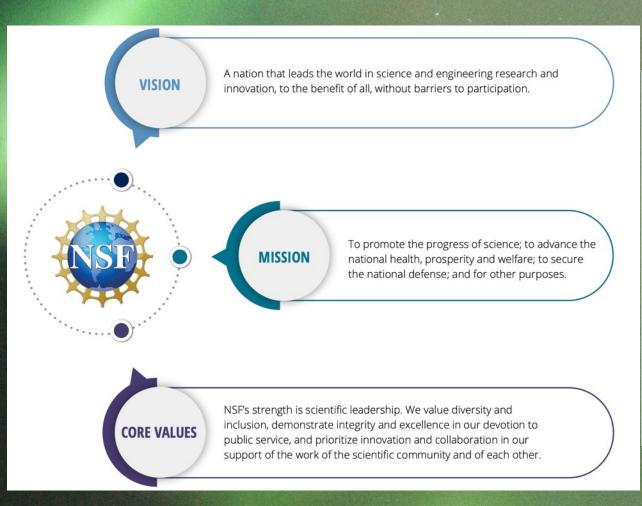
In response to the recommendations of the 2013 Decadal Survey and the actions delineated in the 2019 National Space Weather Strategy and Action Plan, HPD commissioned a space weather science and measurement gap analysis to:

- 1. Assess the current state of NASA's observational capability to address the science of space weather and its capacity to provide data input that significantly advances forecasting and nowcasting capability
- 2. Identify high-priority observations that are at risk or not currently available that are re-quired to significantly advance forecasting and nowcasting capability

Highest Priority Observational Gaps

- 1. Solar/solar wind observations, including off-Sun-Earth-Line
- 2. Ionospheric key observables
- 3. Solar wind in peri-geospace
- 4. Thermospheric key observables
- 5. Ionospheric D- and E-region energetic particle precipitation, and E- and F-region cusp and auroral precipitation
- 6. Ring current and radiation belt electrons
- 7. Plasma sheet electrons and injections/bursts from cislunar into GEO and MEO regions

Rank	Current Observation Gaps	Research Gaps
1	Solar/solar wind observations, incl. off Sun- Earth line (e.g., Sun-Earth L4 and L5) and beyond 1 AU	SEP occurrence and properties at a given inner Heliospheric location; IP propagation of solar transients (e.g., Bz, ToA)
2	Ionospheric key observables	Response to variable solar, solar wind, thermospheric, and magnetospheric conditions; high resolution global state; cross-scale and -altitude dependencies and variability; driving from lower atmosphere
3	Solar wind in peri-Geospace (i.e., within ~20 RE of Earth's dayside bow shock)	Fine-scale structure of SW-transients; spatiotemporal evolution and turbulence
4	Thermospheric key observables	Expansion, heating, and cooling processes over a range of scales (< 100 km to global) and altitudes; response to variable solar, ionospheric, and magnetospheric conditions; driving from lower atmosphere
5	Ionospheric D- and E-region EPP and E- and F- region cusp and auroral precipitation	Impacts of energetic particle, cusp, and auroral precipitation on ionosphere-thermosphere system; cross-scale (< 100 km to global) and spatiotemporal nature of precipitation and consequences on ionosphere-thermosphere system (e.g., conductivity, heating, chemistry and cooling, etc.)
6	Ring current and radiation belt electrons	Role of magnetospheric dynamics, meso-scale injections, and variety of wave-particle interactions acting in concert to shape these trapped energetic particle populations, driving geomagnetic storms and radiation belt enhancements and depletions
7	Plasma sheet electrons and injections/bursts from cis-lunar into GEO and MEO regions	Nature of kinetic- to meso-scale processes (e.g., reconnection, turbulence) affecting global- scale magnetospheric dynamics and magnetosphere-ionosphere coupling


NSF SPACE WEATHER UPDATES

MANGALA SHARMA

Program Director, Space Weather www.nsf.gov

Space Weather Operations and Research Infrastructure Workshop, Phase II
April 11, 2022

New Strategic Plan (2022-26)

New Directorate

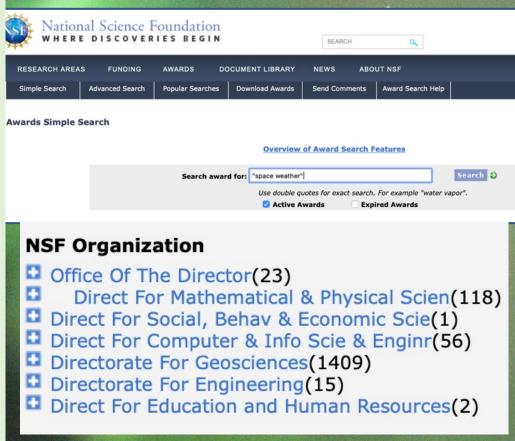
- Use-inspired, challenge-driven, convergent research
- Innovation and technology translation
- Leveraging the virtuous cycle of foundational and use-inspired research
- Long-term, large scale

- Public-private partnerships
- Education, workforce, diversity

DIRECTORATE FOR TECHNOLOGY, INNOVATION AND PARTNERSHIPS (TIP)

FY 2023 Budget Request: NSF Budget by Appropriation (Dollars in Millions)									
Account	FY 2021 Actual ¹	FY 2021 ARP Actual ²	FY 2022 Enacted	FY 2023 Request ¹			FY 2023 Request change over FY 2022 Enacted		
					Amount	Percent	Amount	Percent	
Research and Related Activities	\$6,761	\$196	\$7,159	\$8,426	\$1,665	25%	\$1,267	18%	
Education and Human Resources	\$1,111	\$24	\$1,006	\$1,377	\$266	24%	\$371	37%	
Major Research Equipment and Facilities Construction	\$161	\$9	\$249	\$187	\$26	16%	-\$62	-25%	
Agency Operations and Award Management	\$385	\$12	\$400	\$473	\$89	23%	\$73	18%	
Office of Inspector General	\$17	-	\$19	\$23	\$6	36%	\$4	23%	
Office of the National Science Board	\$4	1-	\$5	\$5	\$1	14%	\$0	10%	
Total, NSF	\$8,440	\$240	\$8,838	\$10,492	\$2,052	24%	\$1,654	19%	

Totals may not add due to rounding.


FY2023 BUDGET REQUEST TO CONGRESS

¹Funding re-stated for comparability in FY 2021 and FY 2023 to capture the requested consolidation of GRFP into EDU (formerly EHR). FY 2022 Enacted is not yet re-stated to capture this shift.

² This represents FY 2021 obligations of the \$600 million provided by the American Rescue Plan Act of 2021 (P.L. 117-2).

Multiple NSF programs support SWx research

GEO Directorate:

- Division of Atmospheric and Geospace Sciences: Geospace programs (AER/CEDAR, STR/SHINE, MAG/GEM, GF, SWR) and NCAR/Facilities Section incl. HAO
- Office of Polar Programs: Antarctic Research
- Etc.

MPS Directorate:

- Division of Astronomical Sciences: Astronomy and Astrophysics Research Grants (AAG), National Solar Observatory (incl. DKIST and GONG), etc.
- Division of Physics: Plasma Physics

Division of Atmospheric and Geospace Sciences (AGS)

Candace Major
Division Director

Section Head Geospace

Tai-Yin Huang
Data Infrastructure
Aeronomy (AER)

Mangala Sharma

Space Weather Research (SWR)

Chia-Lin Huang
Magnetospheric
Physics (MAG)

Roman Makarevich Geospace Facilities (GF)

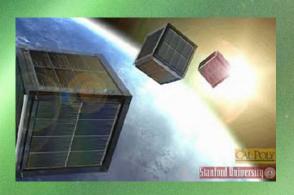
Lisa Winter
Solar-Terrestrial
Research (STR)

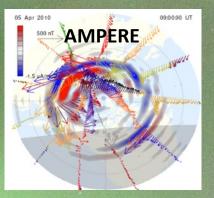
Recruiting program director for Aeronomy

Quick Facts about NSF Geospace Section: FY21

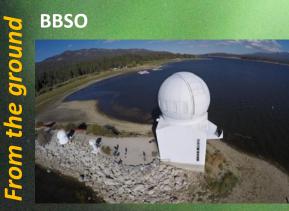
 Overall spending in GS was \$55.9M, including ARP fund, up 6.3% from FY20 \$52.6M*

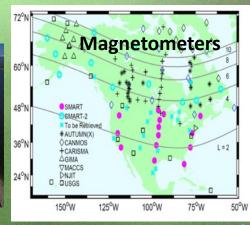
AER MAG STR SWR GF 11.9M 10.5M 10.3M 4.4M 18.8M

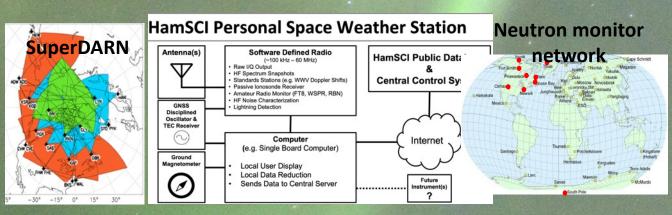

- Additional facts about AER, MAG, STR, SWR grants in FY21
 - 70 new award actions
 - Vast majority of new awards are standard grants


^{*} Excluding Arecibo clean up.

NSF supports array of solar & geospace observing approaches


Some examples!


To space



Millstone Hill Observatory

Two-year award, Sept 2021 – Aug 2023 PI: Frank Lind, MIT To upgrade and extend lifetime of radar, double sensitivity

Expanded Owens Valley Solar Array
Three-year award, Sept 2021 – Aug 2014

Subauroral Geophysical Observatory Five-year award Apr 2021 – Mar 2026

200 hours/year of baseline HF heating

PI: Robert McCoy, UAF GI

operations

PI: Dale Gary, NJIT

Jicamarca Radio Observatory

High-power operations restarted in Sept 2020

Repaired AMISR-14

The Simpson Neutron Monitor Network

(funded by the STR and SWR)

Three-year award, Aug 2021 – Jul 2024

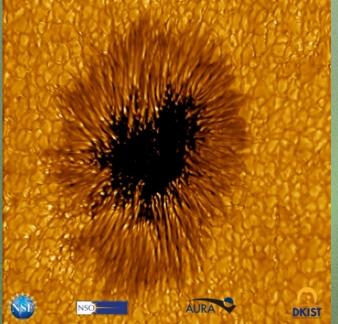
PI: James Ryan, UNH

PI: Surujhdeo Seunarine, Univ of

Wisconsin-River Falls

PI: John Clem, Univ of Delaware

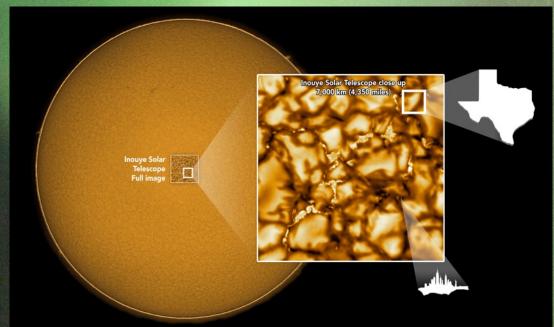
Chen [2020]

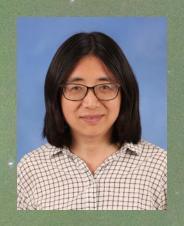


NSF's Daniel K. Inouye Solar Telescope

The largest, most powerful solar observatory on planet Earth


Now in operations




Faculty Early Career Development Program (CAREER) 2022

Piyush Mehta

Diana Loucks

Haihong Che

Satoshi Inoue

Yi-Hsin Liu

AER

AER

STR

STR

MAG

Grand Challenges in Integrative Geospace Sciences: Advancing National Space Weather Expertise and Research toward Societal Resilience

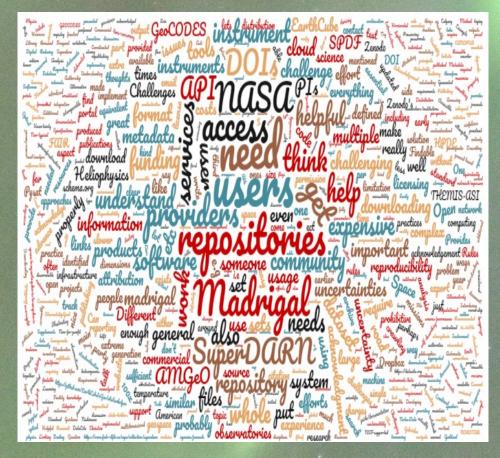
Deep and transformative understanding of the dynamic, integrated Sun-Earth system and the solar and terrestrial drivers of space weather and their effects "from Sun to mud"

Meaningful educational opportunities

Collaborations among solar and geospace observers, theorists, modelers, software developers, laboratory experimenters, STEM educators, SWx policy experts

- Deadline 8/23/2021
- max \$900K for small teams (6 or fewer members) and 2.5M for large teams over 3-4 years
- Expect to make award announcements later this month

contact: Mangala Sharma msharma@nsf.gov


New CEDAR / GEM / SHINE Solicitations

Solicitation	Target Date
Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR in AER)	5/20/2022, 1st Friday in May annually thereafter
Geospace Environment Modeling (GEM in MAG)	3/30/2022, 9/30 annually thereafter
Solar, Heliospheric, and INterplanetary Environment (<u>SHINE</u> in STR)	5/11/2022, 10/7 annually thereafter

Data Infrastructure Needs

- Easy access
- Documentation of data for record keeping and end-users
- A formal data policy for data citation and attribution
- File and data standardization
- Provide data access reports to data providers and funding agencies
- Data repositories

contact: Tai-Yin Huang thuang@nsf.gov

Word Cloud map generated with the content from 2021 CEDAR workshop session, Reproducibility in Geospace Science: Best practices for Stewardship.

Dear Colleague Letter: Geoscience Lessons for and from Other Worlds (GLOW)

(Image credit: PHL@UPR Arecibo)

Bring together researchers and experts to develop projects which:

- use the study of other worlds to broaden and deepen our understanding of the Earth and its evolution
- use our geoscience knowledge to understand the environments of other worlds.

Participating Divisions:
Earth Sciences (EAR)
Atmospheric and Geospace Sciences (AGS)
Astronomical Sciences (AST)

ECosystem for Leading Innovation in Plasma Science and Engineering (ECLIPSE)

- Joint "meta-program" between MPS, ENG, and GEO directorates
- To bring fundamental plasma science investigations to bear on problems of societal and technological need stimulated by the recommendations of the Physics 2020 Decadal Assessment of Plasma Science
- To foster an inclusive community of scientists and engineers, spanning multiple NSF Directorates, in the pursuit of translational research
- Proposals should address
 - > fundamental scientific and/or engineering challenge
 - how a resolution will address specific societal and/or technological needs
- AGS accepts full proposals anytime. Contact: Mangala Sharma msharma@nsf.gov

NSF supports SWx research and applications

- Multi-agency (NOAA, NASA, NSF, DoD) partnership for R2O2R activities
- NSF-NOAA partnership on GONG; NSF research support to advance NOAA operational models
- Partner with NASA on their annual ROSES SWx R2O2R solicitation and on CCMC

7

Solar and Space Physics Decadal Survey (2024)

Work with our agency partners at NASA and NOAA as well as participating NSF Programs from:

- Division of Atmospheric and Geospace Sciences
- Division of Astronomical Sciences
- Division of Physics
- Office of Polar Programs

NSF Decadal Priorities are to define:

- The **SCIENCE** Priorities
- The INFRASTRUCTURE needed to achieve the science
- Support for the diverse range of the **PEOPLE** we want to be engaged in science

Help organizing community workshops to identify and organize white paper submissions

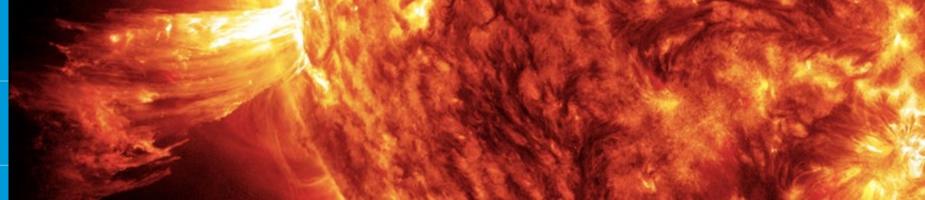
Thank you for your input at this workshop!

MANGALA SHARMA

Program Director, Space Weather Msharma@nsf.gov

Space Weather Operations and Research Infrastructure Workshop, Phase II
April 11, 2022

NOAA Satellite and Information Service


11 April 2022

NOAA's Current and Future Space Weather Architecture and Notification System

Dr. Elsayed Talaat

Director, Office of Projects, Planning, and Analysis

NASEM Workshop on Space Weather Operations and Research Infrastructure – Phase 2

NOAA Space Weather Charter

- o Inception and implementation of National Space Weather Strategy and Action Plan
- PROSWIFT (Promoting Research and Observations of Space Weather to Improve the Forecasting of Tomorrow) Act

Accelerating growth in NOAA and its space weather services

- Identify and sustain fundamental observations to support operations
- Provide timely, accurate, and relevant models and forecast products
- Transition scientific and technological advances into operations (R2O2R)
- Support growing private sector activities to fill data and technology gaps and provide value-added services and products
- Integrating approach and collaboration between research and operations

ž

Pillars of NESDIS Observing System Implementation

Continuous real-time observations supporting warnings and watches of severe weather and hourby-hour changes. High-inclination orbits to observe northern latitude & polar regions.

LEO

Miniaturized instruments on small, affordable and proliferated satellites and partner data improving forecasts through better and additional data. Better precipitation forecasts, wave height predictions, ocean currents, and more.

Space Weather

Reliably monitoring space weather from L1, GEO and LEO can protect the nation's valuable, vulnerable infrastructure. New capabilities at L5 and HEO can provide additional insight and improve forecasts.

Common Ground Services

Secure ingest of data in different formats from different partners requires a flexible, scalable platform. Common Services approach integrates Cloud, AI and machine-learning capabilities to verify, calibrate and fuse data into new and better products and services.

JASON-3

OPERATIONAL JULY 27, 2016

SWF O-L1 LRD: FY202 5

OPERATIONAL JULY 1, 2016

Sentinel 6 Michael Freilich - Fall 2020

COSMIC-2 - June 2019

GOES-R SERIES

GOES-16 - OPERATIONAL Dec 18, 2017 GOES-17 - OPERATIONAL Feb 12, 2019

GOES-T - FY 2022 GOES-U - FY 2025

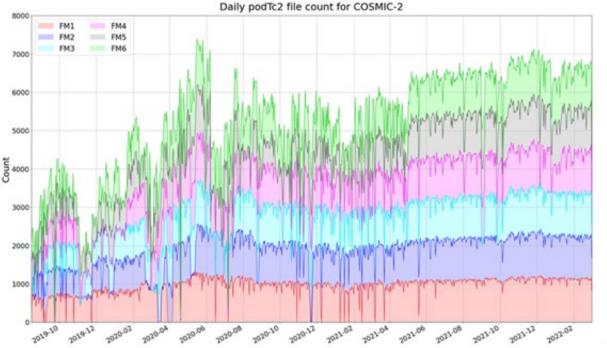
JPSS SERIES

NOAA-20 - OPERATIONAL May 30, 2018 JPSS-2 - FY 2023

IPSS-3 - FY 2026

JPSS-4 - FY 2031

NESDIS Program of Record



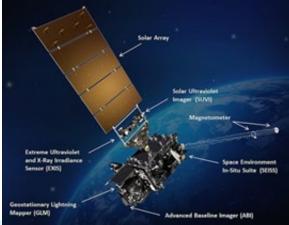
COSMIC-2 podTc2 file

- Contains all TGRS ionospheric data
- -Total Electron Content (TEC)
- -Scintillation Phase and Amplitude
- Total Files: 4,970,876

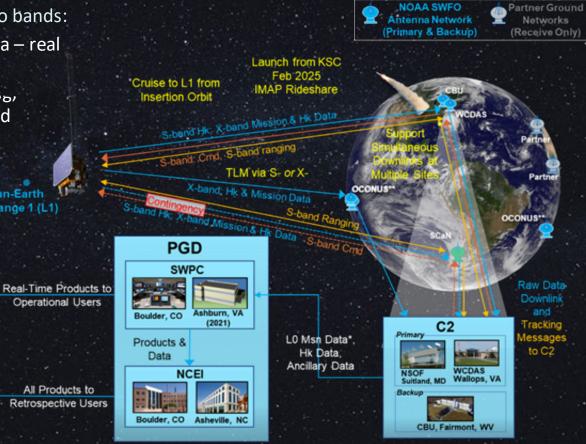
TEC Data as of Feb, 2022

- Daily Average Arc+Occ Counts: 12,141
- -Requirement: 12,000 (28/30 days)
- Daily Median Latency: 27.4 min Requirement: <30 min daily

Achieving over 12,000 TEC arc+occ counts on average daily with under 30-min latency


GOES-18 Products

- GOES-T launched 01 March 2022
- GOES-18 On orbit 24 March 2022
- Operational replacement of GOES-17 Jan 2023
- Much work to be done at NESDIS & NWS
- SWx data will not complete validation until Nov 2022
- Anticipating 1-2 months with only one geostationary satellite for space weather data (GOES-16)
- Updates for schedule details will be at SWPC website (spaceweather.gov)



SWFO-L1 Mission Architecture

SWFO-L1 will operate in two bands:

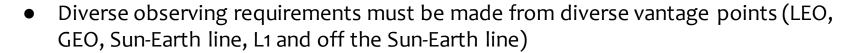
- X-band for mission data real time, 24/7
- S-band for commandir., housekeeping data, and ranging

*GOES-U CCOR-1 data provided to SWPC directly from GOES-R.

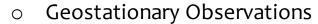
Lagrange 1 (L1)

** OCONUS SAN Stations are implemented as a service

NASA


(SCaN)

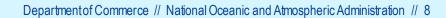
NOAA/NESDIS Formulating a Space Weather Program


Continuity and anticipated product improvement need dates are varied:

Next Generation L1 & off-Sun-Earth-axis

Space Weather Ground Operations

Long Lead Instrumentation



- Tundra/High Elliptical Orbit Observations
- Low Earth Orbit Observations

Program formulation will initialize a loosely coupled program with an initial set of projects.

NOAA advancing a space weather paradigm similar to terrestrial weather to address user needs

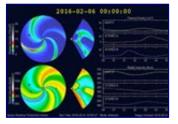
Observations: Collecting and providing critical, real-time, continuous, operationally-dedicated space weather data and imagery for alert, watch, and warning services, and predictive modeling systems

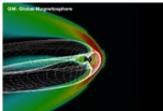
Modeling and R2O2R: Introducing a formal framework that incorporates the contributions from industry, agency, and academic partners

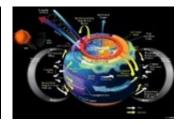
- Test and evaluate emerging science that may contribute to operations
- Accelerate the transition of new models/research results into operations
- Enable the improvement and maintenance of existing operational models

Forecasts, Watches, and Warnings: Providing regional and local specification and forecasts of space weather hazards, using indices and products suitable for objective decision-making

Providing the Nation with space weather forecasts, warnings, and data critical to public safety, disaster preparedness, and the protection of the Nation's critical infrastructure.


Sun-to-Earth Modeling Continuum for Space Weather





*

则

GMU/AFRL WSA/Enlil

U. Michigan Geospace

NOAA/CIRES **WAM-IPE**

NOAA/USGS Geoelectric field

FAA CARI-7

Predict solar wind as it propagates from the Sun to **Earth**

Predict and understand regional geomagnetic response to solar wind

Predict and understand links between the upper and lower atmosphere during space weather events **Operational**

Characterize and predict the regional electric field and associated currents that impact electric power grids

> **3D Operational Sept 2020**

Characterize the radiation environment at airline altitudes

> Operational 2019

> > 10

Operational 2011 **Upgraded 2019**

Operational 2016 **Upgraded 2021**

Modeling framework captures critical domains of the Sun-Earth system, from Sun and Earth's surface

June 2021

Enabled by SWORM - a space weather watch/warning paradigm similar to terrestrial weather

- Includes Community Coordinated Modeling Center (CCMC) at NASA GSFC in R2O partnership, priorities, and process
- New Space Weather Capabilities Research-to-Operations (R2O)
- Evaluate, Prototype, Transition within Space Weather Testbed at SWPC

- Continuous improvement of the existing operational models
- Informs future capabilities
- Establishes research priorities

NWS SWPC

Capabilities

- **✓** Products
- **√** Models
- **√** Observations
- **√**Applications
- √ Techniques

Space Weather Workshop 2022 April 26-28, 2022 (Virtual Meeting)

Space Weather Workshop

The Meeting of Science, Research, Applications, Operations, and Users

April 26-28, 2022

Virtual Meeting

Registration Open Now! - <u>No</u> registration fee https://www.swpc.noaa.gov/content/annual-meeting

o Understand the Sun – Earth connection, cause and effect

• Research to Operations to Research

- Heritage of space weather operations' dependance on science research, modelling, and platforms
- o Transition research to operation based system with transition through testbeds
- o Provide operations' feedback to research to improve overall system performance

Encourage and enable non-traditional space weather providers

 Uccellini quote: Tell community what government is doing but also what it is not doing; as government tasks have gaps, commercial tasks compensate

Assess evolving technologies as appropriate to operations

Technology advances in hardware, communications, AI, modelling, machine learning, etc.

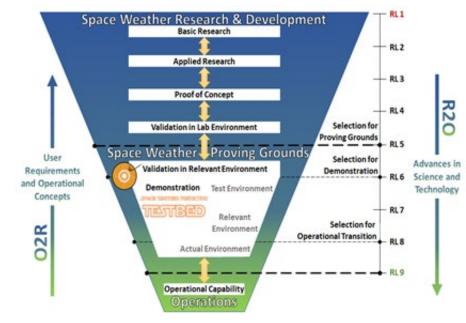
Space Weather-Ready Nation

A Nation Ready, Responsive, and Resilient to Space Weather

Improved understanding with new modeling and R2O2R capabilities

for better decisions - enhance National resilience

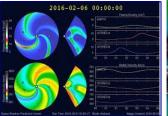
Space Weather Prediction Testbed R2O2R Process Definition

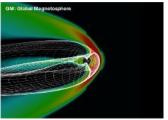


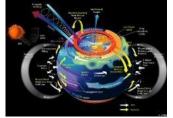
Roles & Responsibilities of Research, Proving

Ground, & SWPC R2O2R process

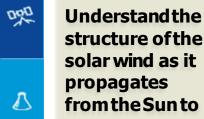
- Describes activities associated with each Readiness Level (RLs)
- Provides checklists activities required to advance from one RL to the next
- Draft being discussed with governmental partners
- Goal is to make public by end of this calendar year







Operational Space Weather Modeling at NOAA



U. Michigan Geospace

NOAA/CIRES WAM-IPE

NOAA/USGS E-field

Earth

Understand the geomagnetic response to changes insolar wind; provide regional predictions of geomagnetic storms

Understand details in the mesosphere, exosphere, and ionosphere, to understand links between the lower and upper atmosphere

Characterize and predict the regional electric field and the associated currents that impact electric powergrids

The space weather community working together on a modeling framework that captures critical domains of the Sun-Earth system, beginning at the Sun and ending at the Earth's surface

Supporting a space weather watch/warning paradigm similar to terrestrial weather

÷25

寸

The decadal survey committee's recommendations will be framed around national needs, including, but not limited to research priorities to improve space weather specification and prediction capabilities.

Recommendations may be organized around 1) how new technology may enhance current operations, and 2) what new science is needed to expand current operations, either to enable new capabilities or to include new areas of interest.

NESDIS Strategic Objectives

Advance
terrestrial
observational
leadership in
geostationary
and extended

Advance Space Weather observational leadership in LEO, GEO, and extended orbits. Evolve LEO architecture to enterprise system of systems that exploits and deploys new observational capabilities Develop agile, scalable ground capability to improve efficiency of service deliverables and ingest of data from all sources

orbits

Provide consistent ongoing enterprise-wide user engagement to ensure timely response to user needs

Deliver integrated program development to provide a suite of products and services

Aviation Experiment

- Boulder, CO
- Training, Table-top exercises, Requirements
- Application and modeling demonstrations

- Researchers
- Forecasters
- Industry (airlines, Air Traffic Control, Regulators)

Goals

- Better understand needs of industry, forecasters, res
- Understand process and key restraints of all participants
- Identify steps for mission (everyone's) improvement

GONG

- NOAA supporting the operations and maintenance of the six GONG observatories
- SWPC has worked with NSF/NSO to operationalize processing of GONG data

Ground-based Magnetometers - USGS

- Critical input to SWPC's geomagnetic storm warnings and alerts
- Funding for the magnetotelluric (MT) survey was included in the USGS
 Geomagnetism Program's FY 2020 appropriation; funding for the second
 year of the survey is included in the President's FY 2021 budget request -on
 course for 2023 completion
- New NOAA-USGS Geoelectric Field model relies on MT data

