

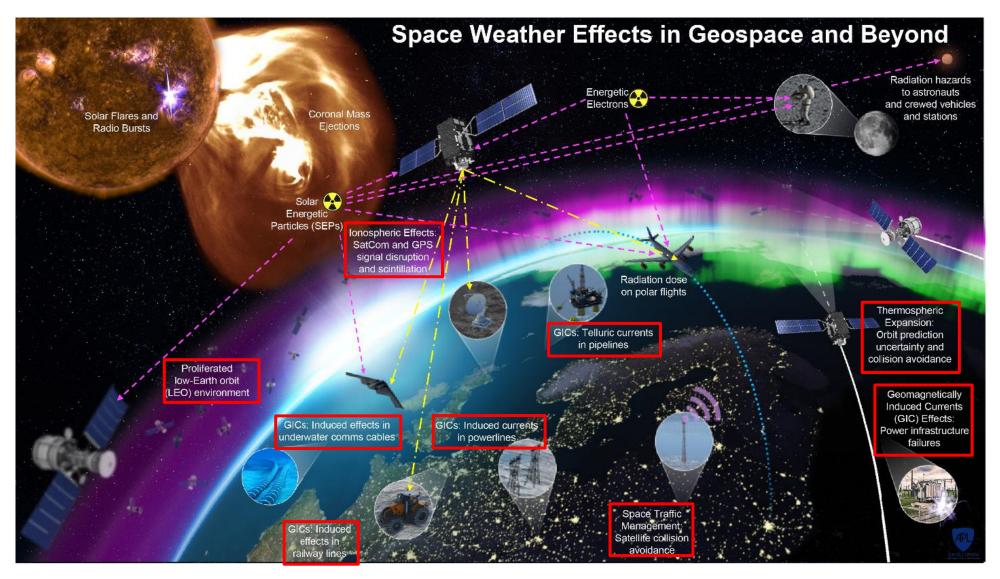
Introduction

 Space Weather Science and Observation Gap Analysis for NASA. Compiled by APL 9/20-4/21

Committee

 Angelos Vourlidas (chair), Drew Turner (co-chair), Doug Biesecker, Anthea Coster, Alec Engell, George Ho, Tom Immel, Catherine Keys, Lou Lanzerotti, Gang Lu, Noé Lugaz, Janet Luhmann, Leila Mays, Paul O'Brien, Eddie Semones, Harlan Spence, Lisa Upton, Stephen White

Ex-officio:


- Jim Spann, Elsayed Talaat, Mike Wiltberger, James Favors,
 Reiner Friedel
- Primarily focused on observation gaps, with emphasis on near-real-time data

https://science.nasa.gov/science-pink/s3fs-public/atoms/files/GapAnalysisReport_full_final.pdf

Space Weather Effects Associated with GDC Science and Observations

- The ionosphere and thermosphere affect many technologies:
- Sat. Tracking
- Sat. Comm.
- Sat. Navigation
- Collision avoidance
- Re-entry
- Power lines
- Undersea cables
- Rail lines

GDC Informs Many Aspects of Space Weather

GDC's Role in Filling Space Weather Gaps

- GDC's ionosphere / thermosphere (IT) science is expected to contribute significantly to improving models and forecasts of IT space weather and its impacts
 - New understanding
 - More "ground truth" data to train and validate models
- GDC's expected real-time downlink was not defined at the time the Gap Analysis was performed, but it can be expected to improve many of the real-time gaps identified in the analysis

Table 2-1. Top-ranked current SWx observation gap categories and corresponding research gaps

Rank	Current Observation Gaps	Research Gaps
1	Solar/solar wind observations, including off-SEL (e.g., Sun–Earth L4 and L5) and beyond 1 AU	SEP occurrence and properties at a given inner heliospheric location; interplanetary (IP) propagation of solar transients (e.g., B _z , time of arrival [ToA])
2	lonospheric key observables	Response to variable solar, solar wind, thermospheric, and magnetospheric conditions; high resolution global state; cross-scale and -altitude dependencies and variability; driving from lower atmosphere
3	Solar wind in peri-geospace (dayside, magnetic local time [MLT]~ 10–14)	Fine-scale structure of solar wind (SW)-transients; spatiotemporal evolution and turbulence
4	Thermospheric key observables	Expansion, heating, and cooling processes over a range of scales (<100 km to global) and altitudes; response to variable solar, ionospheric, and magnetospheric conditions; driving from lower atmosphere
5	Ionospheric D- and E-region EPP and E- and F-region cusp and auroral precipitation	Impacts of energetic particle, cusp, and auroral precipitation on ionosphere—thermosphere system; cross-scale (<100 km to global) and spatiotemporal nature of precipitation and consequences on ionosphere—thermosphere system (e.g., conductivity, heating, chemistry and cooling)
6	Ring current and radiation belt electrons	Role of magnetospheric dynamics, mesoscale injections, and variety of wave-particle interactions acting in concert to shape these trapped energetic particle populations, driving geomagnetic storms and radiation belt enhancements and depletions
7	Plasma sheet electrons and injections/bursts from cislunar into GEO and MEO regions	Nature of kinetic- to mesoscale processes (e.g., reconnection, turbulence) affecting global-scale magnetospheric dynamics and magnetosphere–ionosphere coupling

GDC has much to contribute in the Space Weather observation and research gaps

Observation Parameters and Gap Relationship

2, 5

5

В

Observation rarameters and dap hera					
Instrument	Physical Quantity	Symbol	Supported Gap		
	Thermal Plasma Density	Ne	2, 5		
AETHER	Thermal Electron Temperature	Te	2, 5		
AEINEK	Density Fluctuations	ΔNe	2, 5		
	E-field fluctuations	$\Delta oldsymbol{E}$	2, 5		
	Energy Range (0.01-30keV)		2, 5		
CAPE	Electron Spectra		2, 5		
	Ion Spectra (25eV - 40keV)		2, 5		
	Neutral Wind Vector	U	4		
	Neutral Density	Nn	4		
	Neutral Temperature	Tn	4		
MOSAIC	Neutral Composition		4		
VIOSAIC	Ion Drift Velocity	V	2, 5		
	Ion Density	Ni	2, 5		
	Ion Temperature	Ti	2, 5		
	Ion Composition		2, 5		
ProFile	Slant TEC	sTEC	2, 5		
riorlie	Scintillation	S4, $\sigma_{m{\phi}}$	2, 5		
TD0	Ion Drift Vector	V	2, 5		
	Ion Density	Ni			
TPS	Ion Temperature	Ti			

Ion Composition (major constituents)

Magnetometer

Energetic Particle Flux

Table 2-1. Top-ranked current SWx observation gap categories and corresponding research gaps

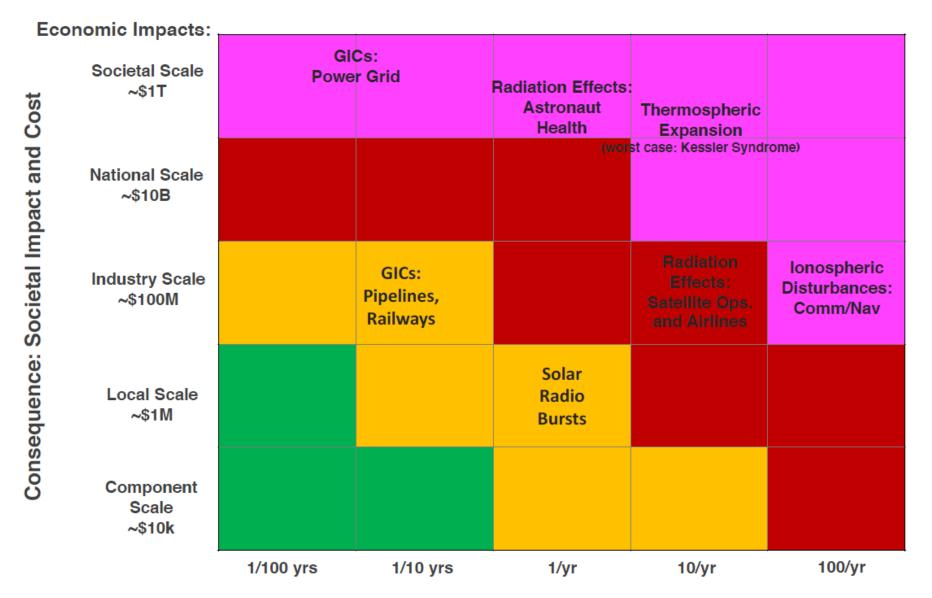
Rank	Current Observation Gaps	Research Gaps
2	lonospheric key observables	Response to variable solar, solar wind, thermospheric, and magnetospheric conditions; high resolution global state; cross-scale and -altitude dependencies and variability; driving from lower atmosphere
4	Thermospheric key observables	Expansion, heating, and cooling processes over a range of scales (<100 km to global) and altitudes; response to variable solar, ionospheric, and magnetospheric conditions; driving from lower atmosphere
5	Ionospheric D- and E-region EPP and E- and F-region cusp and auroral precipitation	Impacts of energetic particle, cusp, and auroral precipitation on ionosphere—thermosphere system; cross-scale (<100 km to global) and spatiotemporal nature of precipitation and consequences on ionosphere—thermosphere system (e.g., conductivity, heating, chemistry and cooling)

NEMISIS

Dosimeter

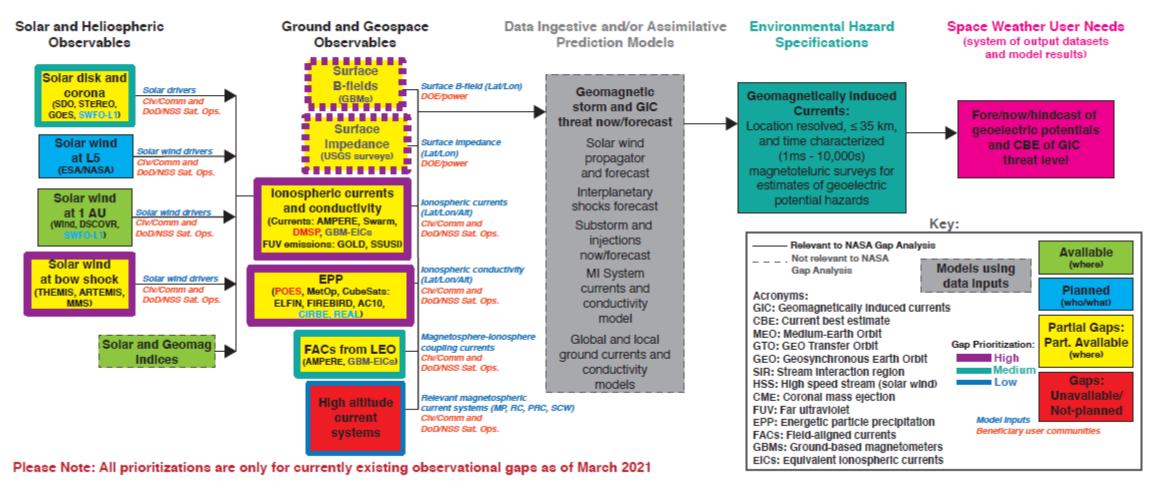
Conclusion

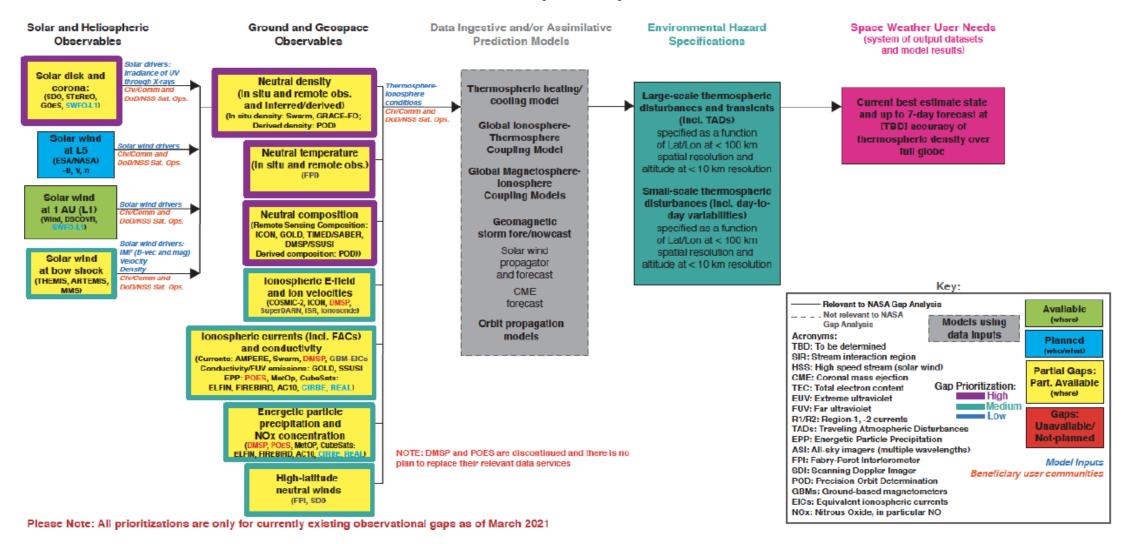
- GDC provides valuable multi-point, globally distributed data to help close ITM gaps
 - 2+ altitudes, 4 orbit planes
 - All sensors besides ProFile will provide data only at s/c altitude (in-situ)
 - ProFile (GPS RO) provides altitude profiles
 - Lead-trail vehicle observations to resolve spatial vs temporal ambiguities
 - Cross-track orbit separation to resolve longitude / local time spatial structures
 - Various configurations over mission
- Gaps that will remain:
 - Continuous global real time coverage of the ITM system (there will presumably be a real-time beacon with some coverage, TBD)
 - Measurement of locally precipitating energetic particles >~40 keV that can affect D and E region ionosphere (dosimeters are not able to resolve this most of the time)



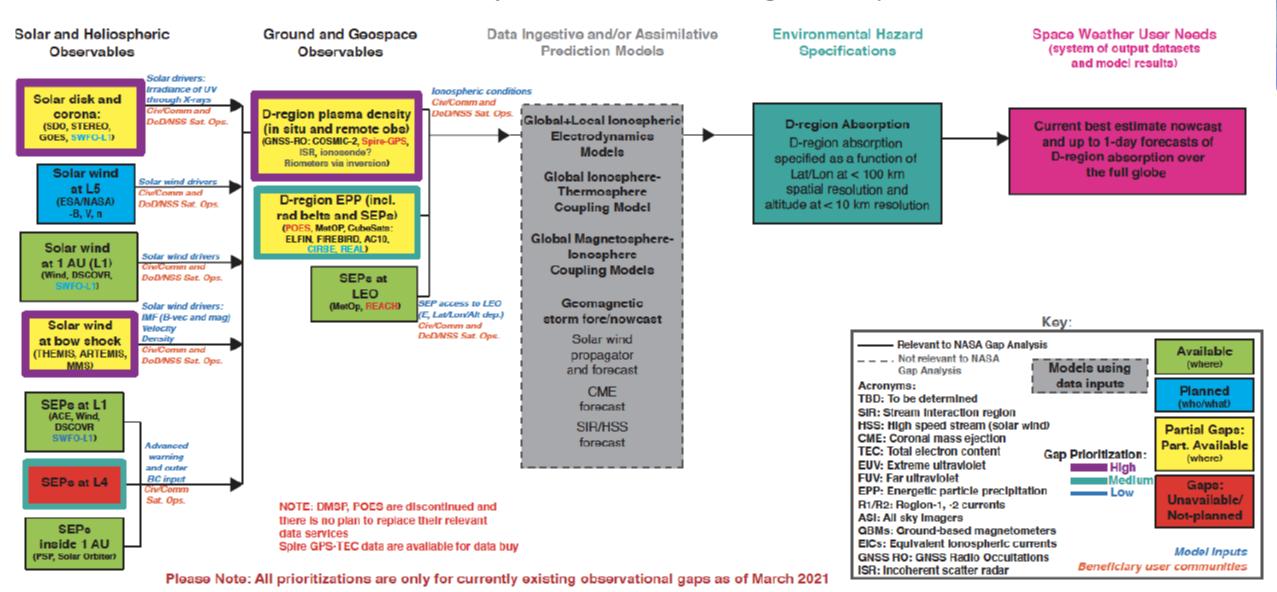
GDC Baseline Science Objectives

GDC Mission Goals	GDC Baseline Science Objectives The GDC Threshold mission is Goal 1, Objectives 1.1, 1.2, 1.3 only		
GDC Goal 1:	Objective 1.1 (High-latitude neutral wind formation and evolution) Determine how high-latitude plasma convection and auroral precipitation drive thermospheric neutral winds.		
(high latitude forcing)	Objective 1.2 (High-latitude plasma density structure formation) Determine how localized, coherent plasma density features arise and evolve.		
Understand how the high-latitude ionosphere-thermosphere system responds to variable solar wind/magnetosphere forcing.	Objective 1.3 (High-latitude neutral density structure formation) Determine how neutral winds, auroral precipitation, and collisional heating drive high-latitude neutral density structures.		
GDC Goal 2:	Objective 2.1 (Pathways for magnetospheric driving of low- and mid-latitude electrodynamics) Determine the relative importance of penetration electric fields and disturbance winds in driving plasma density variations at mid- and low-latitude during geomagnetically active conditions.		
(global processes)	Objective 2.2 (Formation and evolution of propagating atmospheric disturbances) Identify the processes that create and dissipate propagating structures within the ionosphere and thermosphere during geomagnetically quiet and active conditions.		
Understand how internal processes in the global ionosphere-thermosphere system redistribute mass, momentum, and energy.	Objective 2.3 (Drivers of low- and mid-latitude chemical composition changes) Determine the connections between winds and neutral density / composition variations at mid- and low-latitudes during geomagnetically quiet and active conditions.		
	Objective 2.4 (Hemispheric asymmetries) Determine how hemispheric asymmetries in the Earth's magnetic field, seasonal variations, and magnetospheric input affect the ionosphere-thermosphere system.		

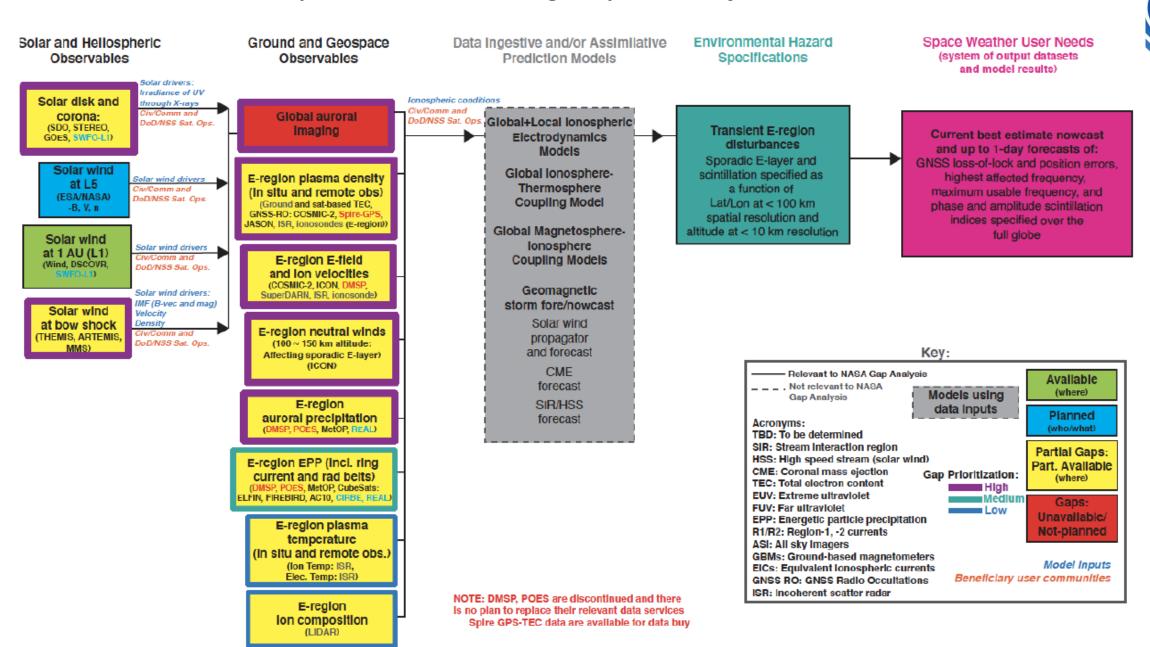



Likelihood: Frequency and Probability of Occurrence

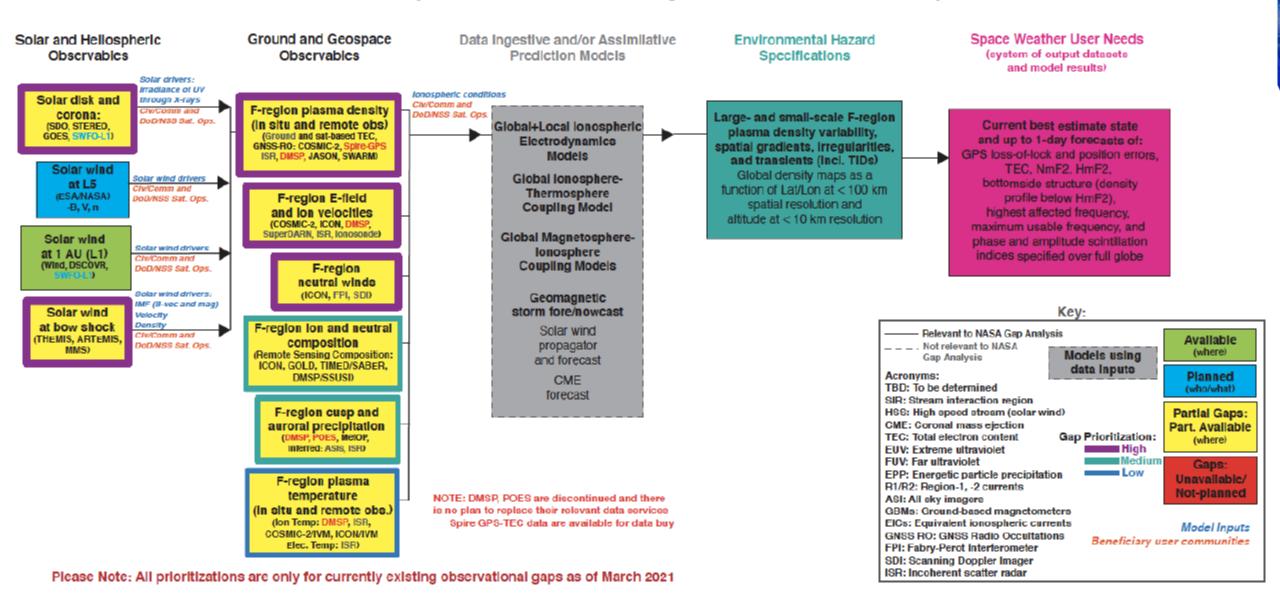
Geomagnetically Induced Currents



Thermospheric Expansion



Ionospheric Disturbances: D-Region Absorption



Ionospheric Disturbances: E-Region Sporadic E-Layer and Scintillation

Ionospheric Disturbances: F-Region Structure and Variability

