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Key Questions:

1. What are the new data assimilation/fusion approaches that will likely lead to improved space weather

forecasting performance?
2. Do you anticipate adequate data resources for these schemes? If not, how can data buys or other

investments alleviate shortcomings?
3. How can we quantify uncertainty in data assimilation schemes that use multi-source observations?
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1. What are new data assimilation/fusion approaches that will likely lead

to improved space weather forecasting performance?

2. Do you anticipate adequate data resources for these schemes? If

not, how can data buys or other investments alleviate shortcomings?

3. How can we quantify uncertainty in data assimilation schemes that

use multi-source observations?
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1. What are new data assimilation/fusion approaches that will likely lead to improved

space weather forecasting performance?

» The large dimensionality of SpWx predictions problems require efficient,
scalable DA (i.e. inference) techniques:
« Density estimation and data generation (e.g. normalizing flows;
Papamakarios+, 2021; JMLR);
* Physics-informed Neural Networks (Raissi+ 2019, J. Comp Phys, 378, 686) ,

* Neural Network-based Surrogate Models (e.g. Fourier Neural Operator; Li+,

2021, ICLR)
» Simulation-based / Likelihood-free inference (Kranmer+, 2020; PNAS, 117,
48)

« Automatic differentiation (Baydin et al., 2018, JMLR, 18, 1)
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2. Do you anticipate adequate data resources for these schemes? No
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e lackof coverage of solar farside coverage misses active region evolution
e lackof understanding reliable polar field measurements (including cross-instrument calibration errors)

How can data buys or other investments alleviate shortcomings?

e Miniaturization; rideshares; lower cost of magnetograph data via data buy (mission dev and ops not agency-managed).
e Don't take the Solar Dynamics Observatory for granted. Invest now (ngGONG; future space borne vector magnetographs).
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3. How can we quantify uncertainty in data assimilation schemes that use multi-source
observations?

The DA framework is not limited to single-
source measurements. Multiple H operators
can be used to generate synthetic
observations. Differentiable programming
techniques mentioned previously can be used
for UQ from multi-source data.

Approximate Bayesian Computation (ABC)
methods using domain-relevant cost functions
involving multi-source data can be used to
assess inference quality and model selection.




Heliospheric Space Weather Predictions and Forecasts
Bernard V. Jackson (bvjackson@ucsd.edu)

Data Assimilation/Fusion Approaches Now and in a Few Years:

1) Provide all inner heliospheric monitors into the remote sensing mix to provide better

global heliospheric analyses.
2) Add more worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) to those currently
existing. The UCSD analyses allow this now.

 Longer Term (3-5 years from now and more):

1) Add remote sensing data (Thomson-scattering brightness and speed data) from
heliospheric imagers (STEREO HI works now, but has too low a latency): tests needed.

2) Provide heliospheric imagers that can view and add remote sensing data (ASHI, ESA Virgil,
PUNCH, for fields maybe Faraday Rotation ? ground based or active space experiments)

* Quantifying uncertainty:
1) Pearson’s “R” correlations operated both for data to the present and into the future
compared with in-situ measurements works pretty well with caveats.
2) Tests provided by contingency tables that give hit rates, probabilities of detection, and
false alarm rates do a pretty good job of relating different effects with enough samples.

http://smei.ucsd.edu  https://ips.ucsd.edu/  https://ips.ucsd.edu/stereo https://ashi.ucsd.edu 1



Heliospheric Solar Wind Predictions and Forecasts

Jackson, B.V,, et al., 2011, Adv. in Geosciences, 30, 93-115; Jackson et al., 2013, Solar Phys., 258, 151-165; Jackson et al., 2020 Frontiers, doi:10.3389/fspas.2020.568429

https://ips.ucsd.edu/

UCSD and other
IPS Web pages (2022)
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Solar Wind Prediction Analyses
Jacksonetal., 2020 doi: 10.3389/fspas.2020.568429 SMEI Analysis

New SMEI Analysis ~ 1.5 hour cadence
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Solar Wind Prediction Analyses

Jacksonetal, 2020 doi: 10.33800spas 2020568429 SMEI Analysis

Ecliptic,Earth Meridional, Now SMEI Analysis = 1.5 hour cadence
and Synoptic Cuts at 1.5- Analyses show CMEs are
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Heliospheric Space Weather Predictions and Forecasts @

* Motivation: to provide best solar space weather predictions and forecasts
throughout the global heliosphere

* Research: remote heliospheric sensing that provides global models of the
heliosphere from Sun to Earth, the inner planets, and outward from there.

* Projects: SPWx predictions and forecasts that work using heliospheric data
from SMEI (ucsbp), IPS (SEE, Japan), STEREO HI Images (RAL-Space, UK),
Worldwide IPS Stations (WIPSS) Network (Includes LOFAR ASTRON, NL).

* Planned Projects: All Sky Heliospheric Imager (ASHI - ucsbp), the NASA
SMEX PUNCH (swRri), the Vigil HIs (EsA, UK)

http://smei.ucsd.edu  https://ips.ucsd.edu/  https://ips.ucsd.edu/stereo https://ashi.ucsd.edu
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Combining first-principles and data-
derived approaches

Perspective of a global (geospace) modeler

V. G. Merkin (JHUAPL)
and the CGS team
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What are new data assimilation/fusion approaches that will likely

lead to improved space weather forecasting performance?
The answer to this question depends on:

1) Types and availability of data
2) Types of physics-based models

Challenges

- Very sparse in situ data
- But also very unevenly sampled
- Much better coverage near Earth (ionosphere, ground)

- Remote sensingis possible in some regions and for some variables but not for others
- Unique features of the geospace system:

- Driven system (memory, internal time scales, disparate domains...)

- Low dissipation (e.g., in the magnetosphere)leads to difficultyin generating physically
consistentanalysis increments

Uncertainty is dominated by model incompleteness (i.e., missing physics)

CENTER FOR
GEOSPACE STORMS
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What are new data assimilation/fusion approaches that will likely
lead to improved space weather forecasting performance?

SuperMAG AMPERE
Possible solutions —
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How can we quantify uncertainty in data assimilation schemes
that use multi-source observations?

- Develop rich, multi-componentcost or evaluation functions.
- Fold together agreement not only with direct in situ measurements but also:
- compositeindices, distributed datasets, remote sensing, and data-mining/empirical
reconstructions
- The cost function should reflect data-model consistency over a time window, not a snapshot in
time (shadowing)
- Explore different component weightings:
- Require (and quantify) general agreement between the simulation and observations (avoid
getting stuck in local minima)
-  Weightreduced-dimensional (carefully selected) global indices and "science metrics"
strongly. It will increase the physical relevance of the region and the minimum identified.

CENTER FOR
GEOSPACE STORMS
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Assimilation of low-altitude magnetic field
AMPERE: Measurements by Iridium constellation

R1, directly driven by SW

17 Mar 2015 202000 - 20:3000 UT

Merkin, V. G. et a. R2, driven by inner
(2016) magnetosphere
80.1002/20153woo133 pressure
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Assimilation of magnetic field measurements in the
magnetosphere

Empirical pressure ingestion®

Mining of historical Plasma pressure reconstruction Pressure ingestion in
magnetometer data global geospace model
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* Similar approach for finding tail X-lines/ adjusting resistivity (H. Arnold)
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Data-derived models of the inner magnetosphere plasma waves

Particle precipitation from data-derived wave/lifetime models™

Van Allen Probes Precipitating electron
historical wave data Electron lifetime in inner mag. model energy flux in global
Y Rel geospace model
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3 in review

* Similar approach for radiation belt losses (A. Michael)
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Electromagnetic and kinetic energy
represent the largest unknown inputs to
the upper atmosphere (up to ~700GW)

These inputs are highly variable
and temporally, so they cannot |
observed from a single vantage

Important space weather plasm
phenomena are driven by these
especially at high latitudes

JOHNS HOPKINS
APPLIED PHYSICS LABORATORY







Proliferated low-Earth orbit constellations
provide the coverage needed to address

major unknown energy inputs and global
system response | '

Careful treatment of the datais 'n'_e_éd'e_'d' to
remove biases, combine with other -~
datasets and infer physical parameters =

Diverse datasets needed at high 29
spatial/temporal resolution: layer peak
densities, E-field, particles R

66-sat Iridium constellation provides
AMPERE magnetometer data

JOHNS HOPKINS
APPLIED PHYSICS LABORATORY



Solving for the high latitude potential
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AFRL

The Data Fusion and Assimilation Panel

(National Academy of Science, Engineering and Medicine,
Space Weather || Workshop)

Dr. Erik Blasch

Program Officer, Air Force Office of Scientific Research
1.3 AD il 222

Not Official Opinion of the USAF/USSF



armr  (Challenge — Space Domain Awareness (SDA)

 Approaches (for SSA) _Space >pace
Situational Intelligence,
— Physics-Based and Human-Derived Information Fusion (PHIF) Awareness Surveillance
— Context-Enhanced Information Fusion ? Drag
— Dynamic Data Driven Applications Systems (DDDAS) Space
Space o
Communication
INSTRUMENTATION Weather nterference (SATCOM)
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Physical state .
Simulated |Sensor datal X | c et g
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Algorithm Machine Learning) ... Deep Learning

E. Blasch, S. Ravela, A. Aved (eds.), Handbook of Dynamic Data Driven Applications Systems, Vol 1, 2"d Ed, Springer, 2021.




A== (#1) What new data assimilation/fusion approaches improving space weather forecasting performance?
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A== (#1) What new data assimilation/fusion approaches improving space weather forecasting performance?

« Thermosphere-lonosphere-Electrodynamics General Circulation Model (TIE-GCM) ROM
(Reduced-order model) - restricted to altitudes between 100 and 450 km

* Forecasts, making drag the largest source of uncertainty in our ability to accurately predict the state
of the objects in LEO.

* Proper Orthogonal Decomposition (POD) or Empirical Orthogonal Functions (EOFs)) with dynamic
systems (EKF) for simulation for prediction ... assumes Bayesian and EKF

» Because existing empirical and physical models have the largest bias/difference with accelerometer-
derived densities at solar minimum and geomagnetically active conditions, demo is 2009 instance

- 18 — CHAMP — MSIS — TIE-GCM —— KF —ROM Prediction : il = TIE-GCM 100 km +107 Fowtookm - 107

£ B ' o ; 50 . 10

2 i i . i ;" )

E'; : ) \Br MGIG 450 km w1g™ TIE-GGM 450 ke «1g ROM 450 km i

2 osP MMM WA AW W AR € > ;. @ » ;

s WWWIWWWWWWHWWW WA 5 - I n i
0 1 | | | 3 =0 = =50 60

0 5 10 15 20 8 E e 0o s w0 w8 > ROM after 12

« Black: CHAMP accelerometer-derived density estimates. Red: MSIS model output along CHAMP orbit.hrS of data

* Blue: TIE-GCM model output along CHAMP orbit. Green: CHAMP assimilated ROM densities on day 320 for year
2009. Magenta: prediction with ROM after 12 hrs of data assimilation (Error Reduction 50%)

PM Mehta, R Linares, A new transformative framework for data assimilation and calibration of physical ionosphere-thermosphere
models, - Space Weather, 2018
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A== (#1) What new data assimilation/fusion approaches improving space weather forecasting performance?

« Data Fusion w/ NL/NG Data Assimilation
Simultaneously estimate the orbits and global density with

Unscented Kalman Filter (UKF).

Initial state and |
Tracking data ballistic eoefficient

Quess

Initial density

guess

Predichion

bleasurement
update

Estimated state, BC
and density

DJ Gondelach, R Linares Real-Time Thermospheric Density

Cymamic
reduced-arder
density model

L

Crbital
chynamics

-

}I Frequency, damping ratio,

Estimation via Radar and GPS Tracking Data Assimilation

- Space Weather, 2021

 Data Fusion w/ NL/NG Data Assimilation

Simultaneously estimate the density and drag-coefficient
for satellites with a time-varying attitude.

Dynamics model

High-fidelity force models

Atmospheric model + GMP
Tuning parameters:

Parameter tuning via
historical density data

Iterated EKF with
smoaothing
Fourier series l

Initialized in the filter using a

I noise variances
|
|
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|
I chosen G5IM; higher-order
|
|
1
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Atrmospheric model
corrections +
Higher-order Fourier
coefficients

coefficients estimated while
bias kept constant

Re-run filter with the
new drag-coefficient

Imvert C5IM parameters and

bias term calculate new bias I

V Ray, DJ Scheeres, S Alnagbi, WK Tobiska, S. Hesar, A
Framework to Estimate Local Atmospheric Densities With

Reduced Drag-Coefficient Biases,... - Space Weather 2022

[ UKF is better for NL-NG systems
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A= (#3) How can we quantify uncertainty in data assimilation schemes that use multi-source observations?

Assertion: Not that easy as uncertainty is everywhere [tncertainty Quantification (UQ)
Evidence: Absolute Uncertainty (RSME), Relative Uncertainly (Processing)

Data Fusion (Reduce Uncertainty), Assimilation (EnKF) filtering

Evaluation of Techniques for Uncertainty Representation Working Group (ETURWG), https://eturwg.c4i.gmu.edu/
Uncertainty Representation and Reasoning Evaluation Framework Ontology (URREF ontology), 50+ Sources of Uncertainty
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Algorithms

Absolute Uncertainty — real world performance
(systems analysis), end result

Relative Uncertainty — algorithm performance
bound (process), conditional f(unc. representation)

Forward uncertainty —propagation of uncertainty
in model parameters / variables

Inverse uncertainty - generalization of
parameter estimation error analysis

Aleat

[

J. P. de Villiers, K. Laskey, A.-L. Jousselme, E. Blasch, A. de Waal, G. Pavlink, P.
Costa, “Uncertainty representation, quantification and evaluation for data and
information fusion,” International Conf. on Information Fusion, 2015.

| Same as Deep Learning: Explainability, Interpretability |

Epistemic uncertainty - owing to a

lack of knowledge or ignorance about the modeled
process (outside of process)

Aleatoric uncertainty -random events within the
entity or process being modeled.

real world entities and processes (RWEPs)


https://eturwg.c4i.gmu.edu/
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