# OSSEs – Lessons Learned in the Troposphere

Nikki Privé









### **How NWP Uses Observations**

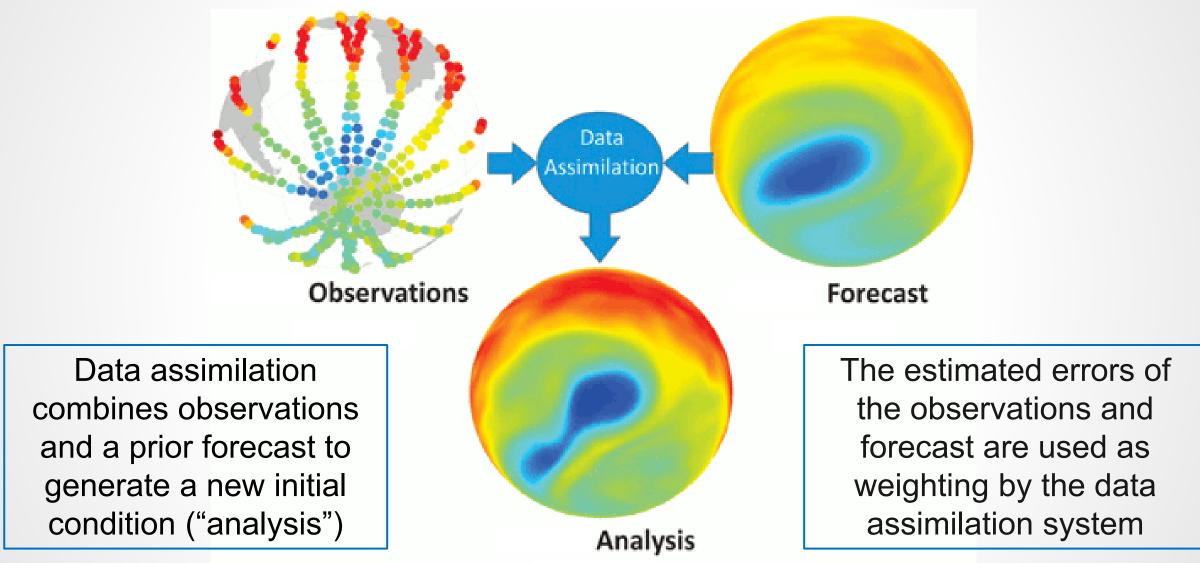
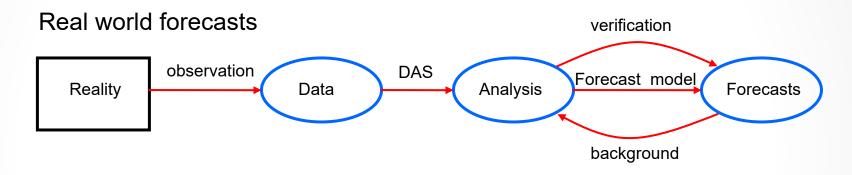
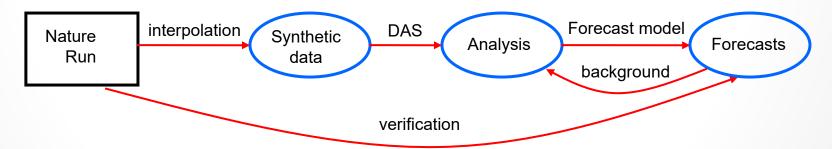




Image: Lahoz, W. and P. Schneider, Front. Environ. Sci., 2014, with permission from the author






#### **OSSEs vs the Real World**



#### **OSSE** forecasts







# Why Do an OSSE?

- 1. You want to find out if a new observing system will add value to NWP analyses and forecasts
  - Most common goal
- 2. You want to make design decisions for a new observing system
  - Can compare many different configurations; determine instrument requirements
  - Early involvement in instrument design process
- 3. You want to investigate the behavior of data assimilation systems in an environment where the truth is known. The availability of a complete true state of the atmosphere allows the explicit calculation of some quantities not possible in the real world:
  - Analysis error
  - Short-term forecast error
  - Efficacy of the data assimilation system





#### When Not to Run an OSSE

- When you can't model the phenomena you are interested in
- When you can't simulate your new observations
- When you can't assimilate your new observations



## **Challenges with Nature Runs**

- Identical or fraternal twins
  - > Same model (identical) or similar model (fraternal) used for the Nature Run as for experiments
  - Lack of model error complicates every aspect of the OSSE process
  - Mitigation: use different model bases and resolutions for the NR and experiment model; use alternative options for parameterizations; Nature Runs as community resources
- Gigantic output files and huge computational resource requirements
  - Need both high spatial and high temporal resolution
  - I/O is the heaviest burden
  - Mitigation: integrate observation simulators into the Nature Run model to reduce I/O and space requirements





# **General OSSE Challenges**

- Results only apply within the OSSE system no concrete connection to the real world
  - ➤ **Mitigation:** validation of the OSSE behavior and performance compared to the real world both overall and specific to the particular experiments at hand
- Observation simulation achieving realism including observation errors
  - Mitigation:
    - 1. Make sure the Nature Run produces realistic fields needed to simulate the observations
    - 2. Use different "operators" to simulate observations than for assimilation
    - 3. Build capability for simulating realistic observation errors
    - 4. New instruments test a range of simulated observation errors and/or observation operators
- By the time the new instrument is deployed, both the global observing network and the forecast models/DAS will be different



