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Disclaimer: This presentation has a strong Terrestrial Weather Applications bias;
it might need some UQ to adjust it to Space Weather Applications! 

https://www.google.com/search?q=nasa+meatball&client=firefox-b-1-d&tbm=isch&source=iu&ictx=1&vet=1&fir=Fur10aRzlbXT_M%252CZGFOe91ARWuzMM%252C_%253B0kWRJzawSOs8OM%252CpqzAgDThnePOLM%252C_%253B1mCcLbz4WcuufM%252C2ZdbU0ioyykARM%252C_%253BAOep85j9NDYE3M%252C07qxC3dWnjuK3M%252C_%253BttYwS9Q161K4-M%252CZGFOe91ARWuzMM%252C_%253Bc8W0xKoA4nCOcM%252CUTiO-Hy0PvucjM%252C_%253Bsde5HR0FuFqslM%252CMy3B0TiPNQ_-fM%252C_%253BdKGWS1B5fb_OLM%252CZGFOe91ARWuzMM%252C_%253B_bLm9Cr0dUNF8M%252CZGFOe91ARWuzMM%252C_%253B2PTGCSUivM2GEM%252CDEjIOyTPaTmIhM%252C_%253Br5qkLM67ZbOhvM%252CGVI0JBjAElQm4M%252C_%253Bs2UJzPEv09uZXM%252CVCtmTAELYZZT-M%252C_%253BcC0AXCcR8gGkYM%252CUTiO-Hy0PvucjM%252C_%253Bl-rffqiTNujX7M%252CTAIqEE8ASCVgNM%252C_&usg=AI4_-kTTLLL8l6Cl8G1slxqeZGCAompcug&sa=X&ved=2ahUKEwiM69-WzYL3AhXDpXIEHYeqCmsQ9QF6BAguEAE#imgrc=AOep85j9NDYE3M
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1. The Progress in Terrestrial Weather Prediction through DA

2. The Hierarchy of Models and DA Strategies in Terrestrial and Space Weather

3. Hybrid Concepts

 The Learning Aspect of DA
 Machine Learning as Tool to Aid DA

4. A Few Words on Frameworks

5. Closing Remarks 
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Evolution of ECMWF forecast skill for varying lead times (3 days in blue; 5 
days in red ; 7 days in green; 10 days in yellow ) as measured by 500-hPa 
height anomaly correlation. Top line corresponds to the Northern 
Hemisphere; bottom line corresponds to the Southern hemisphere. Large 
improvements have been made, including a reduction in the gap in 
accuracy between the hemispheres (Source: Courtesy of ECMWF. Adapted 
from Simmons and Hollingsworth ( 2002).

Observation assimilated in GEOS in the 6-hour period 
between 2100 UTC  9 Dec 2014 and 0300 UTC 10 Dec 2014 
(Courtesy of  Will McCarty).

OBS/cycle:  5x106 Model: 109-1010
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Terrestrial DA: Impact of 40 Years of Assimilation
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Illustration of the increase in data count in MERRA-2 over the past 
40-plus years. The impression of a settling data count toward present 
day is simply a reflection of limitations in M2 to add newly available 
sensors; a look at the near-real-time, high resolution, GEOS DA 
system would reveal a continued rise in data count.  

Impact of different types of assimilated observations along the 
course of MERRA-2. The reduced impact in absolute terms is a 
consequence of the improved quality in the state of the model 
due to the assimilation of an increased number of high-quality 
sensors. (size of dots is obs count (Diniz & Todling 2020)

Observation Count for Various Subsets

Impact on 24-hr Forecasts of Various Data Subsets

https://doi.org/10.1002/qj.3705
https://www.google.com/search?q=nasa+meatball&client=firefox-b-1-d&tbm=isch&source=iu&ictx=1&vet=1&fir=Fur10aRzlbXT_M%252CZGFOe91ARWuzMM%252C_%253B0kWRJzawSOs8OM%252CpqzAgDThnePOLM%252C_%253B1mCcLbz4WcuufM%252C2ZdbU0ioyykARM%252C_%253BAOep85j9NDYE3M%252C07qxC3dWnjuK3M%252C_%253BttYwS9Q161K4-M%252CZGFOe91ARWuzMM%252C_%253Bc8W0xKoA4nCOcM%252CUTiO-Hy0PvucjM%252C_%253Bsde5HR0FuFqslM%252CMy3B0TiPNQ_-fM%252C_%253BdKGWS1B5fb_OLM%252CZGFOe91ARWuzMM%252C_%253B_bLm9Cr0dUNF8M%252CZGFOe91ARWuzMM%252C_%253B2PTGCSUivM2GEM%252CDEjIOyTPaTmIhM%252C_%253Br5qkLM67ZbOhvM%252CGVI0JBjAElQm4M%252C_%253Bs2UJzPEv09uZXM%252CVCtmTAELYZZT-M%252C_%253BcC0AXCcR8gGkYM%252CUTiO-Hy0PvucjM%252C_%253Bl-rffqiTNujX7M%252CTAIqEE8ASCVgNM%252C_&usg=AI4_-kTTLLL8l6Cl8G1slxqeZGCAompcug&sa=X&ved=2ahUKEwiM69-WzYL3AhXDpXIEHYeqCmsQ9QF6BAguEAE#imgrc=AOep85j9NDYE3M
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The accuracy of weather forecasts is a result of increased 
model resolution, physical processes representation and the 
large volume of observations assimilated through advanced 
DA techniques.

The diagram means to illustrate the range of applicability of 
DA to Global Terrestrial applications.

Global NWP is now entering the low range of the mesoscales.

Global NWP ranges from hours up to 10 days. 

Global Constituent Forecast ranges from hours to 5 days.

Seasonal Prediction extends NWP capabilities in time, with 
added model complexities, but at the cost of reduced 
resolution.

Adapted from Tavakolifar et al. (2017; J. Climate)

Seconds Minutes Hours Days Weeks Months Years Decades Centuries
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https://doi.org/10.2166/wcc.2017.107
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Terrestrial DA & Prediction: A hierarchy of Components & Strategies
Three Examples from GEOS Forecasting Systems 
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Model Coupled 
Components

Weather 
12.5 Km

Seasonal
50 Km 

Chemical
Composition 

50 Km

Meteorology Hybrid 4DEnVar 3D Replay 3D Replay

Ozone Hybrid 4DEnVar 3D Replay 3D Replay

Aerosols 3DVar 3D Replay 3D Replay

Land None
(Soon EnKF)

None None

Sea-Ice BC None BC

Ocean BC 3D-EnOI BC

Chemical Constituents None
(Soon 3D-Var) 

Emissions BC BC BC

Forecasting Systems

Included Prescribed (BC) Parameterized

Different applications invoke different level 
of model coupling. 

Not a one-fits-all approach: Each Forecast 
System typically includes more than one DA 
approach.

The Replay strategy roughly nudges one 
system to results from another.

What’s BC today tends to turn into a full 
modeled component tomorrow.
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Space Weather Prediction: A hierarchy of models
Larger (shorter) range of spatial (temporal) scales 
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 Data Sparsity
 Directly vs Instability Driven Dynamics
 Short Timescales
 Range of Forecast Validity
 Intervening Turbulence vs Sensitivity to 

Initial Conditions 

From Siscoe & Solomon (2006)
Background pic by: K. Endo

Coronal Model
(e.g., MAS, WSA)

Solar Wind Model
(e.g., Enlil, EUHFORIA)

Magnetosphere Model
(e.g., LFM)

Ionosphere Model
(e.g., Ridley)

Thermosphere/
Atmosphere

(WAM-IPE)

https://supernova.eso.org/static/archives/exhibitionimages/screen/0209_G_magnetic_field-CC.jpg
https://doi.org/10.1029/2005SW000205
https://doi.org/10.1029/2005SW000205
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DA Invades Space Weather

CME & Solar Wind:
LETKF(Lang et al. 2017)
VarDA (Lang et al. 2018, 2021)

Photosphere:
ETKF, LETKF  (Hickmann et al., 2015)
Scale-Dep EnKF (Hickmann et al. 2016)

Corona:
EnKF (Butala et al. 2010)

Flares:
4D-Var (Bélanger et al. 2007)

Ionosphere:
SGM-KF & EnKF (Scherliess et al. 2011)
Nudging (Petry et al. 2014)
EnKF (Chen et al. 2016)
LETKF (Durazo et al. 2017)

Thermosphere-Ionosphere & WAM:
3D-Var (Wang et al. 2011)
EAKF (Morozov et al. 2013)
EnKF (Chartier et al. 2016)
EnKF (Cheng et al. 2017)
ROM-POD-KF (Mehta & Linares 2018)
EnSRF (Cantrall et al. 2019)
EAKF (Pedatella et al. 2020)
EAKF (Hsu et al. 2021)
4D-LETKF (Koshin et al. 2022)

Magnetosphere:
EnKF (Doxas et al.  2007)
EnKF (Koller et al. 2007)
Particle Filter (Nakano et al. 2008)
OI (Merkin et al. 2016)
EnKF-based (Godinez et al. 2016)
SplitOp KF (Cervantes et al. 2020)

Most works above are proof of concept done at coarse resolution and using simplified assumptions; 
enty other attempts are cited in the reference lists of the works above.  

Earlier SWDA works can be found in Siscoe & Solomon (2006)

https://scitechdaily.com/images/Sun-Earth-Interaction.jpg
https://doi.org/10.1002/2017SW001681
https://doi.org/10.1029/2018SW001857
https://doi.org/10.1029/2020SW002698
https://doi.org/10.1007/s11207-015-0666-3
https://doi.org/10.1016/j.ifacol.2016.10.162
https://doi.org/10.1007/s11207-010-9536-1
https://doi.org/10.1007/s11207-007-9009-3
https://doi.org/10.1007/978-94-007-0501-2_18
https://doi.org/10.1016/j.asr.2014.03.017
https://doi.org/10.1002/2016JA023346
https://doi.org/10.1002/2017JA024274
https://doi.org/10.1029/2011JA017081
https://doi.org/10.1016/j.jastp.2013.08.016
https://doi.org/10.1002/2014JA020799
https://doi.org/10.1002/2016GL071812
https://doi.org/10.1029/2018SW001875
https://doi.org/10.1029/2019JA026910
https://doi.org/10.1029/2020JA028251
https://doi.org/10.1029/2021JA029656
https://doi.org/10.5194/gmd-15-2293-2022
https://doi.org/10.1029/2006SW000236
https://doi.org/10.1029/2006JA012196
https://doi.org/10.1029/2006JA011853
https://doi.org/10.1002/2015SW001330
https://doi.org/10.1002/2016GL071646
https://doi.org/10.1029/2020JA028208
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The Data Assimilation Soup

9

Data 
Assimilation

Variational Sequential

3D-Var

SC/WC
4D-Var

Kalman
filter

Extended
KFOptimal

Interpolation

3D/4D
PSAS

Ensemble

Ensemble

4DEn-Var

3DEn-Var EnKF

LETKF

EnSRF

IEnKS

Others

KF
Extensions Many

Others

EAKF

Kalman
smoothers

Incremental
En-Var

Inspired by Fig.1.5 in Asch, Bocquet & Nodet (2016) 

Particle
Filters

OBS
Model

BCS

Hashed blobs = impractical

Incremental
Var

Bayesian View of DA

with X and O being a time history of 
model states and observations over a 
given time interval.

Provides foundation for both 
sequential and variational DA 
frameworks.

Provides insight for hybrid DA.

Hybrid DA combines traditional
Var (or Seq) with Ensembles.

Though recognized as 
needed, there hasn’t 
been much hybrid activity
on this side of the picture.
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The Machine Learning Soup

10

Isomap

Others

SGD R

Supervised
Learning

UN-Supervised
Learning

Reinforcement
Learning

Regression

Classification

Machine
Learning

Naïve Bayes

Decision Trees

Random Forest

Support Vector Machines

K-Nearest Neighbors

Linear R

SV Regression

Decision Tree Regression

NN R

Gaussian Process

Clustering

Agglomerative Hierarchical C

Mean-shift C

K-mean Clustering
Gaussian Mixture

DBSCAN C

Decision Making

Dimensionality
Reduction

SGD Classifier

PCA methods
Local Linear
Embedding

Others

Others

Temporal Difference

Q-Learning

State-action-Reward-State-action

Others

Can be put in Bayesian form,
though perhaps not as 
clear-cut as DA.

Tends to be more agnostic to 
computing architecture than
DA, thus importance of 
frameworks.



Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

National Aeronautics and Space Administration

Hybrid Concept: Hybridizing the Hybrid
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ML-based DA

DA-based ML

The past few years has seen a substantial rise in the number of 
proposals to get ML to aid DA.

See Geer (2021) for broader aspects of this symbiosis.

DA for ML ML for DA*
Handing of space/time sparse 
incomplete observations; obs
operators.

Handling of noisy data.

Inference of processes indirectly 
related to observations.

Incorporation of prior knowledge, 
along with Bayesian approach.

Availability of ensembles.

Quantitative representation of 
uncertainties.

Uncertainty propagation.

Normalization based on physical 
principles (viz. background errors) 

Process Emulator:

 TL/AD modeling

 Transport/Dynamics

 Chemical integrator

 Obs Error Cov. Construct

Physical Parametrizations

Observations  Retrievals

Data Homogenization

Post-processing enhancement

Surrogates

In the process, it is also being discovered that
DA procedures can in turn aid ML strategies.

Terrestrial Apps Space Apps

ML DA ML DA

*DA’s had its Gray-Box for some time; the Gray-Box of ML   
(Camporeale) exacerbates it (DA’s) further.
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The Learning Aspect of DA …
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Traditional DA is a learning machine …

Adaptive DA is a self-correcting robust machine …

But an inefficient  machine in many ways …
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The Learning Aspect of DA: Terrestrial Applications
Adaptive Estimation
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DA procedures have incorporated learningmechanisms to correct 
biases and uncertainties for quite a while: ADAPTIVEschemes. 

 Model parameter estimation

E.g., Cloud Optical Thickness over MODIS pass: background, 
observations, analysis;  Norris & da Silva (2016; Part II)

 Variational Bias Correction (VarBC)
From Dee & Uppala (2009)

VarBC temperature bias estimate

Independently estimated temperature fluctuation 

 Adaptive Error Covariance Localization
Left: Localization radii adaptively 
estimated for a QG model error 
covariance; Popov & Sandu (2019)

Other works have also explored 
procedure for adaptive inflation in 
ensemble DA schemes. Some have 
made it into SWDA literature, e.g., 
Godinez & Koller (2012). 

 Weak Constraint 4D-Var
From Fisher et al. (2011); 
ECMWF Tech Memo 655Cycling model error

Not Cycling model error

https://doi.org/10.1002/qj.2844
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://npg.copernicus.org/articles/26/109/2019/npg-26-109-2019-f10-web.png
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.1029/2012SW000767
https://www.ecmwf.int/sites/default/files/elibrary/2011/9414-weak-constraint-and-long-window-4dvar.pdf
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DA procedures have incorporated learningmechanisms to correct 
biases and uncertainties for quite a while: ADAPTIVEschemes. 

 Model parameter estimation

E.g., Cloud Optical Thickness over MODIS pass: background, 
observations, analysis;  Norris & da Silva (2016; Part II)

 Variational Bias Correction (VarBC)
From Dee & Uppala (2009)

VarBC temperature bias estimate

Independently estimated temperature fluctuation 

 Adaptive Error Covariance Localization
Left: Localization radii adaptively 
estimated for a QG model error 
covariance; Popov & Sandu (2019)

Other works have also explored 
procedure for adaptive inflation in 
ensemble DA schemes. Some have 
made it into SWDA literature, e.g., 
Godinez & Koller (2012). 

 Weak Constraint 4D-Var
From Fisher et al. (2011); 
ECMWF Tech Memo 655Cycling model error

Not Cycling model error

All these procedure
Error Estimates

AKA:
Uncertainty

Quantification

https://doi.org/10.1002/qj.2844
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://npg.copernicus.org/articles/26/109/2019/npg-26-109-2019-f10-web.png
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.5194/npg-26-109-2019
https://doi.org/10.1029/2012SW000767
https://www.ecmwf.int/sites/default/files/elibrary/2011/9414-weak-constraint-and-long-window-4dvar.pdf


Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

National Aeronautics and Space Administration

Ensemble-derived for DA & UQ …
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Introduced to address nonlinearities & efficiency …

Also good for UQ …
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Uncertainty Quantification (UQ): Ensemble DA
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Model

Constrained     (X)
Unconstrained (Z)

Observations (O)

Bayesian Applications

In this perspective there are two 
levels of uncertainty required to 
make DA work, those being in the:

Here understood as:

Constrained Vars: variables directly affected by DA/ML; 
can include model parameters.

Unconstrained Vars: everything else derived from a model.  

Straightforward DA and 
ML do not  provide UQ 
on Z, but MC-based do.

UQ of U-Var are desirable in many areas: climate research, instrumentation, 
risk analysis, improved DA/ML methodologies, validation, etc. 

Ensemble Model

Hybrid DA

Ensemble of DA

Monte Carlo-like DA

 U from Adaptive DA
 U Propagation (X,Z)

 Probabilities (Fair) Scores
 MC / Ensemble Learning
 ML for obs error covariance 

enhancement (LSTM) RNN.
 ML/WC for model error estimation. 

 ML to improve Predictions (offline)
 ML for Downscaling.

Did anybody say Digital Twin?
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ML as Aiding Device for DA …
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Alternative ways to derive uncertainties …

Another tool to address efficiency …
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ML to Aid DA: Terrestrial UQ in DA
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Top Left:  ANN for WC-4D-Var model error estimation 

Top Right: Dynamic NN for satellite bias estimation

Bottom Right: LSTM-Recurrent NN for obs error cov

Full slides in Appendix
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Frameworks …
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The way for community collaboration …

Facilitating R2O & O2R …

Facilitating rapid deployment of science …
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Communities Modeling Frameworks
Terrestrial Weather Modeling

ESPS – Earth System Prediction Suite

ESMF – Earth System Modeling Framework
NUOPC - National Unified Operational Prediction Capability 

Space Weather Modeling
SWMF - Space Weather Modeling Framework

20

The Terrestrial community has had this discussion 
and it has largely decided to answer NO. 

Is a modeling framework adequate for DA? 
(2016)

From Theurich et al. (2016) 

ESMF

From Gombosi et al. (2021)

https://doi.org/10.1175/BAMS-D-14-00164.1
https://earthsystemmodeling.org/organization/
https://earthsystemmodeling.org/nuopc/
https://github.com/MSTEM-QUDA
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Remarks on Frameworks for DA & ML
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ML applications have condensed into general, portable, Phyton/C++-based libraries that have been globally-
embraced by the user community and has facilitated continual development and enhancement data analytics, e.g.:  
Keras, SciKit-Learn, TensorFlow, PyTorch.

DA applications have been slow to condense into a “globally-embraced” framework. The past few years has seen the 
community reach a consensus on the need for a framework;  competing frameworks exist at present:
 EMPIRE (Reading, UK)
 DART (NCAR, USA)
 PDAF (AWI, DE)
 OpenDA (TU Delft, NL)

 JEDI (JCSDA, USA)
It has been acknowledged that these frameworks must interface with ML software (e.g., JEDI).
JEDI is the framework for DA development adopted by NOAA, NASA, US Navy, US Air Force, and others. JEDI is 
not yet operational, but schedules are set on that.  The U.K. Met Office is also committed to JEDI.

It might be helpful for the SW-DA-ML community to embrace existing DA frameworks; in the USA, JEDI.

 ADAPT  (Air Force, LANL, USA) 
 DREAM (LANL, USA) 

 Is there need for a specific 
SWDAF? Probably NOT!

 NSF/NASA on Frameworks 2020

Terrestrial DA
Truly

Opensource
Frameworks

Space DA
Opensource?
Frameworks?

http://www.met.reading.ac.uk/%7Edarc/empire/index.php
https://dart.ucar.edu/
https://www.awi.de/en/science/special-groups/scientific-computing/data-assimilation/pdaf-parallel-data-assimilation-framework.html
https://www.openda.org/
https://www.jcsda.org/jcsda-project-jedi
https://www.lanl.gov/science/NSS/issue1_2011/story2a.shtml
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Closing Thoughts
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 Data Assimilation: 

 Can be viewed as a traditional machine learning device.
 Adaptive procedures render DA self correcting & robust.

But …traditional DA is hard to implement, maintain, and inefficient:

 Ensemble techniques are fundamental to address part of such issues & provide path to UQ.

 Modern ML techniques allow for further improvement of DA through:
 Surrogate modeling.
 Covariance estimation.
 Characterization of uncertainties.

 DA Frameworks should allow for agile R2O2R & to keep up with Exascale endeavors.
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Thank you
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Current status and future trends in
ML-enhanced Space Weather predictions

Enrico Camporeale 
(enrico.camporeale@noaa.gov)
 

CIRES / CU Boulder & NOAA Space Weather Prediction Center

Thanks to: 
H. Singer, M. Cash, C. Balch, E. Adamson, G. Toth, Z. Huang, J. Bortnik, G. Wilkie, A. Drozdov, M. 
Gruet, M. Chandorkar, A. Care’, J. Borovsky, G. Lapenta, X. Chu, R. McGranaghan, …, and probably 
others…   

This project is supported by NASA under grant 80NSSC20K1580



The unpleasant truth...



The unpleasant truth...

Machine Learning is revolutionizing 
the world…



The unpleasant truth...

Machine Learning is revolutionizing 
the world…

...and it is reinventing Space 
Weather



What can ML do for Space Weather?
(a non-comprehensive list)

● ML works better than physics-based simulations to 
forecast global/average indexes such as Dst

– Why? Because in a physics-based approach of a 
complex system you need to get ‘every single piece 
right’  

The Dst (Disturbance storm time) index is an 
index of magnetic activity derived from a 
network of near-equatorial geomagnetic 

observatories
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What can ML do for Space Weather?
(a non-comprehensive list)

● Segmentation of solar disk images 
(supervised or unsupervised):

– Automatically extract different solar regions 
(that are associated with different solar 
wind/geoeffectiveness) 

Courtesy of Dan Seaton and J. Marcus Hughes, NCEI, CIRES, and University of Colorado Boulder



What can ML do for Space Weather?
(a non-comprehensive list)

● Solar flare prediction



What can ML do for Space Weather?
(a non-comprehensive list)

● Solar wind classification (supervised):

– Extending human labeled database from 8000 hrs (<1 year) to 40+ years



What can ML do for Space Weather?
(a non-comprehensive list)

● Solar wind classification (unsupervised):



What can ML do for Space Weather?
(a non-comprehensive list)

● Solar wind speed forecast



What can ML do for Space Weather?
(a non-comprehensive list)

● Radiation belt physics



What can ML do for Space Weather?
(a non-comprehensive list)

● Regression problems, i.e. predict:  

– The value of a geomagnetic index (Dst, Kp, etc.);
– The arrival time of a Coronal Mass Ejection;
– Global Total Electron Content (TEC) maps;
– Solar wind speed;
– Relativistic electrons at GEO;
– Ground magnetic field (dB/dt)
– Electron precipitation



What can ML do for Space Weather?
(a non-comprehensive list)

● Classification problems, i.e. what is the probability that: 
– An active region will flare in the next 24 hours?
– dB/dt will exceed a given value?
– The solar wind is originated by coronal holes/ejecta, etc.
– A region of the Sun belongs to a coronal hole



Why does it work (so well) ? 
A short digression

“The miracle of the appropriateness of the language of mathematics for the 
formulation of the laws of physics is a wonderful gift which we neither 

understand nor deserve.”



Why does it work (so well) ? 

We are not in the same boat with image and text recognition, self-driving, or 
recommendation systems! 



Why does it work (so well) ?
Physics to the rescue! 

● Physical properties such as invariance, symmetry, conservation laws, etc. 
reduce drastically the ‘search space’ of parameters

● Any system that follows ‘laws of physics’ should be learnable by Machine 
Learning

● Any simulation can be emulated by ML

● The major hurdle is Data Quality & Quantity!
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Path forward for ML in SWx

Freely adapted from:



Path forward for ML in SWx
● The information problem: What is the minimal physical 

information required to make a forecast?

200M pixels 1 scalar value



Path forward for ML in SWx
● The gray-box problem: What is the best way to make an optimal use 

of both our physical understanding and our large amount of data in 
the Sun-Earth system? 



Path forward for ML in SWx
● The surrogate problem: What components in the Space Weather 

chain can be replaced by an approximated black-box surrogate 
model? What is an acceptable trade-off between lost of accuracy and 
speed-up? 



Path forward for ML in SWx
● The uncertainty problem: Most Space Weather services provide 

forecast in terms of single-point predictions. There is a clear need of 
understanding and assessing the uncertainty associated to these 
predictions. Propagating uncertainties through the Space Weather 
chain from solar images to magnetospheric and ground-based 
observations is a complex task that is computationally demanding.



Path forward for ML in SWx
● The too often too quiet problem: Space weather data sets are typically 

imbalanced: many days of quiet conditions and a few hours of storms. This 
poses a serious problem for any machine learning algorithm. It is also 
problematic for defining meaningful metrics that actually assess the ability of 
a model to predict interesting but rare events. 



Path forward for ML in SWx
● The knowledge discovery and explainability problem: How do we 

distill some knowledge from a machine learning model and improve 
our understanding of a given system? How do we open the black-box 
and reverse-engineer a machine learning algorithm? 



Summary
ML 4 SWx is the quintessential interdisciplinary discipline. 

These 6 problems not only hinder progress in Space Weather,  
but pose fundamental challenges in the fields of AI and UQ.

● The information problem
● The gray-box problem
● The surrogate problem
● The uncertainty problem
● The too often too quiet (rare events) problem
● The knowledge discovery and explainability problem

Contact: enrico.camporeale@noaa.gov
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