Data Science and Analytics:
Keynote Presentations

Key Questions:
1. Compared to 'Earth System', Space Science is usually data starved. How do we leverage data
assimilation and machine learning to overcome this?

2. What s the role of testbeds in paving the way of data assimilation and machine learning
from research to operations?

Moderator: Delores Knipp, Committee

Ricardo Todling, GSFC/NASA Research Meteorologist, Goddard Space Flight Ctr, NASA
Enrico Camporeale, CIRES/SWPC Research Scientist CIRES, University of Colorado & SWPC

Space Weather Operations and Research Infrastructure Workshop: Phase Il, Wednesday April 13, 2022, 1100 ET
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Disclaimer: This presentation has a strong Terrestrial Weather Applications bias;
it might need some UQ to adjustit to Space Weather Applications!
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OUTLINE

1. The Progress in Terrestrial Weather Prediction through DA

2. The Hierarchy of Models and DA Strategies in Terrestrial and Space Weather

3. Hybrid Concepts

» The Learning Aspect of DA
» Machine Learning as Toolto Aid DA

4. A Few Wordson Frameworks

5. Closing Remarks
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Terrestrial Weather Prediction: Better Data, Models & Techniques

Evolution of ECMWEF forecast skill for varying lead times (3 days in blue; 5
Observations Assmilated inthe GMAD GEGS'5 Anlysis at 0000 UTC an 10 Dec 2014 days in red; 7 days in green; 10 days in yellow ) as measured by 500-hPa
: > height anomaly correlation. Top line corresponds to the Northern
Hemisphere; bottom line corresponds to the Southern hemisphere. Large
improvements have been made, including a reduction in the gap in
accuracy between the hemispheres (Source: Courtesy of ECMWF. Adapted
from Simmons and Hollingsworth ( 2002).

Anomaly correlation (%) of ECMWF 500hPa height forecasts

Narthern hemisphere : — Southern hemisphere
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Observation assimilated in GEOS in the 6-hour period
between2100UTC 9 Dec 2014 and 0300 UTC 10 Dec 2014
(Courtesy of Will McCarty). Yas:
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Terrestrial DA: Impact of 40 Years of Assimilation

lllustration of the increase in data countin MERRA-2 over the past
40-plus years. The impression of a settling data count toward present
day is simply a reflection of limitations in M2 to add newly available
sensors; a look at the near-real-time, high resolution, GEOS DA

system would reveal a continued rise in data count.

Observation Count for Various Subsets

Conventional (155,916)
Aircraft (130,948)

AMV (97,298)

Surface Wind (99,227)
Heritage MW (26,591)
SSM/I (63,119)

SSMIS (0)

Advanced MW (548,797)
Heritage IR (99,584)
Geo IR (26,591)

AIRS (761,227)

IASI (1,749,930)

CrlS (282,655)

GPSRO (51,119)
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Date

GMAO Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

Total Impact () kg~1)

Conventional @® AMV @ GPSRO ® 1ASI
Aircraft @ Cris @ Heritage_IR Sfc_Wind
Advanced_MW @® Geo IR @ Heritage_ MW SSMI

® ARS

0.0 1 000000 c0.0 °‘uo_.‘..°w'o . .:.Ml:;ﬂ)a?lga
Yo 0 - o_5
o® 0020 ooo°Oc:°8° Oea"mm
OOOODO OOOOOGOOO CroOO W“'
—0.5 - ° 0 e®?® 304 80 AriaX)

0 5

—=1.01

-1.51
Impact on 24-hr Forecasts of Various Data Subsets

Sep Jan May Sep Jan May
1982 1989 1995 2001 2008 2014
Date

Impact of different types of assimilated observations along the
course of MERRA-2. The reduced impact in absolute terms is a
consequence of the improved quality in the state of the model
due to the assimilation of an increased number of high-quality
sensors. (size of dots is obs count ( )
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Terrestrial DA-based Predictions: Range of Scales

The accuracy of weatherforecasts is a result ofincreased
modelresolution, physical processes representation and the
large volume of observations assimilated through advanced

DA techniques. S
The diagram means to illustrate the range of applicability of | Hiricanes
DA to Global Terrestrial applications. —~

Frontal Systemrs

Global NWP is now enteringthe low range of the mesoscales. ~=
Global NWP ranges from hours up to 10 days.

Global Constituent Forecast ranges from hours to 5 days.

Tomado/ Shallow

Seasonal Prediction extends NWP capabilitiesin time, with Gy,

added model complexities, but at the cost of reduced
resolution.

Turbulence

Mcroscales

Seconds Minutes Hours Days Weeks Months Years

Adapted from

GMAO Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

Constituents Forecast
Weather Forecast

Seasonal Forecast

Decades Centuries

J. Climate)



https://doi.org/10.2166/wcc.2017.107
https://doi.org/10.2166/wcc.2017.107
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Terrestrial DA & Prediction: A hierarchy of Components & Strategies
Three Examples from GEOS Forecasting Systems

Different applications invoke different level
of model coupling.

Not a one-fits-all approach: Each Forecast
System typically includes more than one DA
approach. Ozone

Meteorology

Aerosols

The Replay strategy roughly nudges one Lo
an

system to results from another.
) Sea-Ice
What’s BC today tends to turn into a full

Ocean
modeled component tomorrow.

Chemical Constituents

Emissions

I Included | Prescribed(BC) | Parameterized
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» Data Sparsity

» Directly vs Instability Driven Dynamics
» Short Timescales

» Range of Forecast Validity

> Intervening Turbulence vs Sensitivity to
Initial Conditions

R'A A

Background pic by: K. Endo


https://supernova.eso.org/static/archives/exhibitionimages/screen/0209_G_magnetic_field-CC.jpg
https://doi.org/10.1029/2005SW000205
https://doi.org/10.1029/2005SW000205
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DA Invades Space Weather

Magnetosphere:
EnKF (Doxas etal. 2007)
EnKF (Kolleret al. 2007)
Particle Filter (Nakano et al. 2008)
Ol (Merkinet al. 2016)
EnKF-based (Godinezetal. 2016)
SplitOp KF (Cervantes etal. 2020)

Thermosphere-lonosphere & WAM:
3D-Var (Wang et al. 2011)
EAKF (Morozov et al. 2013)
EnKF (Chartieretal. 2016)
EnKF (Chengetal. 2017)
ROM-POD-KF (Mehta & Linares 2018)
EnSRF (Cantralletal. 2019)

.-EAKF (Pedatella et al. 2020

lonosphere: :
SGM-KF & En
Nudging (Petry et al
Earlier SWDA works can be found in Siscoe & Solomon (2006) EnKF (Chenet al. 2016) W,
Most works above are proof of concept done at coarse resolution and using simplified assumptions; LETKF (Durazo et al. M.)}‘:“a
e,

enty other attempts are cited in the reference lists of the works above.
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The Data Assimilation Soup
Bayesian View of DA

p(O|X)p(X)
p(O)

p(X|0) =

<4

with X and O being a time history of
model states and observationsovera -3
given time interval. _f

Hashed blobs= impractical

Provides foundation for both
sequential and variational DA
frameworks.

Provides insight for hybrid DA.

Hybrid DA combines traditional "

Var (or Seq) with Ensembles.

Though recognized as
needed, there hasn’t

Inspired by Fig.1.5 in Asch, Bocquet & Nodet (2016) been much /1y brid activity

on this side of the picture.
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The Machine Learning Soup

Can be put in Bayesian form,
though perhaps not as
clear-cutas DA.

Tends to be more agnostic to
computing architecture than
DA, thus importance of
frameworks.
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Hybrid Concept: Hybridizing the Hybrid
The past few years has seen a substantial rise in the number of See Geer (2021) for broader aspects of this symbiosis.
proposals to get ML to aid DA. DA for ML ML for DA*

Process Emulator:

In the process, it is also being discovered that

A procedures canin turn aid ML strategies. Handing of space/time sparse
incomplete observations; obs

operators.
Handling of noisy data.

Inference of processes indirectly
related to observations.

sojeboling

Incorporation of prior knowledge,

along with Bayesian approach. Physical Parametrizations

Availability of ensembles. Observations Retrievals

Quantitative representation of Data Homogenization

Terrestrial Apps Space Apps uncertainties.

Post-processing enhancement

Uncertainty propagation.

Normalization based on physical
principles (viz. background errors

DA’s had its Gray-Box for some time; the Gray-Box of ML

(Camporeale) exacerbates it (DA’s) further.
ML DA
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The Learning Aspect of DA ...

Traditional DA is a learning machine ...

Adaptive DA is a self-correcting robust machine ...

But an inefficient machinein many ways ...
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The Learning Aspect of DA: Terrestrial Applications

Adaptive Estimation

DA procedures have incorporated /earning mechanisms to correct » Model parameter estimation
biases and uncertainties for quite a while: ADAPTIVE schemes.

» Variational Bias Correction (VarBC)

From

Bias estimate from ERA-Interim

E.g., Cloud Optical Thickness over MODIS pass: background,
observations, analysis; )

> Weak Constraint4D-Var

) Weak SU-ATb 13 N. Hemis - Model level 14 ) )
e : From Fisher etal. (2011);

. M ECMWF Tech Memo 655 |
Cycling model-error bbb

M|

Left: Localization radii adaptively
estimated for a QG model error
covariance; (2019) 06— —~

Other works have also explored

procedure for adaptive inflation in

ensemble DA schemes. Some have

made it into SWDA literature, e.g.,
(2012).
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https://doi.org/10.1002/qj.2844
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://npg.copernicus.org/articles/26/109/2019/npg-26-109-2019-f10-web.png
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.1029/2012SW000767
https://www.ecmwf.int/sites/default/files/elibrary/2011/9414-weak-constraint-and-long-window-4dvar.pdf
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The Learning Aspect of DA: Terrestrial Applications

Adaptive Estimation

DA procedures have incorporated /earning mechanisms to correct > Model parameter estimation
biases and uncertainties for quite a while: ADAPTIVE schemes. 10

» Variational Bias Correction (VarBC)
From ) All these procedure

Error Estimates

estimate from ERA-Interi

E.g., Cloud Optical Thickness over MODIS pass: background,
observations, analysis; )

> Weak Constralnt4D Var

ycling — Me p AMSU-ATb 13 N. Hemis - Model level 14

From |shereta| 2011 '
ECMWF Tech Mémo 655 |

Cyclmg model error e e

e,

Left: Localization radii adaptively
estimated for a QG model error
covariance; (2019)

Other works have also explored

procedure for adaptive inflation in

ensemble DA schemes. Some have

made it into SWDA literature, e.g.,
(2012).
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https://doi.org/10.1002/qj.2844
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://npg.copernicus.org/articles/26/109/2019/npg-26-109-2019-f10-web.png
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.1029/2012SW000767
https://www.ecmwf.int/sites/default/files/elibrary/2011/9414-weak-constraint-and-long-window-4dvar.pdf
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Ensemble-derived for DA & UQ ...

Introduced to address nonlinearities & efficiency ...

Also good for UQ ...
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Uncertainty Quantification (UQ): Ensemble DA

Bayesian Applications

Monte Carlo-like DA

p(01X)p(X)
p(X|0) 2(0) |
U from Adaptive DA
In this perspective there are two » U Propagation (X,2)

levels of uncertainty required to
make DA work, those being in the:

Probabilities (Fair) Scores
MC / Ensemble Learning

Observations: O = R

ML for obs error covariance
enhancement (LSTM) RNN.
ML/WC for model error estimation.

Model: X — B,Q

ML to improve Predictions (offline)
ML for Downscaling.

Here understood as:

Constrained Vars: variables directly affected by DA/ML;
can include model parameters.
Unconstrained Vars: everything else derived from a model.

Y

UQ of U-Var are desirable in many areas: climate research, instrumentation,
Did anybody say Digital Twin?

risk analysis, improved DA/ML methodologies, validation, etc.
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ML as Aiding Device for DA ...

Alternative ways to derive uncertainties. ...

Another tool to address efficiency ...
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ML to Aid DA: Terrestrial UQ in DA

Mational Aeronautios and Space Administration - % tonat Aot Some Aot »}g{
Terrestrial DA+ML and UQ: Terrestrial DA+ML and UQ: '

Model Error Estimation Satellite Bias Correction

Term accounting for Bonavita & Laloyaux (2021) show that ML (ANN) R ) il o .
(large scale) approach might provide an alternative to the present > Sateliite bias comrection is key to operational DA
errors in the model formulation of ECMWF WC term in 4D-Var. R — ted it of minimization (varBC)
B # lypically implemen as part of minimization (vai
Comparison of correct WC-4DVar and two flavors of ML fo account for Geer (2020) show that ML might

model errors: (i) NN_SC fully replaces WC with ANN estimates; rovide a suitable alternative or . . : _— .
(ii) modified WC to accommodate ANN model error comrection. p » Dynamic update of NN bias estimation performs similary to

ML (ANN) to both diagnose and correct model errors. . complement to varBC. online.

» Perhaps providing alternative to avoid complex interaction
between observation and model error estimation in WC-4D-Var.

Daily binned bias Static NN model predicted 'y | predicted
o ’ , 1 biss

" |

Orbit

Applying ANN-derived uncertainties to comect model forecasts has
shows marginal —promising — positive improvement in forecasts ina
particular configurations of NN-WC.

Mational Aeronautics and Space Administrafion = (

Terrestrial DA+ML and UQ: !
Observation Error Covariance Estimation

ANN for WC-4D-Var model error estimation Colimete el oot st )

Aimed at replacement and speeding up
Desroziers-like iterative procedures.

Dynamic NN for satellite bias estimation

models:

Cheng & Qiu (2021

LSTM-Recurrent NN for obs error cov e s—

Bottom: Desroziers

Full slides in Appendix

Some work needed for real apps.
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Frameworks ...

The way for community collaboration ...

Facilitating R20 & O2R ...

Facilitating rapid deployment of science ...
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Communities

Weather Modeling
Earth System Prediction Suite

ESMF g

ARTHCU UBI

Regional
Atm (Land)

Hydrology
Regional

Ocean

POM

Hydro
(WRF-Hydro)

NMMB

Mediator
Space

Sea Ice Weather

Global
Ocean

MOMS5

Global
Atm (Land)

GSM
(also WAM)

CICE

KISS

- Scientifically complete and validated
Coupling complete (test and improve)

CLIMA PROGRAM

/b FIM
ESPG2:?

HYCOM

NMMB Coupling close to complete (>50%)
In progress / partially complete (<50%)

Coupling not started

Program logos indicate sources of support (2016 )

From Theurich et al. (2016)

— Earth System Modeling Framework
National Unified Operational Prediction Capability

Modeling Frameworks
Weather Modeling

- Space Weather Modeling Framework

Computational tools:
Ideal & resistive MHD, Hall-MHD, Multi-species MHD,

Multi-fluid MHD, semi-relativistic MHD, Anisotropic MHD;
5- & 6-Moment equations w. full Maxwell’s equations (BATS-R-US)
Gyrokinetic (PWOM)
DSMC (AMPS)
PiC (iPiC3D, AMPS, FLEKS)
MHD-EPIC (BATS-R-US* +iPiC3D)
MHD-AEPIC (BATSRUS* + AMPS/FLEKS)
Non-hydrostatic fluid (GITM*)

Open source: hnps //github.com/MSTEM-QUDA*
ém.engin.umich.edu

Model drivers:

ATS-R-US¥) Gravity waves

& * )’
MPA)EEG% N Fi0.7
%‘ SuperMag
e T SuperDARN
ik AMPERE
Upper atmosphere models:

{(PW!

Model drivers:
Solar wind, IMF & SEPs
Magnetosphere models:
Global magnetosphere (BATS-R-US¥)
Ring current (RCM, CIMI*, RAM-SCB¥)
Radiation belts (RBE, CIMI¥)
Plasmasphere (DGCPM)

4 N
268 Waather Madeling From™"®

lonospher; ermosphere (GITM *) ~—.
rohL dynamics (RIM*)

The Terrestrial community has had this discussion
and it has largely decided to answer NO.

From Gombosi et al. (2021)


https://doi.org/10.1175/BAMS-D-14-00164.1
https://earthsystemmodeling.org/organization/
https://earthsystemmodeling.org/nuopc/
https://github.com/MSTEM-QUDA
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Remarks on Frameworks for DA & ML

ML applications have condensed into general, portable, Phyton/C++-based libraries that have been
by the user community and has facilitated continual development and enhancement data analytics, e.g.:
Keras, SciKit-Learn, TensorFlow, PyTorch.

DA applications have been slow to condense into a framework. The past few years has seen the
community reach a consensus on the need for a framework; competing frameworks exist at present:
> (Reading, UK) — — » ADAPT (Air Force, LANL, USA)
: > LANL, USA
> (NCAR, USA) Terrestrial DA Space DA ( )
Truly Opensource? —=

- :
> (AWI, DE) Opensource Frameworks?
> (TU Delft, NL) Frameworks
> (JCSDA, USA) - -
It has been acknowledged that these software (e.g., JEDI).

JEDI is the framework for DA development adopted by NOAA, NASA, US Navy, US Air Force, and others. JEDI is
not yet operational, but schedules are set on that. The U.K. Met Office is also committed to JEDI.

It might be helpful for the SW-DA-ML community to embrace existing DA frameworks; in the USA, JEDI.


http://www.met.reading.ac.uk/%7Edarc/empire/index.php
https://dart.ucar.edu/
https://www.awi.de/en/science/special-groups/scientific-computing/data-assimilation/pdaf-parallel-data-assimilation-framework.html
https://www.openda.org/
https://www.jcsda.org/jcsda-project-jedi
https://www.lanl.gov/science/NSS/issue1_2011/story2a.shtml
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Closing Thoughts

> Data Assimilation:

O Can be viewed as a traditional machine learning device.
O Adaptive procedures render DA self correcting & robust.

But ...traditional DA is hard to implement, maintain, and inefficient:
» Ensembletechniques are fundamental to address part of such issues & provide path to UQ.

» Modern ML techniques allow for further improvement of DA through:
O Surrogate modeling.
 Covariance estimation.
O Characterization of uncertainties.

» DA Frameworks should allow for agile R2Z02R & to keep up with Exascale endeavors.
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Thank you




Current status and future trends in
ML-enhanced Space Weather predictions

Enrico Camporeale
(enrico.camporeale@noaa.gov)

CIRES / CU Boulder & NOAA Space Weather Prediction Center

Thanks to:
H. Singer, M. Cash, C. Balch, E. Adamson, G. Toth, Z. Huang, J. Bortnik, G. Wilkie, A. Drozdov, M.

Gruet, M. Chandorkar, A. Care’, J. Borovsky, G. Lapenta, X. Chu, R. McGranaghan, ..., and probably
others...

This project is supported by NASA under grant 8ONSSC20K1580

)

University of Colorado
Boulder




The unpleasant truth...




The unpleasant truth...

Machine Learning is revolutionizing
the world...




The unpleasant truth...

Machine Learning is revolutionizing
the world...

...and it is reinventing Space
Weather

"Relax, I've come for your software."” |




What can ML do for Space Weather?

(a non-comprehensive list)

* ML works better than physics-based simulations to
forecast global/average indexes such as Dst

- Why? Because in a physics-based approach of a
complex system you need to get ‘every single piece
right’

Space Weather

RESEARCH ARTICLE  Multiple-Hour-Ahead Forecast of the Dst Index Using
SRk bl a Combination of Long Short-Term Memory
Neural Network and Gaussian Process

Memory:network'to provicle M. A. Gruet' (), M. Chandorkar® (", A. Sicard’, and E. Camporeale®

~ e

An interpretable machine learning method for
forecasting the SYM-H Index

Daniel Iong', Yang Chen', Gabor Toth?, Shasha Zou?, Tuija Pulkkinen?, Jiaen
2 . ey . I
Ren?, Enrico Camporeale®*, Tamas Gombosi®

The Dst (Disturbance storm time) index is an
index of magnetic activity derived from a
network of near-equatorial geomagnetic

observatories

——GPNN - 5hr ahead
——SWPC Geospace
observed Dst

Nov 20 Nov 21 Nov 22
2003




What can ML do for Space Weather?

(a non-comprehensive list)

* ML works better than physics-based simulations to The Dst (Disturbance storm time) index is an
forecast global/average indexes such as Dst IS O GEIAIEIDE EIEDVIE GIERTEd o o
network of near-equatorial geomagnetic

- Why? Because in a physics-based approach of a observatories

complex system you need to get ‘every single piece

Space Weather

RESEARCH ARTICLE Multiple-t
10.1029/20185W001898 a Combin.

iy : NeuralNe  Probabilistic prediction of Dst storms one-day-ahead
emonrevt oporse . A Gruet” (3, : :
) using Full-Disk SoHO Images

An interpr

=GPNN - 5hr ahead

for 5 B . 2.3
A. Hu'?, C. Shneider', A. Tiwari', E. Camporeale? -SWPC Geospace
observed Dst

P 1 Forio (1
Daniel Iong', Yang (%] I Contrim
Ren~, !



What can ML do for Space Weather?

(a non-comprehensive list)

* Segmentation of solar disk images
(supervised or unsupervised):

- Automatically extract different solar regions
(that are associated with different solar
W| nd/ geoeﬂ:e CtiveneSS) Segmentation of coronal holes in solar disc images with a convolutional

neural network

®

doi:10.1093/mnras/sty2628

Egor A. Illarionov!?* and Andrey G. Tlatov??

Solar Phys (2019)294:117
https://doi.org/10.1007/s11207-019-1517-4

Solar Filament Recognition Based on Deep Learning

Gaofei Zhu'**® - Ganghua Lin'? .

Dongguang Wang?@® - Suo Liu**@® . Xiao Yang!'*

Courtesy of Dan Seaton and J. Marcus Hughes, NCEI, CIRES, and University of Colorado Boulder



What can ML do for Space Weather?

(a non-comprehensive list)

e Solar flare prediction

BeepFlareNet NICP =

131A 193A 304A 1600A White light Magnetogram JAPANESE ENGLISH

Nishizuka et al. Earth, Planets and Space (2021) 73:64 h
https://doi.org/10.1186/540623-021-01381-9 0 Ea rt h r P | a n

FULL PAPER

Operational solar flare prediction model
using Deep Flare Net

Naoto Nishizuka" ®, Y(ki Kubo', Komei S umum . Mitsue Den' ® and Mamoru Ishii’

! £ orecast/comnent/etc.
_toe2] % [Too% | ook | Thepmbabi g
Cieee ] {eaiCiont S sV e P g
T T NEEE




What can ML do for Space Weather?

(a non-comprehensive list)

Solar wind classification (supervised):

- Extending human labeled database from 8000 hrs (<1 year) to 40+ years

Journal of Geophysical Research: Space Physics

RESEARCH ARTICLE ~ (Classification of Solar Wind With Machine Learning
10.1002/2017JA024383

_ Enrico Camporeale’’", Algo Caré'" "', and Joseph E. Borovsky?
Key Points:

- Gaussian Process classification yields 1 ) . 5 )
excellent accuracy in classifying the Center for Mathematics and Computer Science (CWI), Amsterdam, Netherlands, “Center for Space Plasma Physics, Space
solar wind according to the Xu and Science Institute, Boulder, CO, USA




What can ML do for Space Weather?

(a non-comprehensive list)

e Solar wind classification (unsupervised):

Visualizing and Interpreting
Unsupervised Solar Wind
Classifications

Jorge Amaya*, Romain Dupuis, Maria Elena Innocenti and Giovanni Lapenta

Mathematics Department, Centre for Mathematical Plasma-Astrophysics, KU Leuven, Leuven, Belgium
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What can ML do for Space Weather?

(a non-comprehensive list)

e Solar wind speed forecast

Space Weather "

RESEARCH ARTICI E  Attention-Based Machine Vision Models and Techniques for
Solar Wind Speed Forecasting Using Solar EUV Images

Edward J. E. Brown'?? (&, Filip Svoboda', Nigel P. Meredith? (*), Nicholas Lane'* snd
Richard B. Horne?

Cambridge, UK, =N
Lab, British Anta 20

'Departm [ Computer Sci

-, : F A e AT Ceniar e
Fdward J. F. Brown and Filip Svoboda Cambridge, UK, *Samsung Al Center, Car

contributed equally to this work.

§
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What can ML do for Space Weather?

(a non-comprehensive list)

 Radiation belt physics

Space Weather a

RESEARCH ARTICLE  Relativistic Electron Model in the Outer Radiation Belt
10.1029/2021SW002808 USil’lg a Neura]. NetVVOI'k ApproaCh

Key Points: Xiangning Chu! (), Donglai Ma? (0, Jacob Bortnik? (', W. Kent Tobiska® (2, Alfredo Cruz3

» A neural network model was S. Dave Bouwer?, Hong Zhao* ', Qianli Ma?® ¥/, Kun Zhang® '*', Daniel N. Baker®

developed to forecast relativistic e e -1 o 7 %
electron fluxes with enersies Xinlin Li! \*, Harlan Spence’ 2, and Geoff Reeves

Data-driven discovery of Fokker-Planck equation for

the Earth’s radiation belts electrons using

Physics-Informed Neural Networks

E. Camporeale!?, George J. Wilkie®, Alexander Drozdov?!, Jacob Bortnik!




What can ML do for Space Weather?

(2 non-comprehensive list)

* Regression problems, i.e. predict:
- The value of a geomagnetic index (Dst, Kp, etc.);
- The arrival time of a Coronal Mass Ejection;
- Global Total Electron Content (TEC) maps;
- Solar wind speed,;
— Relativistic electrons at GEO,;
- Ground magnetic field (dB/dt)
- Electron precipitation



What can ML do for Space Weather?

(2 non-comprehensive list)

Classification problems, i.e. what is the probability that:
— An active region will flare in the next 24 hours?

- dB/dt will exceed a given value?

— The solar wind is originated by coronal holes/ejecta, etc.
- Aregion of the Sun belongs to a coronal hole



Why does it work (so well) ?
A short digression

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER

Princeton University

“The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.”



Why does it work (so well) ?

The Unreasonable
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The unreasonable effectiveness of deep learning in
artificial intelligence

Terrence J. Sejnowski®®’

aComputational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037; and PDivision of Biological Sciences, University of
California San Diego, La Jolla, CA 92093

We are not in the same boat with image and text recognition, self-driving, or
recommendation systems!




Why does it work (so well) ?
Physics to the rescue!

Physical properties such as invariance, symmetry, conservation laws, etc.
reduce drastically the ‘search space’ of parameters

Any system that follows ‘laws of physics’ should be learnable by Machine
Learning

Any simulation can be emulated by ML
The major hurdle is Data Quality & Quantity!

J Stat Phys (2017) 168:1223-1247 @ o
DOI 10.1007/510955-017-1836-5

Why Does Deep and Cheap Learning Work So Well?

Henry W. Lin! . Max Tegmark? . David Rolnick?




Why does it work (so well) ?
Physics to the rescue!

SCIENCE ADVANCES | RESEARCH ARTICLE

COMPUTER SCIENCE

Al Feynman: A physics-inspired method for
symbolic regression

Silviu-Marian Udrescu' and Max Tegmark "%+

A core challenge for both physics and artificial intelligence (Al) is symbolic regression: finding a symbolic expression
that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions
of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In
this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network
fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics,
and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-
based test set, we improve the state-of-the-art success rate from 15 to 90%.




Path forward for ML in SWx

Freely adapted from:

Space Weather

FEATURE ARTICLE
10.1029/2018SW002061

The Challenge of Machine Learning in Space Weather:
Nowecasting and Forecasting

GRAND E. Camporeale!?
CHALLENGES

CENTENNIAL COLLECTION 1CIRES, University of Colorado Boulder, Boulder, CO, USA, 2Centrum Wiskunde & Informatica, Amsterdam,

The Netherlands




Path forward for ML in SWx

The information problem: What is the minimal physical
iInformation required to make a forecast?

HMI Dopplergram HMI Magnetogram

HMI Continuum AIA 1700 A

Surface movement Magnetic field polarity Matches visible light 4500 Kelvin

Photosphere Photosphere Photosphere Photosphere
”~

.

- ~s,., —
AlA 4500 A AlA 1600 A AlA 304 A AIA 171 A AlA 193 A
6000 Kelvin 10,000 Kelvin 50,000 Kelvin 600,000 Kelvin 1 million Kelvin
Photosphere Upper photosphere/ Transition region/ Upper transition Corona/flare plasma
Transition region Chromosphere Region/quiet corona
' g yd
y £ 1 i %
s 2] e % oy -
— v—/ - - S
AIA 211 A AlA 335 A

AlA 094 A
6 million Kelvin
Flaring regions

2 million Kelvin

AlA 131 A
Active regions

10 million Kelvin
Flaring regions

2.5 million Kelvin
Active regions

200M pixels

1 scalar value



Path forward for ML in SWx

The gray-box problem: What is the best way to make an optimal use
of both our physical understanding and our large amount of data In

the Sun-Earth system?
JGR Space Physics

RESEARCH ARTICLE A Gray-Box Model for a Probabilistic Estimate of Regional
{01020 A0ZT05 Ground Magnetic Perturbations: Enhancing the NOAA

Operational Geospace Model With Machine Learning

Key Points:
, C. C. Balch® ("), Z. Huang‘, and G. Toth*

- We present a new model to forecast
the maxi alue of dB/dt s
¢ maximum value of dB/dt over E. Camporeale” (2}, M. D. Cash®, H. J. Singer®

20-min intervals at specific locations

FRN station
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Path forward for ML in SWx

* The surrogate problem: What components in the Space Weather
chain can be replaced by an approximated black-box surrogate
model? What is an acceptable trade-off between lost of accuracy and

speed-up?



Path forward for ML in SWx

* The uncertainty problem: Most Space Weather services provide
forecast in terms of single-point predictions. There is a clear need of
understanding and assessing the uncertainty associated to these
predictions. Propagating uncertainties through the Space Weather
chain from solar images to magnetospheric and ground-based
observations is a complex task that is computationally demanding.

Space Weather

RESEARCH ARTICLE On the Generation of Probabilistic Forecasts From
10.1029/2018SW002026 Deterministic Models

Key Points:
« We introduce a new method to
estimate the uncertainties associated

E. Camporeale'?' ", X. Chu3'”, 0. V. Agapitov*' ", and J. Bortnik® ) i
International Journal for Uncertainty Quantification, 11(4):81-94 (2021)

ACCRUE: ACCURATE AND RELIABLE UNCERTAINTY
ESTIMATE IN DETERMINISTIC MODELS

Enrico Camporeale* & Algo Caré?



Path forward for ML in SWx

The too often too quiet problem: Space weather data sets are typically
Imbalanced: many days of quiet conditions and a few hours of storms. This
poses a serious problem for any machine learning algorithm. It is also
problematic for defining meaningful metrics that actually assess the ability of
a model to predict interesting but rare events.

1 ‘ol somlunl optsuml il i i omli
10° 10° 10° 10° 10° 107 10° 1007 10° 10° 10° 10° 10° 10°

(b) Peak Rate (cts/s/2000 cm’)

SPACE WEATHER, VOL. 10, 502012, doi:10.1029/2011SW000734, 2012

On the probability of occurrence of extreme space
weather events

Pete Riley”



Path forward for ML in SWx

* The knowledge discovery and explainability problem: How do we
distill some knowledge from a machine learning model and improve
our understanding of a given system? How do we open the black-box
and reverse-engineer a machine learning algorithm?

arXiv.org > physics > arXiv:2107.14322

Physics > Space Physics

[Submitted on 29 Jul 2021]

Machine-learning based discovery of missing physical processes in radiation belt modeling

Enrico Camporeale, George J. Wilkie, Alexander Drozdov, Jacob Bortnik




Summary

ML 4 SWXx is the quintessential interdisciplinary discipline.

These 6 problems not only hinder progress in Space Weather,
but pose fundamental challenges in the fields of Al and UQ.

The information problem

The gray-box problem

The surrogate problem

The uncertainty problem

The too often too quiet (rare events) problem

The knowledge discovery and explainability problem

Contact: enrico.camporeale@noaa.gov
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