Some personal thoughts on

The next Solar and Space Physics Decadal Survey

Robyn Millan Dartmouth

In a nutshell...

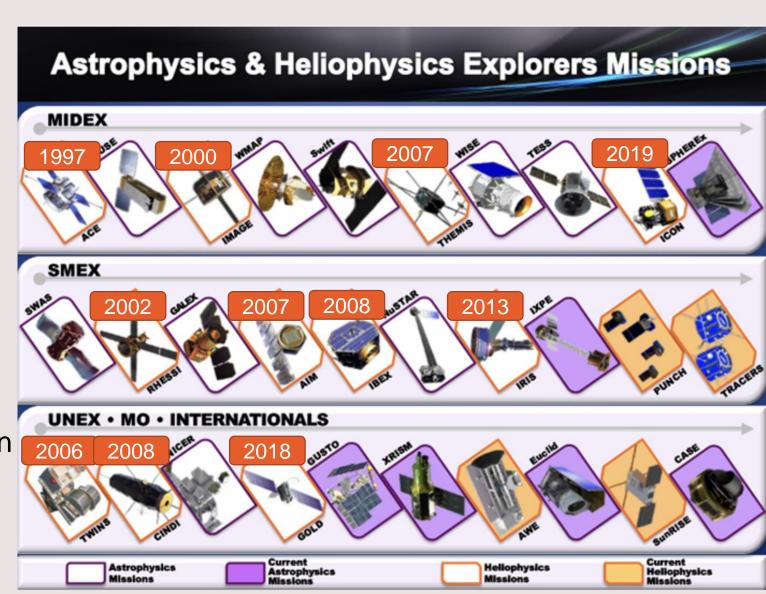
- Every NASA proposal you write must relate your research to the priorities outlined in the decadal survey (DS).
- Every NSF proposal you write must address the scientific merit and broader impacts – powerful to articulate in terms of DS priorities.
- Many of the programs to which you submit proposals were created in response to DS recommendations.
- A lot of the data available to you were produced by missions or facilities that were either directly recommended or selected in response to DS priorities.

Decadal Surveys matter. A lot.

What came out of the last DS?

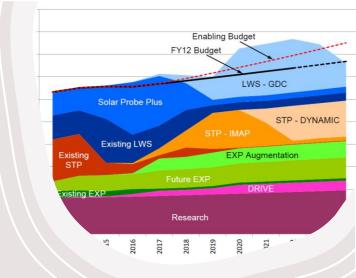
The recommendations of the last DS have shaped many of the programs at NASA and NSF as you know them

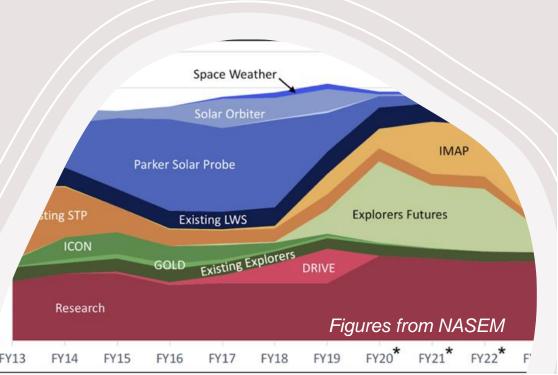
- Diversify, Realize, Innovate, Venture, Educate
 - A framework for organizing R&A programs
 - ~50 percent increase to competed research.
 - Examples:
 - NASA Helio CubeSat program
 - Maintain suborbital cadence
 - H-TIDeS technology development
 - Heliophysics Science Centers
 - NSF midscale project line
 - Mission Guest Investigator programs
- NASA Strategic Missions
 - IMAP under development, PI-led
 - GDC science & tech. definition team
 - DYNAMIC being implemented as MoO


Figure credit: NASEM

What came out of the last DS?

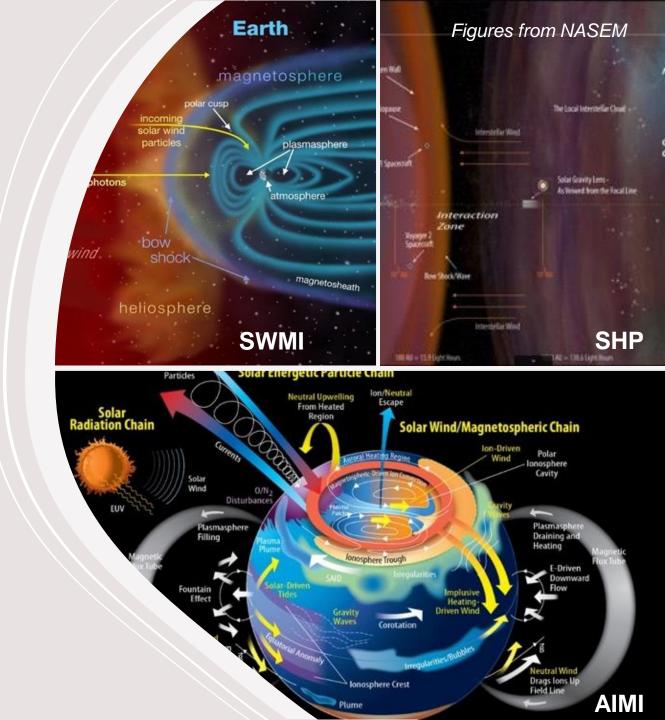
Explorers - a crown-jewel at NASA


"...small to medium sized missions that are capable of being built, tested and launched in a short time interval compared to the large observatories." (GSFC Explorers website)


- At time of last DS (2013), ~5 years between Helio Explorers
- DS recommendation:
 - Increase cadence to 2-3 yrs, restore MIDEX, more MoO's.
- Now: four missions under development and a MIDEX selection soon.

Lessons Learned from 2013 DS

- Some recommendations have unintended consequences
 - LWS vs. STP missions ended up being defined by cost cap as a result of "PI-led" recommendation
- We tried to be realistic and ended up being a bit conservative.
 - We prioritized the things that could be accomplished.
 - We didn't emphasize enough the longer-term goals and how to make progress towards them.
- We have to prioritize because budgets are always limited and always uncertain.



Preparing for the next Decadal Survey

- The midterm assessment outlined some considerations for the next DS:
 - Distinguish STP and LWS programs by their science goals;
 - Consider nominal and optimal budget projections to define decision rules;
 - Consider stretch-goal science objectives and recommendations to advance technologies towards them;
 - Importance of NASA, NSF, and NOAA participation in sponsoring DS and in writing a joint statement of task;
 - Expansion of Heliophysics System Observatory concept;
 - Integrated approach to space weather between agencies;
 - Cross-disciplinary research (exoplanets, astrospheres, etc.);
 - Ways to better support of early career and soft-money scientists;
 - Inclusion of emerging computer, data, and cloud technologies.
 - Community support for NSF Midscale facilities

How will our next DS be structured?

- Any study conducted by the NASEM is defined by the statement of task.
- In 2013, the DS committees consisted of:
 - Steering committee
 - AIMI, SWMI, SHP Panels
 - Crosscutting working groups
- The DS steering committee will decide on the report outline

What if I'm not on the committee?

- Being a member of any study takes a lot of time and involves <u>a lot of writing</u>.
- Early-career scientists should weigh carefully what they will give up versus what they will gain by participating in any community service.
 - Make sure it aligns with your career goals!
- There are many ways to get involved and provide input.
 - Many of you already participated in the Helio 2050 workshop!
 - Write a white paper.
 - Organize a group to write a white paper together.
 - Join an existing group to contribute to their white paper.
 - Participate in town halls.
 - Respond to requests by the DS committee:
 - Fun fact: the midterm assessment had a dedicated email account and solicited ideas and feedback from the community. We received very few inputs!

Will anyone read my white paper?

Yes!

SWMI white paper categorization for 2013 DS

System-Level SWM Physics

Expanding Understanding through comparative magnetospheres

229 22 23 75 **165 103 145** 45

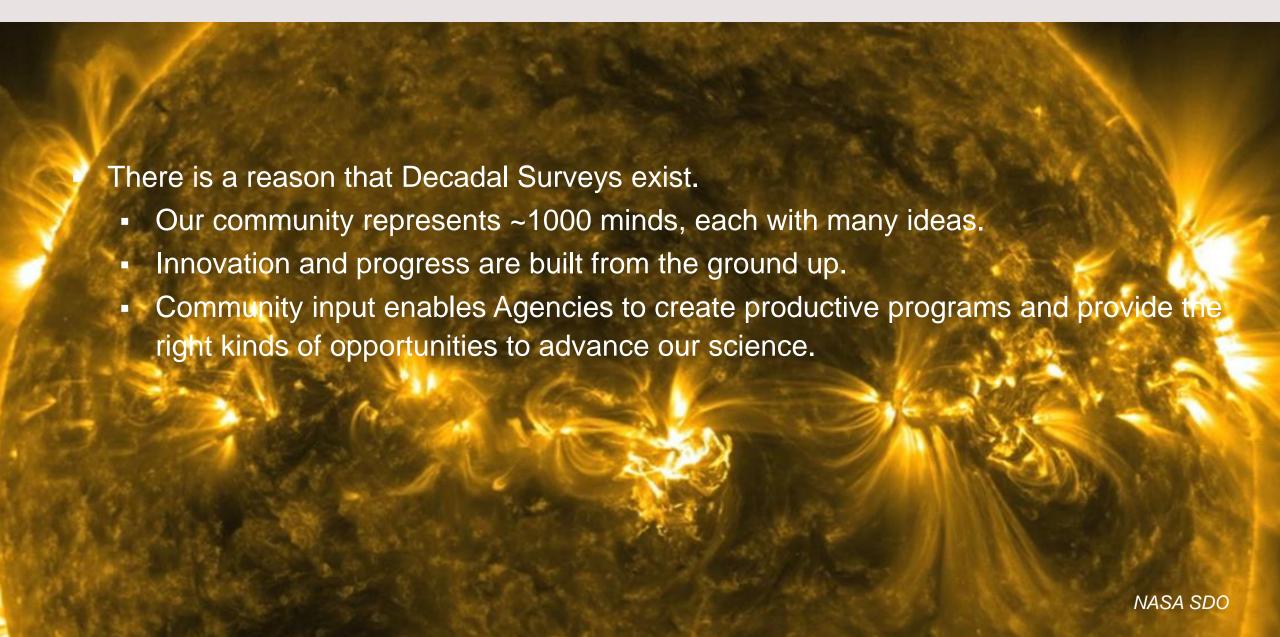
Sources and sinks of particles

Low-E **202 82 147** High-E **62 71 40 78 69** 123

Science that enables space weather forecasting

```
160 239 96 249
```

Fundamental Physical Processes


- Reconnection 126 112
- Particle acceleration
- Turbulence 177
- Wave-particle interactions 16

Cross-scale coupling

140 26

- Plasma entry during northward IMF
- Magnetospheric currents: where do they come from, where do they go?
- HFAs/RDs/etc. impact on SWM coupling
- Deep tail transport
- Extreme forcing events
- Magnetospheric regulation of dayside reconnection rate
- Causes of aurora
- Physics of the magnetosheath

Get Involved!

