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Surface Interaction
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Lunar Wake

Magnetic Field
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Plasma Source
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Dust: Observations
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Dust: Physics

Plasma with Plasma
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Plasma Interactions
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Planetary Decadal

<> Q5.2b What processes control the origin and evolution of magnetic fields?

- Q5.5a How do space weathering processes modify surface characteristics and
composition?

- Q6.1d What role does the space environment play in forming and liberating the
volatiles contained within surface bounded exospheres?

- Q6.3g What controls the transport and sequestration of volatiles in solid-surface
exospheres?

- Q6.5d How do magnetic fields influence the loss of volatiles from objects with
surface boundary exospheres?

- Q6.5e How is the escape of volatiles from the Moon, Mercury, and other bodies
with surface boundary exospheres driven by photon, charged particle, and
micrometeorite influx?
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Heliophysics Decadal

<> Science Theme: New Environments: Exploring our Cosmic
Neighborhood and Beyond

« What can we learn from comparative studies of planetary systems?
* Interactions of plasmas with solid body surfaces and atmospheres

> B.4.2. Emerging Opportunity 2

» Leverage upcoming opportunities through the lunar, Mars, and
planetary exploration programs to enable cross-cutting solar and
heliospheric research from emerging platforms and unique
environments

« References 2007 Report: “Heliophysics Science and the Moon” heavily
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Moon to Mars

- LPS-2: Advance understanding of the geologic processes that affect
planetary bodies by determining the interior structures, characterizing the
magmatic histories, characterizing ancient, modern, and evolution of
atmospheres/exospheres, and investigating how active processes modify
the surfaces of the Moon and Mars.

- LPS-3: Reveal inner solar system volatile origin and delivery processes by
determining the age, origin, distribution, abundance, composition,
transport, and sequestration of lunar and Martian volatiles.

> HS-3: Investigate and characterize fundamental plasma processes,
including dust-plasma interactions, using the cislunar, near-Mars, and
surface environments as laboratories.
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Why Humans?

> Sample return — duh!

- But also:

- Humans have the ability to quickly set up complex monitoring
equipment, react in real time to measurements obtained and
environmental conditions, and move equipment to different locations
based on local surveys

- Keep in mind that local magnetic fields (and thus plasma properties)
are likely to vary on scales of 10s to 100s of m

* These fields cannot be measured from orbit, and are difficult to measure from a
robotic platform
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