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1. What are new data assimilation/fusion approaches that will likely lead 

to improved space weather forecasting performance?  

2. Do you anticipate adequate data resources for these schemes?  If 

not, how can data buys or other investments alleviate shortcomings?  

3. How can we quantify uncertainty in data assimilation schemes that 

use multi-source observations?
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physically plausible 
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“innovation”
d = yo - H(x)

Data Assimilation
Data Fusion & Assimilation Panel Mark Cheung (LMSAL)Space Weather Operations and Research Infrastructure Workshop, Phase II



1. What are new data assimilation/fusion approaches that will likely lead to improved 
space weather forecasting performance?  

Data Fusion & Assimilation Panel Mark Cheung (LMSAL)Space Weather Operations and Research Infrastructure Workshop, Phase II

• The large dimensionality of SpWx predictions problems require efficient, 
scalable DA (i.e. inference) techniques: 
• Density estimation and data generation (e.g. normalizing flows; 

Papamakarios+, 2021; JMLR); 
• Physics-informed Neural Networks (Raissi+ 2019, J. Comp Phys, 378, 686) , 
• Neural Network-based Surrogate Models (e.g. Fourier Neural Operator; Li+, 

2021, ICLR)  
• Simulation-based / Likelihood-free inference (Kranmer+, 2020; PNAS, 117, 

48) 
• Automatic differentiation (Baydin et al., 2018, JMLR, 18, 1) 
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• Lack of coverage of solar farside coverage misses active region evolution 
• Lack of understanding reliable polar field measurements (including cross-instrument calibration errors)

2. Do you anticipate adequate data resources for these schemes? No 

How can data buys or other investments alleviate shortcomings?  

• Miniaturization; rideshares; lower cost of magnetograph data via data buy (mission dev and ops not agency-managed). 
• Don’t take the Solar Dynamics Observatory for granted. Invest now (ngGONG; future space borne vector magnetographs).

Data Fusion & Assimilation Panel Mark Cheung (LMSAL)Space Weather Operations and Research Infrastructure Workshop, Phase II



3. How can we quantify uncertainty in data assimilation schemes that use multi-source 
observations?

State vector
🎛

The DA framework is not limited to single-
source measurements. Multiple H operators 
can be used to generate synthet i c 
observations. Differentiable programming 
techniques mentioned previously can be used 
for UQ from multi-source data. 

Approximate Bayesian Computation (ABC) 
methods using domain-relevant cost functions 
involving multi-source data can be used to 
assess inference quality and model selection. 

Data Fusion & Assimilation Panel Mark Cheung (LMSAL)Space Weather Operations and Research Infrastructure Workshop, Phase II



Jackson SWW#2 4/13/2022

Data Assimilation/Fusion Approaches Now and in a Few Years: 
1) Provide all inner heliospheric monitors into the remote sensing mix to provide better

global heliospheric analyses.
2)  Add more worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) to those currently

existing. The UCSD analyses allow this now.
• Longer Term (3-5 years from now and more):

1)  Add remote sensing data (Thomson-scattering brightness and speed data) from 
heliospheric imagers (STEREO HI works now, but has too low a latency): tests needed.

2) Provide heliospheric imagers that can view and add remote sensing data (ASHI, ESA Virgil,
PUNCH, for fields maybe Faraday Rotation ? ground based or active space experiments)

• Quantifying uncertainty:
1) Pearson’s “R” correlations operated both for data to the present and into the future 

compared with in-situ measurements works pretty well with caveats.
2) Tests provided by contingency tables that give hit rates, probabilities of detection, and

false alarm rates do a pretty good job of relating different effects with enough samples. 
http://smei.ucsd.edu      https://ips.ucsd.edu/  https://ips.ucsd.edu/stereo       https://ashi.ucsd.edu 

Heliospheric Space Weather Predictions and Forecasts
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Bernard V. Jackson (bvjackson@ucsd.edu)



Jackson SWW#2 4/13/2022 Web analysis runs “automatically” using Linux on a P.C.

https://ips.ucsd.edu/ https://ips.ucsd.edu/high_resolution_predictions/   https://ips.ucsd.edu/experimentalforecasts 

UCSD and other
IPS Web pages (2022)

Heliospheric Solar Wind Predictions and Forecasts
Jackson, B.V., et al., 2011, Adv. in Geosciences, 30, 93-115;  Jackson et al., 2013, Solar Phys., 258, 151-165; Jackson et al., 2020 Frontiers, doi:10.3389/fspas.2020.568429

USCD: https://ips.ucsd.edu/high_resolution_predictions

CCMC: https://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/

KSWC: http://www.spaceweather.go.kr/models/ips

GMU:  http://spaceweather.gmu.edu/projects/enlil/

Websites:
ISEE:   http://stsw1.stelab.nagoya-u.ac.jp/index-e.html

Soon at the UK Met
(Python scripting of UCSD analysis finished, 

Siegfried Gonzo, UK Met)
ENLIL Python scripting underway?

CME Forecast

GSM Bz Forecast
Ecliptic cut               Meridional cut
Time Series Comparison 
Pearson’s ‘R’ Correlation
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Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

Time Series at Earth at a 
1.5 -Hour Cadence 

Resolution

SMEI Analysis
New SMEI Analysis  ~ 1.5 hour cadence

The Solar Mass 
Ejection Imager 

(SMEI)

US Air Force -
NASA Project

Solar Wind Prediction Analyses

correlation 0.94                                                    correlation 0.95 
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Jackson et al., 2020 doi: 10.3389/fspas.2020.568429

Ecliptic,Earth Meridional, 
and Synoptic Cuts at 1.5-
Hour Cadence Resolution

SMEI Analysis
New SMEI Analysis  ~ 1.5 hour cadence

Analyses show CMEs are 
corrugated and spotty!

correlation 0.94                                                    correlation 0.95 

Solar Wind Prediction Analyses



Jackson SWW#2 4/13/2022

• Motivation: to provide best solar space weather predictions and forecasts 
throughout the global heliosphere

• Research: remote heliospheric sensing that provides global models of the 
heliosphere from Sun to Earth, the inner planets, and outward from there.

• Projects: SPWx predictions and forecasts that work using heliospheric data 
from SMEI (UCSD), IPS (ISEE, Japan), STEREO HI Images (RAL-Space, UK), 
Worldwide IPS Stations (WIPSS) Network (Includes LOFAR ASTRON, NL).

• Planned Projects: All Sky Heliospheric Imager (ASHI - UCSD), the NASA 
SMEX PUNCH (SWRI), the Vigil HIs (ESA, UK)

http://smei.ucsd.edu      https://ips.ucsd.edu/  https://ips.ucsd.edu/stereo       https://ashi.ucsd.edu 

Heliospheric Space Weather Predictions and Forecasts
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Combining first-principles and data-
derived approaches
Perspective of a global (geospace) modeler

V. G. Merkin (JHUAPL)
and the CGS team



What are new data assimilation/fusion approaches that will likely 
lead to improved space weather forecasting performance?
The answer to this question depends on:

1) Types and availability of data
2) Types of physics-based models

NAS Space Weather Workshop 2022 2

Challenges

- Very sparse in situ data
- But also very unevenly sampled

- Much better coverage near Earth (ionosphere, ground)
- Remote sensing is possible in some regions and for some variables but not for others

- Unique features of the geospace system:
- Driven system (memory, internal time scales, disparate domains...)
- Low dissipation (e.g., in the magnetosphere) leads to difficulty in generating physically 

consistent analysis increments
- Uncertainty is dominated by model incompleteness (i.e., missing physics)



What are new data assimilation/fusion approaches that will likely 
lead to improved space weather forecasting performance?

NAS Space Weather Workshop 2022 3

Possible solutions
- Spacecraft constellations
- Leverage better near-Earth coverage
- Leverage historical data
- Use all available data to:

- Rectify model incompleteness (i.e., supply missing physics)
- Develop data ingestion/assimilation methods that nudge models by 

supplying missing physics (i.e., gray-box models)
Historical magnetometer data (Tsyganenko et al. 2021) Historical Van Allen Probes data (Wang et al. 2019)

10.1029/2018JA02618310.1002/9781119815624.ch39

DMSP/SUSSI GPS TEC

AMPERE

Iridium 
Communicatio

ns Inc.

SuperMAG

SuperDARN+
DMSP+
IMAGE

Zou et al. (2009)
10.1029/2008JA01344
9

sussi.jhuapl.edu
vt.superdarn.org
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How can we quantify uncertainty in data assimilation schemes 
that use multi-source observations?

- Develop rich, multi-component cost or evaluation functions.
- Fold together agreement not only with direct in situ measurements but also:

- composite indices, distributed datasets, remote sensing, and data-mining/empirical 
reconstructions 

- The cost function should reflect data-model consistency over a time window, not a snapshot in 
time (shadowing)

- Explore different component weightings:
- Require (and quantify) general agreement between the simulation and observations (avoid 

getting stuck in local minima)
- Weight reduced-dimensional (carefully selected) global indices and "science metrics" 

strongly. It will increase the physical relevance of the region and the minimum identified.



Assimilation of low-altitude magnetic field

NAS Space Weather Workshop 2022 5

R1, directly driven by SW

• Assume quasi-static 
approximation

• Vasyliunas eq-n:

measured modeled

Tweak pressure to optimally 
match low-altitude mag. 
perturbation

Merkin, V. G. et a. 
(2016) 
10.1002/2015SW00133
0

R2, driven by inner 
magnetosphere 

pressure

AMPERE: Measurements by Iridium constellation



Assimilation of magnetic field measurements in the 
magnetosphere

NAS Space Weather Workshop 2022 6

Empirical pressure ingestion*

Mining of historical 
magnetometer data

(Sitnov et al., 2020)
10.1029/2020SW002561

Plasma pressure reconstruction

(Stephens et al., 2020)
10.1029/2020SW002561

Pressure ingestion in 
global geospace model

(Sciola et al., ML-HELIO, 2022)

* Similar approach for finding tail X-lines/ adjusting resistivity (H. Arnold)



Data-derived models of the inner magnetosphere plasma waves

NAS Space Weather Workshop 2022 7

Particle precipitation from data-derived wave/lifetime models*

Van Allen Probes 
historical wave data Electron lifetime in inner mag. model

Precipitating electron 
energy flux in global 

geospace model

(Wang et al., 2019)
10.1029/2018JA02618
3

also (Wang et al., 
2022)

in review

(Bao et al., ML-HELIO, 
2022)

(Bao et al., ML-HELIO, 
2022)

* Similar approach for radiation belt losses (A. Michael)
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Electromagnetic and kinetic energy 
represent the largest unknown inputs to 
the upper atmosphere (up to ~700GW)

These inputs are highly variable spatially 
and temporally, so they cannot be 
observed from a single vantage point

Important space weather plasma 
phenomena are driven by these inputs, 
especially at high latitudes

Total Electron Content (TECU
)

TEC data courtesy of CN Mitchell, 
University of Bath






Proliferated low-Earth orbit constellations 
provide the coverage needed to address 
major unknown energy inputs and global 
system response

Careful treatment of the data is needed to 
remove biases, combine with other 
datasets and infer physical parameters

Diverse datasets needed at high 
spatial/temporal resolution: layer peak 
densities, E-field, particles

66-sat Iridium constellation provides 
AMPERE magnetometer data



Solving for the high latitude potential

Modeled conductance 
ΣP ΣH
(SAMI3, Hardy, FISM/GOES, 
HWM/MSIS)

Observed field-aligned 
currents j
(harmonic fit to constellation 
dB measurements)

MIX high-latitude potential Ψ
(see Merkin and Lyon, 2010)

+
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The Data Fusion and Assimilation Panel
(National Academy of Science, Engineering  and Medicine, 

Space Weather II Workshop)

Dr.  Er ik  B lasch

P r o g r a m  O f f i c e r ,  A i r  F o r c e  O f f i c e  o f  S c i e n t i f i c  R e s e a r c h  

1 3  A p r i l  2 0 2 2

Not Official Opinion of the USAF/USSF
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Challenge – Space Domain Awareness (SDA) 

• Approaches (for SSA) 

– Physics-Based and Human-Derived Information Fusion (PHIF)
– Context-Enhanced Information Fusion 
– Dynamic Data Driven Applications Systems (DDDAS)

SDA

Space 
Situational 
Awareness 

Space 
Intelligence, 
Surveillance 

Space 
Communication

(SATCOM)

Space 
Weather

Drag

Interference

E. Blasch, S. Ravela, A. Aved (eds.), Handbook of Dynamic Data Driven Applications Systems, Vol 1, 2nd Ed, Springer, 2021.

Physical 
System

Physical
State

Physical 
Sensor

Sensor 
Management

Sensor data

INSTRUMENTATION 
RECONFIGURATION 

LOOP
Multi-Sensor 
measurement

DDDAS MethodInput 
Sensors

Simulated 
Sensors

Estimation 
Algorithm

Input
data

Simulated  
sensor dataPhysical 

System 
Simulation

Sensor Data Error

DATA AUGMENTATION LOOP

Simulated  
state

Data Fusion
- Multimodal sensing to reduce error
- Leverage contextual knowledge
- State assessment supports awareness
- Challenge: Non-constant sensor error

Data Assimilation
- First-principles physics modeling and 

simulation.. (data augmentation) 
- Reduced order modeling (ROM)
- Ensemble Filtering/Learning (EnKF, 

Machine Learning) … Deep Learning 
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Data Fusion: filtering, estimation, and prediction
- Program: Multi-domain correlation and fusion (association)
- Challenge Associate data from two sensors (ground & space)

Conflict between sensor readings (true or not)
- Requires: non-linear, non-Gaussian approaches
- Leverage: advances in distributed edge processing
- Utilize: Evidential (non-Bayesian) reasoning (**Evidential NN)

Example: Proportional Conflict Redistribution (PCR)

(#1) What new data assimilation/fusion approaches improving space weather forecasting performance?

PM Mehta, R Linares, A new transformative framework for data assimilation 

and calibration of physical ionosphere‐thermosphere models, Space 

Weather, 2018 (Data Fusion, Data Assimilation) 

DA Marsillach, MJ Holzinger, Telescope Tasking for Maneuver Detection and 

Custody Maintenance using Evidential Reasoning and Reachability 

Theory, - 2020 - mostech.com 

Assertion: Non-Linear, Non-Gaussian Evidential Reasoning

Evidence: Temporal Decision Analysis
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Demspters rule

PCR5 rule

Bayes Rule

Bayes can’t change beliefs 
quickly  with sensor conflicts

Blasch 2000-

Non-Gaussian

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://amostech.com/TechnicalPapers/2020/SSA-SDA/Aguilar-Marsillach.pdf
https://amostech.com/TechnicalPapers/2020/SSA-SDA/Aguilar-Marsillach.pdf
https://amostech.com/TechnicalPapers/2020/SSA-SDA/Aguilar-Marsillach.pdf
https://amostech.com/TechnicalPapers/2020/SSA-SDA/Aguilar-Marsillach.pdf
https://amostech.com/TechnicalPapers/2020/SSA-SDA/Aguilar-Marsillach.pdf
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(#1) What new data assimilation/fusion approaches improving space weather forecasting performance?

PM Mehta, R Linares, A new transformative framework for data assimilation and calibration of physical ionosphere‐thermosphere

models, - Space Weather, 2018

• Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) ROM 
(Reduced-order model) - restricted to altitudes between 100 and 450 km

• Forecasts, making drag the largest source of uncertainty in our ability to accurately predict the state 
of the objects in LEO.

• Proper Orthogonal Decomposition (POD) or Empirical Orthogonal Functions (EOFs)) with dynamic 
systems (EKF) for simulation for prediction  … assumes Bayesian and EKF 

• Because existing empirical and physical models have the largest bias/difference with accelerometer-
derived densities at solar minimum and geomagnetically active conditions, demo is 2009 instance

ROM after 12 
hrs of data

• Black: CHAMP accelerometer-derived density estimates. Red: MSIS model output along CHAMP orbit.
• Blue: TIE-GCM model output along CHAMP orbit. Green: CHAMP assimilated ROM densities on day 320 for year 

2009. Magenta: prediction with ROM after 12 hrs of data assimilation  (Error Reduction 50%)

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001875


5

• Data Fusion w/ NL/NG Data Assimilation 

V Ray, DJ Scheeres, S Alnaqbi, WK Tobiska, S. Hesar, A 
Framework to Estimate Local Atmospheric Densities With 
Reduced Drag‐Coefficient Biases,… - Space Weather 2022

DJ Gondelach, R Linares Real‐Time Thermospheric Density 
Estimation via Radar and GPS Tracking Data Assimilation
- Space Weather, 2021

Simultaneously estimate the orbits and global density with 
Unscented Kalman Filter (UKF).

UKF is better for NL-NG systems

(#1) What new data assimilation/fusion approaches improving space weather forecasting performance?

• Data Fusion w/ NL/NG Data Assimilation 

49% over JB2008 compared to the High 
Accuracy Satellite Drag Model densities

Simultaneously estimate the density and drag-coefficient 
for satellites with a time-varying attitude.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021SW002972
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021SW002972
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021SW002972
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002620
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002620
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002620
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002620
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020SW002620
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Data Fusion (Reduce Uncertainty), Assimilation (EnKF) filtering

(#3) How can we quantify uncertainty in data assimilation schemes that use multi-source observations?

Evaluation of Techniques for Uncertainty Representation Working Group (ETURWG), https://eturwg.c4i.gmu.edu/
Uncertainty Representation and Reasoning Evaluation Framework Ontology (URREF ontology), 50+ Sources of Uncertainty

Assertion: Not that easy as uncertainty is everywhere

Evidence: Absolute Uncertainty (RSME), Relative Uncertainly (Processing)

Absolute Uncertainty – real world performance 
(systems analysis), end result
Relative Uncertainty – algorithm performance 
bound (process), conditional f(unc. representation) 
Forward uncertainty –propagation of uncertainty 
in model parameters / variables
Inverse uncertainty  - generalization of
parameter estimation error analysis
Epistemic uncertainty - owing to a
lack of knowledge or ignorance about the modeled 
process (outside of process)
Aleatoric uncertainty -random events within the 
entity or process being modeled.

J. P. de Villiers, K. Laskey, A.-L. Jousselme, E. Blasch, A. de Waal, G. Pavlink, P. 
Costa, “Uncertainty representation, quantification and evaluation for data and 
information fusion,” International Conf. on Information Fusion, 2015.

Epistemic Aleatoric

Absolute Relative
System

Forward

Inverse

Same as Deep Learning: Explainability, Interpretability  

Uncertainty Quantification (UQ)

real world entities and processes (RWEPs)

https://eturwg.c4i.gmu.edu/
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