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Mars has a thin atmosphere and a so-called
“hybrid” magnetosphere, because it has
properties of both an intrinsic magnetosphere
like Earth (e.g., Mars’ crustal magnetic fields)
and an induced magnetosphere like Venus.
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Due to its weak magnetic shielding, the effects
of space weather at Mars can extend all the way
down to its surface.
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Measurements at Mars




Mars has a long history of space weather observations with
continuous coverage starting in the late 1990s (Solar Cycle 23)

1965 1975 1985 1995 2005 2015 2025

— * -
= P P oG Ag &=
= > {
_ il >

23 A & - i N

% o ]
sty B0, .

a

TR
. e

.

Mariner Mars 2,3,5 Phobos 2 Mars Odyssey Mars Curiosity MAVEN InSight
4.6,7,9 Global Express

Surveyor (MEX)
B operational (MGS)

Perseverance
(July 2020 - to date)



These observations spans two+ solar cycles
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MGS “measured” the IMF direction and solar wind pressure
upstream from the bowshock, even though its orbit did not go
outside of the bowshock and it was not instrumented to
measure ions
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More than 20 years of upstream solar wind observations
have been made by the Mars Express ASPERA-3 lon
Mass Analyzer (MEX/IMA)
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Solar Irradiance
Instrument: EUVM

GCR background
SEP

Energetic lons
SEP

Energetic Electrons
SEP

Solar Wind Velocity
SWIA

Solar Wind Density
SWIA

Solar Wind Pressure

IMF

Adapted from MAG

Lee+(JGR, 2017)

5
A
55F 3L
®BE 1+
EE oL

................................................................................

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

_‘
2 Lo

GCR
count rate
(s

-------------------------------------------

_‘
el NN
8 “S o o

SEP
ions
(kev)

Q
O

SEP
electrens
(keV)

1000
2 800
—

Zg 600
Lx 400

200
- 20
E =i~ [2l4]
=%t 40
o oY
o 20
0 4]

25
o 20
Eag 1o
e g.o 10
o ol
4]
25
20
suf 15
8Z< 10
5
Q

2014

2017

2018

2019

2020

2021

& o
cm® keV)

N

Q0 00 DODD Q0 0o
O - - R W W
keV /(s sr

2020




Solar Energetic Particles (SEPs) have .
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Since mid-2012,
charged particle
radiation from SEPs
and GCRs have
been directly
measured at the

surface by
MSL/RAD
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Impacts and Effects of Space Weather at Mars
During Solar Cycles 23 and 24




The Martian ionosphere and thermosphere respond to
energetic photons from solar flare events

MGS: lonospheric response to an X14.4 (left) and and
M7.8 flare (right) during Cycle 23 maximum phase
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MAVEN: Thermospheric response to an X8.2
flare during Cycle 24 declining phase
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During CME and SIR/CIR events, the hybrid-magnetosphere

of Mars gets compressed

MEX observations during Cycle 23/24

minimum phase

MAVEN observations during Cycle 24
late-maximum through declining phases
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MEX observed “discrete” aurora over Martian crustal magnetic fields

MEX UV observations (X) over crustal magnetic field

MGS observed accelerated

Radial component of the crustal magnetic field (nT) i I .
me ';1 » electron distributions during the
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MEX observed “discrete” aurora over Martian crustal magnetic fields,
which coincided with observations of SEPs

é

MGS observations during
Cycle 23 max phase

MmM

energetic auroral-like
electron distributions

A

o 10000E
S -
» 1000
®© —
o -
c -
& 100 =
L —
(7)) —
§ 10 =
> -
» -
o 1
o =
Month Jul
1999

Jan
2000

Jul

Jul

Brain+ (2011)

(

Om IIIIII| 1 111 ] !IIIIIII ] IIIIIII| AT
:3

N

AAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAA

200
Solar Longitude (*®)




MAVEN observations of global “diffuse” aurora during SEP events of Cycle 24

Martian Aurora Triggered By The 10 Sept 2017 Solar Event

Before event i Event peak
9 Sept 2017 13 Sept 2017
08:27 UTC 05:34 UTC

Schneider+ (GRL 2018)



MAVEN observations of global “diffuse” aurora during SEP events of Cycle 24

Martian Aurora Triggered By The 10 Sept 2017 Solar Event
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The diffuse aurora was observed to correspond with SEP electron events, but recent modeling studies
indicate that SEP protons may play an important role (Nakamura+, JGR 2021).



Radar blackout events during SEP activity

« SEPs are the most intense source of ionization
at low altitudes.

« MEX MARSIS and MRO SHARAD conduct
radar sounding of the Mars ionosphere.

* Observations show extended periods of radar
blackouts that lasted up to 10 days during
the Sept 2017 SEP activity (Sanchez-Cano+,
JGR 2018).

« High-energy electrons created a dense, global
layer of ions and electrons at ~90 km, which
attenuated radar signals and thereby
prevented MARSIS from receiving any surface
signal.

« While SEP electrons are understood to be the
source of the attenuations, the importance of
energetic protons remains unclear.
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Cycle 24: Combined observations i F°
from MAVEN, MEX, and MSL E“ me mmi
together with solar wind modeling °° o =
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Higher energy SEP protons
penetrated down to the surface
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This was the largest surface enhancement observed by MSL/RAD during Cycle 24
since its arrival to Mars in 2012 (Ehresmann+; Zeitlin+ GRL 2018)
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Enhancement was balanced out by a very deep Forbush-like decrease when the
ICME impacted Mars (Guo+, Space Weather, 2018)



Radiation Shielding by
Natural Terrain on Mars

« Whenever Curiosity drives close to a
mountain, cliff side, or through a narrow
pass, RAD can observe a decrease in
radiation dose (Ehresmann+, JGR
Planets, 2021).

« This is due to the rock features blocking
out part of the sky and shadowing RAD
from the incoming GCR radiation.

« RAD has observed ~10 instances of the
shielding effect so far, and the observed
dose decreases range from a few
percent to ~15% depending on the

Dose Rate [ uGy / day |

and the : Sl/RAD team

amount of sky blocked (Ehresmann+, Wlth que Stl.nS

manuscript in preparation) 3310 3315 3320 3325 3330 3335 3340
Sol

Slide content courtesy of B. Ehresmann (SwRI)



Effects of atmospheric dust loading on the
radiation environment

* Modeling by Norman+ (JGR 2014) revealed:

For the GCR environment
- Dose rates (in tissue) as a function of altitude were found to
be very flat, i.e., very little altitudinal variations
- Variation in the surface dose rate was very small, < 0.1%

For the SEP environment

- Dose rates as a function of altitude were not flat

. Effects were dependent on both the spectral hardness of the
event and the integral fluence

. Effects on surface dose rates were moderate for the 1989
events, with < 10% variation

- Variation ranged from 8% to 26% (minimum atmospheric
depth vs maximum depth) for the Carrington event, which
had larger integral flux and softer spectrum compared to the
1989 events

« MSL/RAD observations showed that the 2018 global

dust storm had no notable effects on the surface dose
rates (Guo+, Astron Astrophys Rev 2021)

200
150

100

Altitude (km)

50

Norman+
(JGR 2014)

+ Curiosity location
* MY24 dust conditions (MGS
period w/o global storm)

1

— Carrington
— Sept. 1989
— Oct. 22 1989

— Oct. 24 1989
Oct. 1989 5 min

197 16" 10° 10% 10*102 10"
Dose Rate (mGy/day)

0 A 2
—L()Yll?’ls 7_011“1'1 7_015|5|3 2016|X°ﬂ 1013|3I7' 1019|3

9
[\ 102—3_|l113

—4— Avg. doseE
350{ —4— 1000*|«|

N N w
o w o
o o o

g. doseE [uGy/d] or 1000 * || [uGy/d/Pa]
G
o

Z 100

A

I~ i ‘
% A i 4 (1
Rl "‘ r i by ’ b o ’v" i
"":II!"'* T s
4 1N R 800 >
g ] e
R w. 5

1100
—4— Avg. pressure

—4— Avg. ®
1000

>
900 =

700 E

' RN (T *J«
T h I
* ?il ’n 5
3 / 600 2
Nl \/ o
) o
o w‘ 500 %
" y <
' ’ 400
MY31 MY32 MY33 MY34 MY35
0 500 1000 1500 2000 2500 3000

Guo+ (AAR 2021)

Time since landing [sol]



Atmospheric escape rate at Mars can increase by an
order of magnitude during extreme solar storm events

Typical Conditions Extreme Conditions




MEX observed increases in ion escape during CME and
CIR/SIRs events

During an ICME event of Cycle 23
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MAVEN observed increases in the ion and neutral escape rates
during a CME event
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Table 2. Variability of dayside H escape flux during the September 2017 solar storm.

Date MAVEN Orbit, Tn(K)at [ H Density (cm3) at H Escape Flux
in 2017 echelle segment exobase (atoms cm2s1)
Dayside TN
Aug 315t 5660, inbound disk 200 1.2 + 0.1 x10° 3.9+ 0.4 x107 \
Sep 8th 5706, inbound disk 230 1.1 + 0.1 x10° 8.2 + 0.7 x107
Sep 11th 5722, inbound disk 280 0.9 +0.2 x10° 20+ 0.4 x107 /
v

Mayassi+ (2018)
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! How has Mars been responding
to Cycle 25 activity?

This is an exciting time for studying space
weather at Mars, especially since solar max
is happening concurrently with the Mars

dust storm season. .

Duststom._ | Cycle 25 will provide opportunities to further
N4 study and analyze space weather impacts
and effects observed by multiple Mars
missions, in orbit and at the surface, current|
and future.
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Image credit: Mars Climate Datab/}j,e



Total electron content (TEC) observations at
the dayside ionosphere (80-300 km) during

ICME/SIR events + dust storm activity

MAVEN Radio Occultation Science Experiment
(ROSE) observations were used to examined the
response of the Martian ionosphere to ICMEs and
SIRs during dust storms (M. Felici+, Icarus 2024)

Increase in TEC up to 2.5x10" m-2 in the
ionosphere following an ICME/SIR impact,
indicating higher ionization of the neutral
atmosphere

Increase in TEC is higher, up to 5x10'> m-2 when
a dust storm was happening concurrently
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SSSSSSSSS
Solar 4 6 .

b

1 particles

o

The peak altitudes of the M1 and M2 .g;;;a—"J ! i & ]

ionospheric layers loft together, .
suggesting that the thermosphere
might loft as a unit by the dust storm 1,
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(left) ROSE electron density profiles and (right) ROSE
profiles of the highest increase in TEC (purple) compared
to the baseline (photochemically produced ionosphere)
profiles (green). Adapted from Felici+ (2024).



Mars experienced some of the most exciting space
weather activity during May 2024

NASA Watches Mars Light Up
During Epic Solar Storm

The specks in this scene were caused by charged particles from a solar storm hitting a @ > . . .

aaaaaaa board NASA's Curiosity Mars rover. Curiosity uses its navigation cameras to try and The pu rple Color |n thls Vldeo ShOWS au roras On Mars,
capture images of dust devils and wind gusts, like the one seen here.

NASA/JPL-Caltech

nightside as detected by the ultraviolet instrument aboard
NASA’s MAVEN orbiter between May 14 and 20, 2024. The
brighter the purple, the more auroras that were present.

see https.//www.nasa.gov/solar-system/planets/mars/nasa-watches-mars-light-up-during-epic-solar-storm/ 31



Mars experienced some of the most exciting space
weather activity during May 2024

NASA Watches Mars Light Up
During Epic SOIar storm MSL/RAD DOSSoels rate on MarS
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The specks in this scene were caused by charged particles from a solar storm hitting a >
aaaaaaa board NASA's Curiosity Mars rover. Curiosity uses its navigation cameras to try and

capture images of dust devils and wind gusts, like the one seen here. 20th’ aSSOClated Wlth the X-CIaSS ﬂare and CME aCthlty that

Largest dose rate enhancement was observed starting on May

NASA/JPL-Caltech

occurred on the solar farside. Figure courtesy of B. Ehresmann and
D. Hassler (SwRI).

see https.//www.nasa.gov/solar-system/planets/mars/nasa-watches-mars-light-up-during-epic-solar-storm/ 32



If astronauts had been standing next
to NASA's Curiosity Mars rover at
the time, they would have received a
radiation dose of 8,100 micrograys,
equivalent to 30 chest X-rays.




Disappearing Solar Wind Event at Mars

« Solar wind proton densities drop below 0.1 particles/cm3, lasting ~1 day

i Halek JGR, 2023
« Dayside ionosphere was observed outside the typical bowshock alekas+ ( )
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Drastic changes in the upstream solar wind conditions changed
the state of the solar wind-Mars interaction on timescales of less
than 4.5 hours (one MAVEN orbit) (Fowler+, JGR 2024).

MAVEN observations showed that the

ionosphere “pushed out” against the

solar wind, expanding thousands of
kilometers above it’s typical extent.

The ionospheric thermal pressure was

able to drive this expansion because
the solar wind density (and associated

dynamic pressure) was so low.

The system returned “to normal” in
tandem as the solar wind density

MWN alt

recovered. MVN alt

MVIN SZA 87.3 1231 161.6
hhmm 1130 1200 1230
2022 Dec 26

1Bl



Monitoring and forecasting
Mars space weather conditions
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Future operational needs in support of human

exploration and infrastructure at Mars

Current ‘forecasting’™ for Mars missions operations

relies heavily on real-time/beacon information from
Earth (ACE, SDO, SOHO) and STEREO-A

*Mars SWx Alert Email Notification (MAVEN mission activity)

Mars in solar conjunction: If a strong Mars-directed

space weather event occurs, assets near Earth or
at STEREO-A might not observe the activity (in
time, or, if at all). Also, direct communication
between Earth and Mars is not possible until Mars
exits conjunction.

Setting up a Mars L1 monitor will be an integral
part of a space weather hazard forecasting and
mitigation system. The monitor can be a relay that
serves as the backbone to the Earth
communication infrastructure.

2021-10—-10T05:00

O Earth @ Mars © Mercury ® Venus < Bepi
B Sterec_A M Stereo_B €pOSIRIS—REx B ParkerSP @ Sol0

Ecliptic Plane 208902 LAT = 2.01°
19 22

- -

-
_____

3D IMF line

IMF polarity Current sheath
— I +

RZ N (cm™)

a 0 20 30 40 &80 &0
ENUL—2.7 lowres—2249—a3b1f WSA V2.2 GONGZ—2249

(above): WSA-Enlil simulation snapshot from
NASA/CCMC/M2M for a recent period when Mars
was in solar conjunction, i.e., eclipsed by the Sun
from the Earth vantage point.



Mars Space Weather Collaboration

A close partnership to develop near-real time analysis tools for Mars Space Weather
(in support of Earth-Independent Operations)

POCs: Phil Chamberlin (and Gina DiBraccio)

Mars Atmosphere and
Uolatile Evolution Mission




NASA

Establishing the collaboration

Goal: Bring community together to create Mars space weather resources and tools that
are crucial for human and robotic exploration

« Created a working group with key personnel from MAVEN/M2M/CCMC in mid-2021
« Currently adding relevant and interested teams as we grow (SRAG, MSL/RAD, etc)

MAVEN observations inform CCMC models and M2M near-real time forecasts

« Confirm whether forecasted events have impacted Mars

« Validate arrival times of observed events (CMEs, SEPs, etc)
M2M & CCMC provide support for understanding Mars-direct events observed by MAVEN

« Simulations and forecasts help to understand timeline of events and provide global context

« MZ2M notifications provide alerts to Mars missions for potentially-impacting events
Creating valuable resources for the Mars space weather community

« Mars Space Weather Dashboard has been established on CCMC’s iSWA

« CCMC is directly pulling relevant MAVEN data products

« This is a test case for other potential users (e.g., SRAG , SWPC)
40



Mars Space Weather Dashboard

MAVEN data are available on CCMC'’s integrated Space Weather Analysis System (iISWA)

Mars tab now available
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