Data Science and Analytics: Ensemble Modeling
Panel

Key Questions:

1) The terrestrial weather community does multiple-model ensemble modeling, is that practical
for Space Weather in the near term?

2) What data sources are needed but unavailable (proprietary, classified, etc.) that are
hampering next steps? Do we work to get them available or can (ML, data curation, etc.) take
care of it and how?
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» Recognized potential to constrain uncertainties and transform
deterministic-> probabilistic results

» No ensembles formally in operations, but development work is ongoing
» Early focus on solar/ solar wind domain

v" CME characterization Uncertainties remain largely observational
v Ambient solar wind — Need improved coronagraphs and new vantage points

» Multi-model ensembles (MMESs) are of interest, where shown to be worth
the resources



Air Force Data Assimilative Photospheric Flux Transport (ADAPT): ..

Accounts for physical processes omitted w/in current synoptic maps

Constrained by DA

12 member ensemble with IC variation in supergranulation
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CME fit (cone parameters) ensemble (Pizzo et al., 2015):

Based upon Taylor series expansion of arrival time error
Perturbed ICs defined by maxima of input parameters

Presumes linear relationship between IC variance and resultant parameters
of interest



Ensemble Modeling \J/

Future / Outstanding questions

* How can such ensembles be efficiently combined? Is Monte-Carlo approach best or are there more
efficient methods?

* How can ensembles be effectively pruned, particularly in coupled model systems (e.g., solar-IP-
geospace-...)? Combine with Data Assimilation?

« Can “submodel” MME’s afford avenue for progress in constraining magnetic structure w/in CMEs?

Summary
» Critical need for improved observational capabilities toward better characterization of CMEs

+ Effective synthesis of results to meaningfully convey information to users is key
+  Storage resources will be critical in laying foundation for large-scale ensemble modeling



Contemporary geospace approach:
global MHD coupled to ionosphere
and ring current models

» Driven by L1 observations of solar wind and
interplanetary field

» Used deterministically forecast ground
magnetic disturbances
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We're ready for more than the proof-of-concept

= Early work shows promise that ensembles can increase
predictive skill of geospace/GMD models

" In-depth, structured studies needed to understand extent
of improvement, number of ensemble members, etc.

Perturbed physics ensembles " Ry sl om0
are the obvious next step A Ay

» Many studies demonstrate model
sensitivity to IBCs, physics
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» Many physical processes "hidden” in input parameters

= No work to-date that fully quantifies uncertainty across the
Input parameter space
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More upstream monitors required (L1 and near-Earth)

= Multiple L1 monitors help bound uncertainty in magnetospheric
driving conditions, generate ensemble members

* Near-bow shock observations could provide last-momentmember
weighting, improve forecast accuracy

More ground magnetometers and auroral imaging are
necessary to bolster validation & uncertainty analysis
= More high time resolution magnetometerdata at more locations

= Auroral imaging allows us to validate one of our weakest points of
modeling — auroral conductance and dynamics

Geospace data assimilation is a huge challenge

» L arge volumes, disparate physics often leads to “point source” effect
of assimilation: local but not global impact

» Possibilities include assimilation of ionospheric electrodynamics,
auroral observations, ground magnetometers — how viable is this?
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Up and Coming Approaches - Ensembles

Ensembles can be used in a number of different ways

for space weather e.g.: 1801 gy o
« Data assimilation (DA) :’3\\
¢ Multi-model ensembles (MMEs) R S, 3,
* Uncertainty quantification ﬂ
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Use of MMEs is in its infancy but has demonstrated
reduced errors in model specification

« Should be used in DA approaches to reduce model
propagation uncertainty (“Q” matrix)
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Orthogonal Ensemble Members

« A key question is how to generate independent/ orthogonal ensemble
members
« Orthogonal ensemble members in DA are needed (and usually
assumed) for estimation of covariance matrices and reduction of
propagation errors
* Independent members are needed in MMEs for the assumption of error
cancellation

- Ensembles often generated by perturbing (a subset of) model drivers
* Results in ensembles with artificially small variance
 Little work done in understanding the sensitivity of specific model
drivers to specific systems/use cases - could help to understand
ensemble generation



Do we have what we need?

« N ensemble members mean a factor of N increase in storage
N ensemble members from M different models is a factor of NxM increase for

MME storage!
« Interesting and novel science could be investigated from this output, but

we need to keep it
* Requires investment in computational resources - crucially including data

storage and associated management

 New observations
* More data (with well quantified errors...)is always good!

« Canbe used for both validation and/or assimilation
« There is an observational data gap for the thermosphere
 However, there is an unprecedented launch of satellites

« Constellations of commercial satellites could bridge the gap



Ensemble Generation Techniques in the lonosphere-Thermosphere

Single model ensembles are often generated through perturbed
forcing (i.e., input) parameters (F10.7, Kp).

This approach is problematic in several ways:
- Ensemble may not be reflective of the uncertainty in the
input parameters and/or the uncertainty of the model itself.

- Ensemble spread is deficient for some regions/times.

- Neglects internal chaotic contributions, which may be
important for short-term (< 24 h) forecasts and in the lower
thermosphere and bottomside ionosphere.

Need to develop and evaluate new approaches for

generating ensembles that address the above shortcomings.

Improved ensemble generation techniques are critical for
developing a better understanding of uncertainty and for
ensemble data assimilation.
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Multi-Model Ensembles

Multi-model ensembles are widely used in climate and
weather forecasting due to improvements in forecast
consistency and reliability.

Multi-model ensemble approaches have yet to be widely
adopted in ionosphere-thermosphere research and
forecasting.

It remains unknown to what extent multi-model ensembles
can improve currentionosphere-thermosphere forecast
skill.

Research to understand how multi-model ensembles
can be leveraged forionosphere-thermosphere
applicationsis needed.

Enabling infrastructure would accelerate progress by
making it easier to perform studies using multi-model
ensembles.
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(Schunk et al., 2021; doi:10.1029/2019SW002404)



Multi-Model Ensemble Databases

North American Multi-

Model Ensemble

The North American Multi-Model Ensemble (NMME) is a seasonal forecasting system
that consists of multiple coupled models from North American modeling centers.
NCEI provides access to data for global, 12-month forecasts of 13 key variables.
NMME data is daily or 6-hourly with a 1° by 1° spatial resolution. Most NMME
datasets have 10 realizations for each variable.

(https://www.ncei.noaa.gov/products/weather-climate-models/north-american-multi-model)

World Climate Research Programme
(https:/Avww.wcrp-climate.org/wgcm-cmip)

Development of databases for distribution of space
weather simulations would facilitate the usage of
multi-model ensembiles.

Such a database would:
- Enable researchinto the use of multi-model
ensembles for space weather.

- Advance understanding of how multi-model
ensembles can be used for space weather
research and operations.

Requires an investmentin computing
infrastructure as well as for modelers to perform
extensive simulations and make them available to
the community.



Ensemble Modeling for the Thermosphere

> A primary USSF organization that will benefit from ensemble modeling is the USSF 18 Space
Control Squadron (SPCS), which supports command and control of space forces.

» The 18 SPCS HASDM Astrodynamics Workstation runs the HASDM code to create the current
epoch plus 72-hour predicted thermosphere density.

> This density is then used to continually update the NORAD satellite catalog several times a day.
> There is a need to improve HASDM absolute error without modifying operational code at USSF.

» New information can be transparently passed as added metadata lines in the JBHSGI. TXT driver
files that are delivered several times a day to 18 SPCS. Examples include:

v’ Historical absolute uncertainty of HASDM densities for satellite drag

v’ Historical statistical variability in HASDM by altitude, solar cycle, season, and storm conditions
from machine-learned analysis

v’ As-run forecast absolute uncertainty in the solar & geomagnetic indices as compared to data
v’ Current epoch & forecast uncertainty in densities by altitude from multi-model ensemble runs

\@ SPACE ENUIRONMENT TECHNOLOGIES
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Example models in ensemble runs
DRAGSTER/TIME-GCM using SGI

error between EXTEMPLAR:SHDB densities SGI = solar and geophysical indices
EXTEMPLAR/MSIS v2 using SGI |
error between EXTEMPLAR:SHDB densities SGI Forecast Analysis

error between SGI actual:forecast

JB2008 using SGI

error between JB2008:SHDB densities SGIl Forecast Drivers
error between SGl original:forecast

HASDM-ML using SGI
error between HASDM-ML:SHDB densities

past present future
Science challenges that benefit from ensemble modeling uncertainties — tall tentpoles

Oxygen—Helium transition affecting ballistic coefficients

Carbon dioxide and nitric oxide cooling in lower thermosphere

Coronal hole — high speed stream compounding effects

Dst from CME/HSS magnitude and arrival effects

Solar far-side evolution of irradiances

\ﬁ SPACE ENUVIRONMENT TECHNOLOGIES
Enabling Human Evolution Into Space




Ensemble Modeling for the thermosphere — summary

» The numberof Low Earth Orbit (LEO) objects will TRIPLE in the next 2 years, Foundation for modeling
and we expect collision hazards to increase HASDM DataCube
» We now know existing accuracies of U.S. Space Force (USSF) High Oct. 30 2003 00:00 UT at 400 km

Accuracy Satellite Drag Model (HASDM) from SET HASDM density database

» Wecan significantly reduce uncertainty in thermospheric density specification
for the benefit of Space Traffic Management (STM) operations and
conjunction assessment by using ensemble multi-model runs

Ensemble multi-models can provide these capabilities:

4 Comparative densities and their uncertainties in each altitude layer;
Reference to absolute density uncertainty from HASDM (2—10%);

Global density prediction variability uncertainty outside the HASDM
database 20-year time frame (2000-2019);

Dynamically calculated current epoch and forecast uncertainties using
RMS uncertainties from ensemble runs and driver forecasts; and

Improved solar and geomagnetic indices’ forecasts using lessons H N
learned from ensemble runs and statistical uncertainties. 1.2 1.3 1.4 1.5 1.6
Atmospheric Density (kg/m?3)

X X X
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Cheaper uncertainty quantification

* Operationally, want weather-of-the-day / flow-dependent uncertainty:
what is uncertainty given current conditions, not climatological uncertainty

* Classicensemble approach to uncertainty is expensive: perturb a physics-
based model, run different physics-based models, ...

* Don’t ignore cheaper options! May suffice for uncertainty needs

* Drag-based CME modelling— 10k membersin seconds.
Limitations: CME-CME interactions, background wind, drag parameter, ...

Simpler physics-based models - e.g. upwind schemes

Reduced order models: simplify model internal dynamics
Surrogate/emulator approaches, used in climate science

ML-based modelling of model uncertainty itself (push cost to training?)

© Crown Copyright, Met Office



Understanding users’ uncertainty needs

* Operational resource (staff, compute, data) spent quantifying uncertainty
is useless if uncertainty information isn’t used in users’ decision-making!

e Even if uncertainty information gets exposed to users, modeller

approaches to this may not suit user needs & decision processes
Postage stamp / spaghetti plots, RMSE, skill scores, probabilities, proportions...

* Match approaches to communicating uncertainty information to users
* Probabilities & decision-support systems can help users who can hedge
* Cost-loss analyses can also help keep things general, but allow user-tuning later
e Map to user: drive impact models / use scenario-based approaches

* Involve users more in model/system design: co-production etc
* Hard! Terrestrial weather/climate rely on social science input to help

© Crown Copyright, Met Office



Decision-support system case study DECIDER

INTERACTIVE TABLE: Probabiiity of sach regims occuming at sach lead tims (30 ragimes) - UK

DECIDER exposes uncertainty usefully
for users who can hedge

Used historic model runs to establish
k-means set of weather “regimes”

Regimes are Iar§e -scale patterns, so
more predictab

DECIDER maps current ensemble
output onto these regimes

* Show most likely, and the spread

Users can cluster their historic data by
the same regimes

* E.g. “60% of issues occur in regime 1, .

So can use DECIDER output as mput to
their internal decision-support
systems

e Avoids discarding uncertainty too early

© Crown Copyright, Met Office
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https://www.metoffice.gov.uk/services/business-industry/energy/decider
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