

Multi-sectoral engagement in the COVID-19 outbreak response in Thailand

DR. SUPAPORN WACHARAPLUESADEE

Thai Red Cross Emerging Infectious Diseases Health Science Centre & WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, THAILAND, Email: spwa@Hotmail.com

WORKSHOP ON SYSTEMATIZING THE ONE HEALTH APPROACH IN PREPAREDNESS AND RESPONSE EFFORTS FOR INFECTIOUS DISEASE OUTBREAKS: The National Academies of Sciences, Engineering and Medicine, FEBRUARY 23-25, 2021

COVID-19

"Early detection"

DISCOVERY

LAB NETWORKING

- Department of Disease
 Control
- Department of Medical Science
- Thai Red Cross &
 Chulalongkorn University

"Control"

Diagnostic lab network

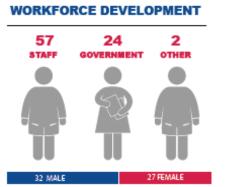
- Reference laboratories (DMSc, TRC, Universities)
- Public Health laboratory (provincial level)
- Private laboratories

"Response"

Research & Development

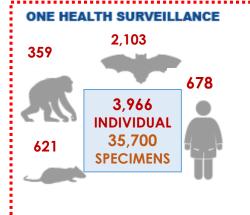
- Capacity strengthening (Research study; USAID PREDICT, DTRA, etc.)
- Surveillance for SARS-CoV-2 Variants (MOPH, Private hospitals)
- Origin of SARS-CoV-2 (DNP, Kasetsart University)

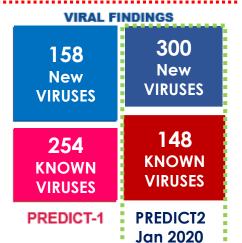
The EID's Challenge


Building capacity to prevent pandemics using a One Health approach.

Pre-empt or combat, at their source, the first stage of emergence of zoonotic diseases that pose a significant threat to public health (potentially pandemic infections)

THAILAND:2010-2019




IMPACT

42,610 TESTS WHO-CC VIRAL ZOONOBES GHULAL ORIGORIN UNIVERSITY

59 trained in One Health skills 3,966 individuals sampled (678 humans and 3,288 animals) 42,610 test for 12 viral families 448 viruses detected

www.predict.global

Diversity of coronavirus in bats from Eastern Thailand Virology Journal, 2015

Diagnostic Approach (PREDICT Project)

PCR: primers = key

Specific vs Consensus Primers

Traditional PCR

Exclusive amplification and detection of one specific pathogen

Consensus = Degenerate

Broad amplification of multiple, genetically related including previously unidentified pathogens

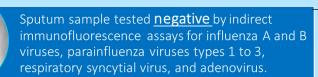
Family-wide PCR

Known and New detection

PREDICT Thailand: Virus finding in wildlife Influenzas Paramyxoviruses Chaerephon (bats) 3.3% (2787) 0% (1773) 0% (1773) 0% (1773) 0.5% (1773) Cynopterus (bats) 6.7% (30) 0% (20) 0% (20) 0% (20) 0% (20) 0% (12) 0% (12) Eonycteris (bats) 12.9% (62) 0% (12) 0% (12) 9.9% (71) 0% (35) 0% (35) 0% (35) 0% (35) Hipposideros (bats) Miniopterus (bats) 10.7% (28) 0% (15) 0% (15) 0% (15) 0% (15) Myotis (bats) 4.5% (22) 6.8% (2298) 0% (1498) 0% (1498) 1.6% (1598) Pteropus (bats) 0% (1498) 0% (2) Rousettus (bats) 0% (7) 0% (2) 0% (2) 0% (2) Taphozous (bats) 0% (26) 0% (153) 0% (102) 0% (102) 0% (102) 0% (102) Canis (carnivores) Felis (carnivores) 0% (156) 0% (104) 0% (104) 0% (104) 0% (104) 0.5% (216) 0% (144) 0% (144) 0% (144) bos (cattle/buffalo) 0% (144) Capra (goats/sheep) 0% (60) 0% (60) 0% (60) 0% (90) 0% (60) Macaca (non-human primates) 0% (896) 0% (556) 0% (556) 0% (548) 0% (556) 0% (116) Bandicota (rodents/shrews) 0% (190) 0% (125) 0% (125) 0% (125) Berylmys (rodents/shrews) 33.3% (6) 0% (4) 0% (4) 0% (4) 0% (4) Chiropodomys (rodents/shrews) 0% (3) 0% (2) 0% (2) 0% (2) 0% (2) Leopoldamys (rodents/shrews) 1.6% (61) 0% (42) 0% (38) 0% (42) 0% (42) 2% (51) 0% (34) Maxomys (rodents/shrews) 0% (32) 0% (34) 0% (34) Mus (rodents/shrews) 9.2% (87) 0% (58) 0% (55) 0% (58) 1.7% (58) Niviventer (rodents/shrews) 4.8% (21) 0% (14) 0% (13) 0% (14) 0% (14) 0% (879) 0.6% (879) Rattus (rodents/shrews) 3.3% (1317) 0% (848) 0% (879) 0% (16) Unknown (rodents/shrews) 0% (27) 0% (9) 0% (16) 0% (16)

FIGURE 2. Heatmaps providing a summary of sampling effort and detection of positives for the five priority viral families: coronaviruses, filoviruses, flaviviruses, influenzas, and paramyxoviruses. The data are summarized by host at the genus level, and broader taxonomic groups are shown in parentheses. The heatmap data show the percentage of viral positives that were confirmed by sequencing (%) and the number of PCR tests performed (in parentheses). The red color scales with increased viral positives. Host taxa or interfaces that did not test positive are shown in white.

DISCOVERY

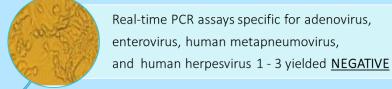

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia

Ali Moh Zaki, M.D., Ph.D., Sander van Boheemen, M.Sc., Theo M. Bestebroer, B.Sc., Albert D.M.E. Osterhaus, D.V.M., Ph.D., and Ron A.M. Fouchier, Ph.D.

Take lessons from MERS-CoV discovery 2012.



Known testing

- Virus isolation positive: LLC-MK2 and Vero cells resulted in cytopathic changes suggestive of virus replication: POSITIVE
- Indirect immunofluorescence assays for the detection of influenza A and B viruses, parainfluenza viruses types 1 to 3, respiratory syncytial virus: NEGATIVE

NEGATIVE

Family-wide PCR assays
Paramyxoviruses:
NEGATIVE
Coronaviruses: POSITIVE

January 2020

Lab network-flow to identify first COVID-19

Known Respiratory
Pathogens x33

DDC: Bamrasnaradura Infectious Diseases Institute

TRC-EID & DMSC LABS

Novel and Known testing

TRC-EID

-Viral Family PCR: Corona & Influenza

-Next Generation Sequencing

Developing and evaluating specific diagnostic assays
At TRC-EID & DMSC

2019-nCoV Real-time PCR

Zaki et al. N Engl J Med. 2012 Nov 8;367(19):1814-20.

ISCOVERY

Timeline of Viral Discovery-Thailand

KEY: Information sharing

8 Jan 2020

Specimens tested with

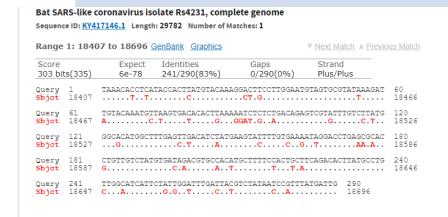
Viral Family PCR assays

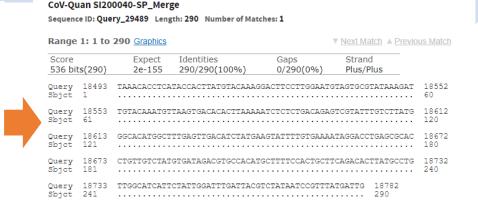
PCR positive for CoV

9 Jan 2020

Sequencing: 83-90% identity to

Bat SARS like Coronavirus


(No Hu-Wuhan CoV sequence available)


11 Jan 2020

Re-analysis with

Wuhan Human CoV:

100% identity (290 bp)

Service laboratory

- 224 Laboratories in 76 provinces (TAT 24 hr.)
- Standard Real-time PCR in enhanced BSL2 Lab
- Rapid Real-time PCR Assay (airport)
- High throughput real-time PCR
- Multiple genes target

Standardization: DMSc

- Diagnostic commercial kit (with Thai FDA)
- Service laboratory

Surveillance for SARS-CoV-2 Variants

Lineage	Total	Organization	Lineage	Total	Organization
Α	1	MOPH	B.1.177	2	MOPH/Private
A.6	32	Chula/Private/MOPH	B.1.177.7	3	MOPH
В	12	MOPH	B.1.1.212	1	Airport DDC
B.1	25	Chula/Private/MOPH	B.1.2	1	MOPH
B.1.1	21	Chula/Private /Airport DDC	B.1.275	1	Airport DDC
B.1.1.1	3	MOPH	B.1.348	1	Chula
B.1.1.10	2	Chula	B.1.351	7	Airport DDC
B.1.1.130	1	MOPH	B.1.36	2	Chula
B.1.1.189	1	Airport DDC	B.1.36.13	1	Chula
B.1.1.214	1	MOPH	B.1.36.16	49	Chula
B.1.1.303	1	Airport DDC	B.1.5	5	Airport DDC
B.1.1.312	1	MOPH	B.1.8	1	MOPH
B.1.1.7	9	Private/Airport DDC	B.39	1	MOPH
B.1.1.70	2	MOPH	B.4	2	Chula/MOPH
B.1.158	1	Airport	B.40	1	Chula
B.1.160	2	MOPH	B.6	2	Chula

Updated 22 Feb 2021

Multi-partners: Department of Disease Control (Airport and State Quarantine) Thai Red Cross - Private hospitals – International partners

First B.1.351 from State Quarantine

Virus detail

Virus name: hCoV-19/Thailand/CU-SI2105809-NT/2021

Accession ID: EPI_ISL_981004

Type: betacoronavirus

Clade

PANGO Lineage B.1.351 (version: 2021-02-11)

AA Substitutions Spike A701V, Spike D614G, Spike E484K, Spike K417N, Spike N501Y, E P71L, N P13S, N T205I, NSP3 K837N,

NSP5 K90R, NSP5 M17I, NSP6 F108del, NSP6 G107del, NSP6 S106del, NSP12 P323L

Passage details/history: Original

Sample information

Collection date: 2021-02-03 Location: Asia / Thailand

Host: Human

Additional location information: Travel history from Arusha, Tanzania and detected on day 5th after arrival in a state quarantine facility.

Gender: Male Patient age: 41

Patient status: Severe symptoms with underlying asthma and hypertension

Specimen source: Nasopharyngeal swab and throat swab

Additional host information:

Outbreak:

Last vaccinated:

Treatment:

Sequencing technology: Illumina MiSeq

Assembly method: DRAGEN RNA Pathogen Detection

Coverage: 41

Comment: Long stretches of NNNs (8.85% of overall sequence). Gap of 9 nucleotides when compared to the reference

sequence

Institute information

Originating lab: Thai Red Cross Emerging Infectious Diseases Health Science Centre, Chulalongkorn Hospital, Faculty of Medicine,

Chulalongkorn University

Address: Rama4 Road, Patumwan, Bangkok, Thailand 10330

Sample ID given by the sample

provider:

Submitting lab: Thai Red Cross Emerging Infectious Diseases Center and Faculty of Medicine, Chulalongkorn University

Address: Rama4 Road, Patumwan, Bangkok, Thailand 10330

Sample ID given by the SI2105809-NT

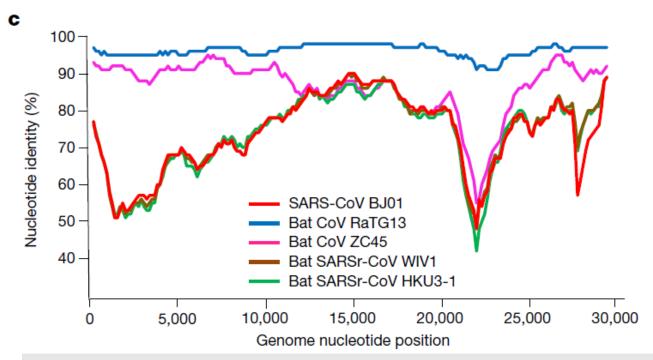
submitting laboratory:

Authors: Rome Buathong, Wichai Thanasopon, Sopon Iamsirithaworn, Opass Putcharoen, Sininat Petcharat, Yutthana

Joyjinda, Weenassarin Ampoot, Apaporn Rodpan, Thiravat Hemachudha, Supaporn Wacharapluesadee

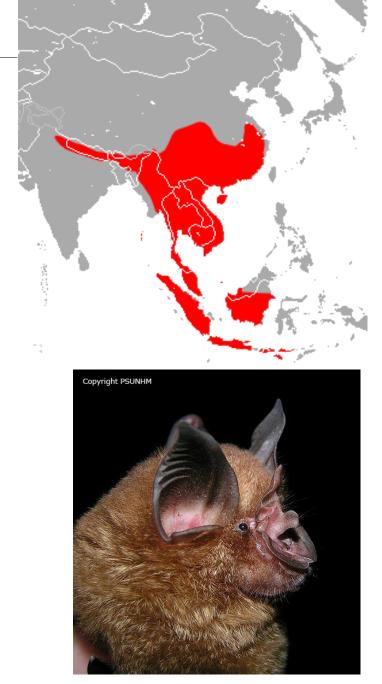
Submitter information

Submitter: Wacharapluesadee, Supaporn


Submission Date: 2021-02-12

BATVARIANTS

Article


A pneumonia outbreak associated with a new coronavirus of probable bat origin

Similarity plot based on the full-length genome sequence of 2019-nCoV WIV04. Full-length genome sequences of SARS-CoV BJ01, bat SARSr-CoV WIV1, bat coronavirus RaTG13 and ZC45 were used as reference sequences.

RaTG13: 96 % nucleotide identity to human SARS-CoV-2

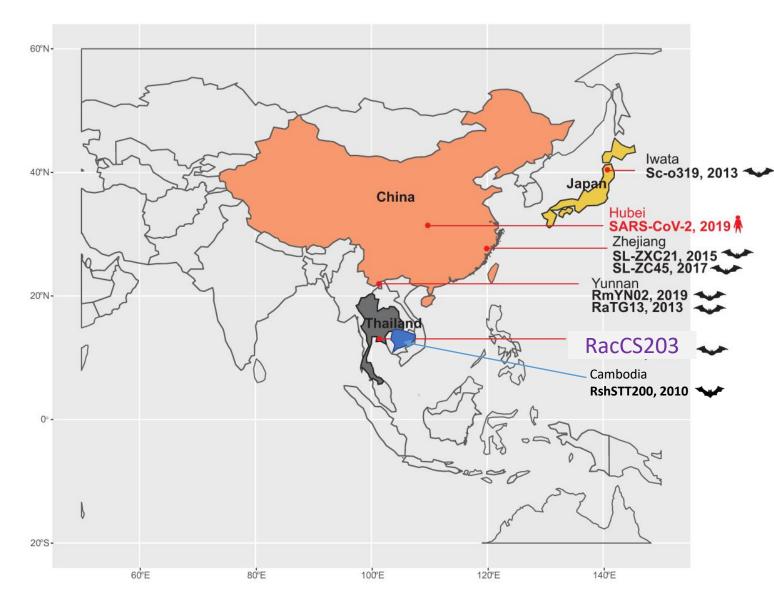
Rhinolophus affinis

ARTICLE

https://doi.org/10.1038/s41467-021-21240-1

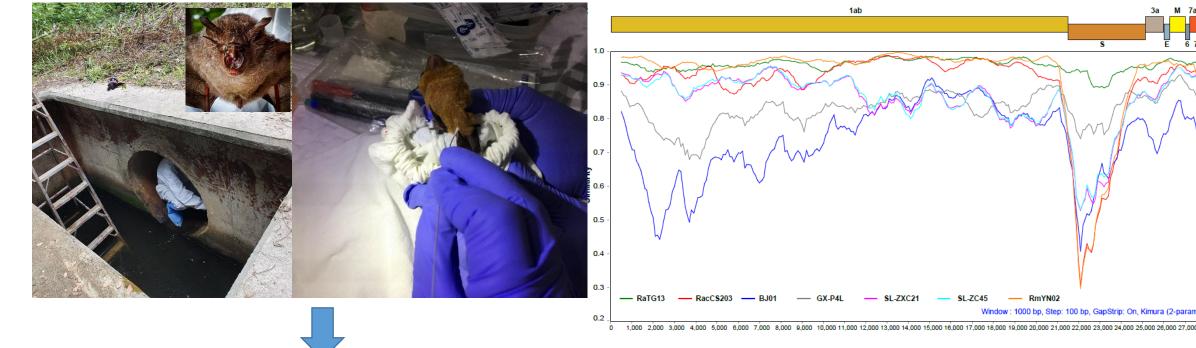
OPEN

Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia


Supaporn Wacharapluesadee^{1,10}, Chee Wah Tan ^{2,10}, Patarapol Maneeorn^{3,10}, Prateep Duengkae⁴, Feng Zhu ², Yutthana Joyjinda¹, Thongchai Kaewpom¹, Wan Ni Chia², Weenassarin Ampoot¹, Beng Lee Lim², Kanthita Worachotsueptrakun¹, Vivian Chih-Wei Chen ², Nutthinee Sirichan⁴, Chanida Ruchisrisarod¹, Apaporn Rodpan¹, Kirana Noradechanon³, Thanawadee Phaichana³, Niran Jantarat³, Boonchu Thongnumchaima³, Changchun Tu ^{5,6}, Gary Crameri⁷, Martha M. Stokes⁸, Thiravat Hemachudha^{1,11 M} & Lin-Fa Wang ^{1,9,11 M}

Wildlife sectors (Department of National Parks, Wildlife and Plant Conservation, Kasetsart University)

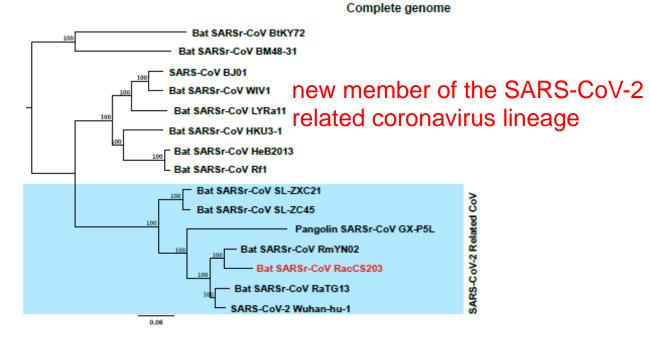
Wacharapluesadee S. et al., 2021



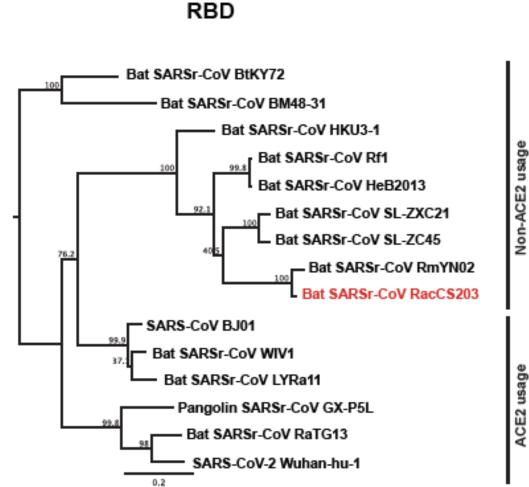
Rhinolophus acuminatus

acuminate horseshoe bat

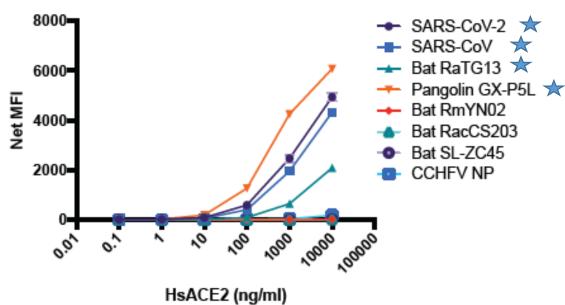
It is found in Brunei, Cambodia, Indonesia,
Laos, Malaysia, the Philippines, and Thailand.


It lives in forests and urban areas.

CoV PCR positive 13/100


Sequence comparison of ortholog between RacCS203 and other SARSr-CoVs

Strain (nt length, bp)	RdRp (290)	WGS (29,832)	Spike (3,684)	RBD (581)
Hu SARS-CoV	95.9	91.5	71.3	61.6
Bat CoV RaTG13	96.2	91.4	71.7	62.5
Bat RmYN02	94.5	93.7	94.3	95.4

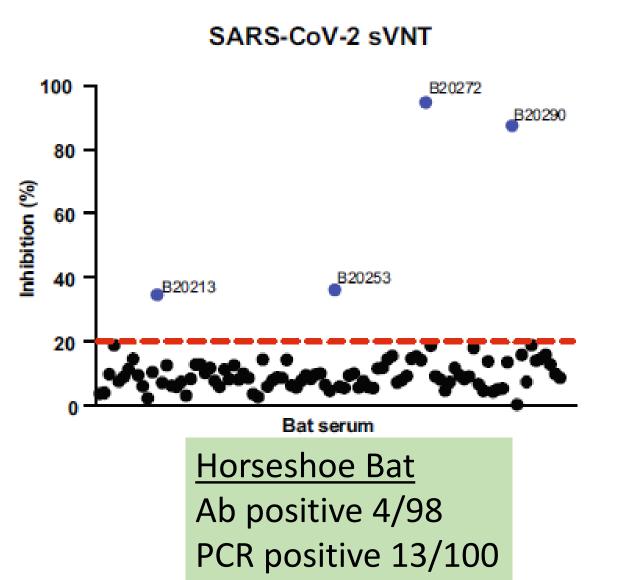

Wacharapluesadee S. et al., 2021

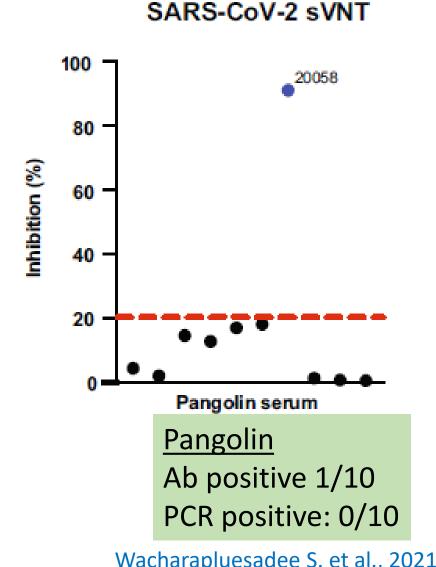
Receptor binding domain and function RacCS203: Non ACE-2 usage

Phylogenetic tree based on the nucleotide sequences of the RBD coding regions.

f Luminex-based RBD-ACE2 interaction

Multiplex binding assay to measure affinity of different SARSr-CoV RBDs to PE-conjugated hACE2.


Sero-surveillance of COVID-19 in bats and pangolins



SARS-CoV-2 antibody results: ELISA assay

b a

Wacharapluesadee S. et al., 2021

Strain	Country	Collected	WGS identity to human SARS-CoV-2	ACE2 usage
Bat CoV RaTG13	China	2013	96%	YES
Bat RmYN02	China	2019	93%	NO
Bat Rc-0319	Japan	2013	81%	YES
Bat RshSTT200	Cambodia	2010	93%	NA
Bat RacCS203	Thailand	2020	91%	NO
Pangolin CoV	China	2019	90%	YES

The key messages (relevant to our work) were:

- SARS-CoV-2 originated from bats
- Serology will be a key tool to do the frontline surveillance.
- There are other SC2r-CoV circulating in these bats and the neutralizing antibodies reflect past infection(s) by another CoV(s) which may be genetically more closely related to SARS-CoV-2.
- We need to do more surveillance in animals.

Multi-sectoral: Government / Academic / NGO / International partner / Sponsors

Multi-Sectoral Engagement

- Referral Laboratory Network
- **Data Sharing**
- **Research Network**
- **Technology Transfer**
- **Policy Advisor**

PA OF PUBLIC HE

กรมควบคุมโรค