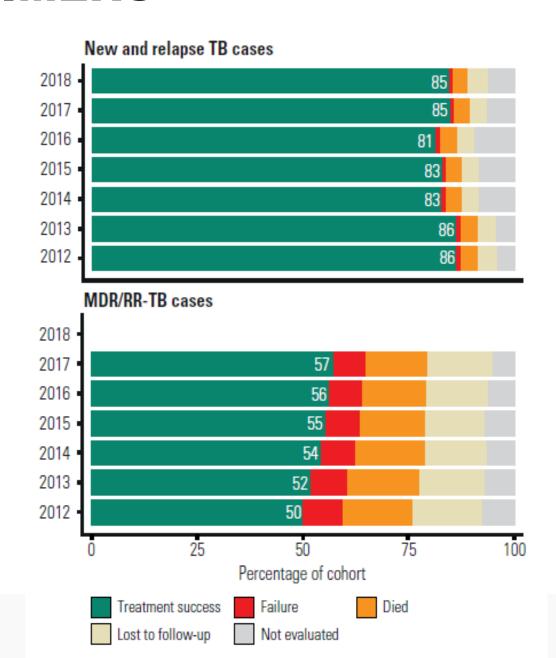


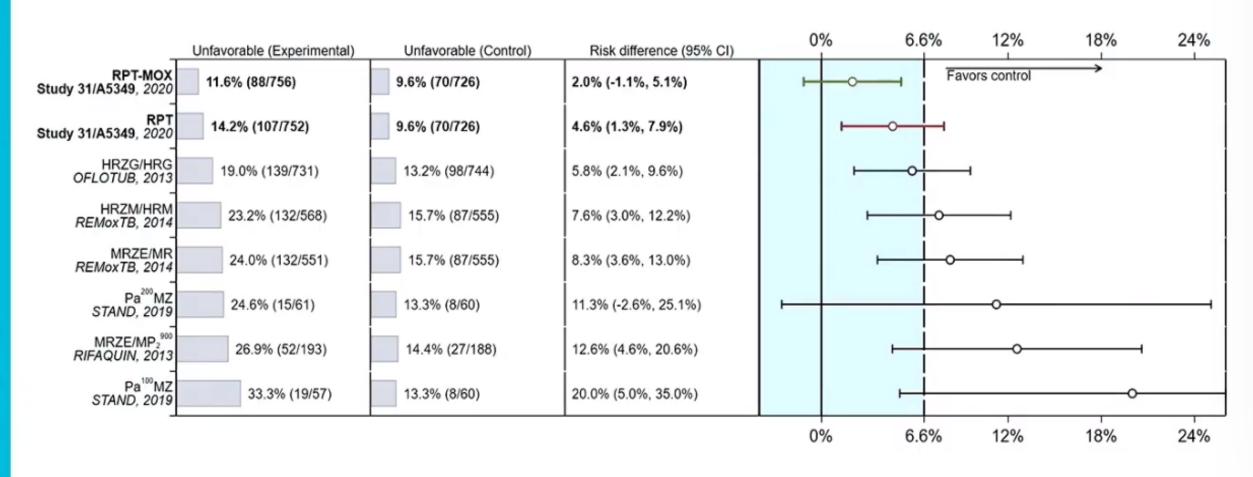
TB Vaccines and Therapeutics: The Opportunities

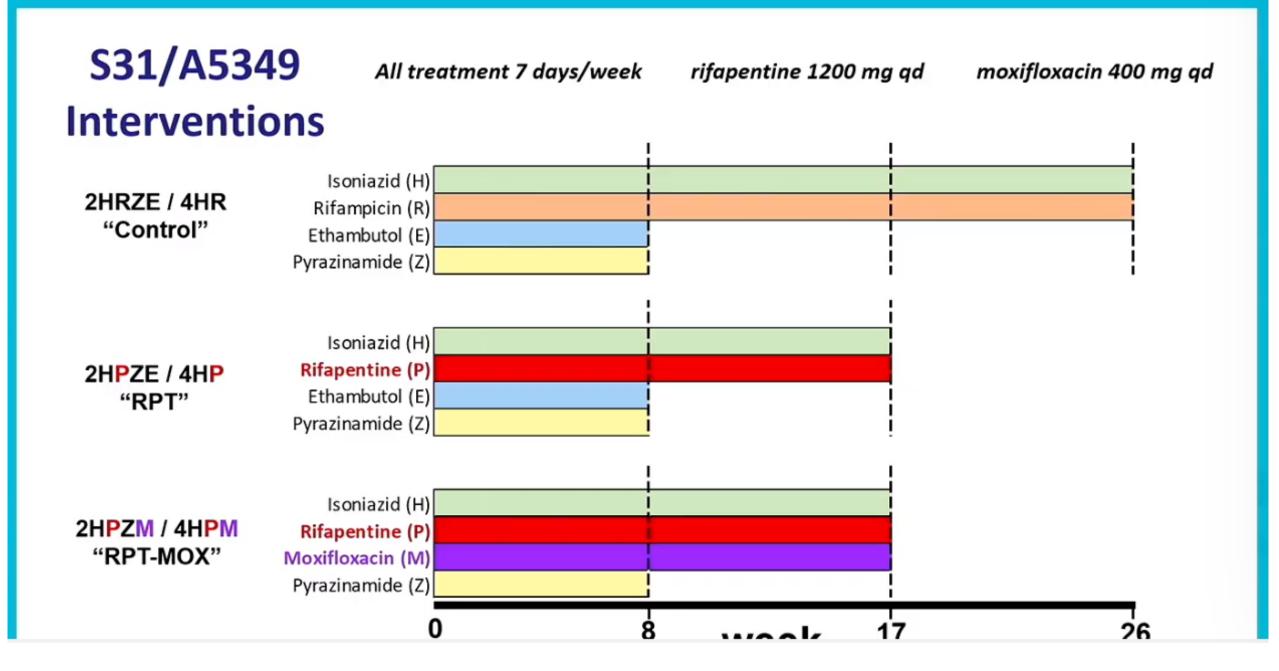

Emilio A. Emini, Ph.D. Director, TB and HIV Program

RATIONALE FOR IMPROVED TREATMENT PARADIGM

RATIONALE FOR NOVEL REGIMENS

- Issues with current standard of care
 - / Too long
 - 6 months duration → ↑ loss to follow-up
 - / Too toxic
 - Hepatitis, neuropathy, eye toxicity, skin reaction, joint pains
 - / Too many drug interactions
 - Most important: Hormonal contraceptives and HIV antiretrovirals
- Current DS TB treatment success rates stagnant for years
- Standards of MDR TB treatment changing rapidly but still long & toxic




OPTIMAL TARGET REGIMEN PROFILE ENABLE "TEST AND TREAT" PARADIGM

TPP Criteria	Hypothesis
Pan TB	No DST required; fewer patients lost to system after diagnosis
Shorter	≤ 3 months → improves adherence → improves outcomes → less transmission
Safe	No baseline/ongoing safety monitoring; well tolerated → improves adherence
Simpler	All Oral (no injectables), QD administration, no DDIs to manage
Efficacy	Short, forgiving regimen non-inferior to SoC to minimize efficacy – effectiveness gap
Affordable	Low barrier to uptake

A history of 4-month DS-TB regimens in RCTs

Assessable analysis population (often labelled as 'MITT' in other trials)

2021 Global New TB Drug Pipeline ¹

Discovery	Preclinical Development		Clinical Development			
Lead Optimization	Early Stage Development	GMP / GLP Tox.	Phase 1	Phase 2	Phase 3	Regulatory Market Approvals
PanD inhibitors	JSF-3285*	GSK-839*	BVL-GSK098*	<u>SPR720*</u>		
Indazole sulfonamides Diarylthiazoles	MPL-446, 447*	OTB-658	GSK-286*	BTZ-043*		Bedaquiline*
DprE1 Inhibitors Direct InhA Inhibitors	CPZEN-45*	Sanfetrinem	TBAJ-587	TBA-7371*		Delamanid*
Mtb energy metabolism	NTB-3119*		TBAJ-876	GSK-656* (070)		Pretomanid*
Macrolides	TB-47*		TBI-223	OPC-167832*		
Mycobacterial Gyrase Inhibitors Arylsulfonamides	TZY-5-84		Macozinone*	Delpazolid	Rifapentine /	
Inhibitors of MmpL3,	FNDR-20081*		(PBTZ-169)	Sutezolid	(4-month regime	
Translocase-1, Clp, PKS13, F-ATP synthase	Spectinamide –		TBI-166	Telacebec*(Q203		, Underline = updates
Oxazolidinones	nes 1810*			.0.00000 (4200	•	since November 2020
New chemical class. Know	n chemical classes for any inc	dication are color code	d: fluoroquinolone,	SQ-109		Since November 2020
rifamycin, oxazolidinone, nit lactam.	troimidazole, diarylquinoline	e, benzothiazinone, imi	dazopyridine amide, <mark>beta-</mark>	Macozinone*		WORKING GROUP

lactam.

ON NEW THE DRUGS

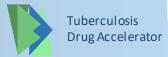
www.newtbdrugs.org

Updated: March 2021

¹New Molecular Entities not yet approved, being developed for TB or only conditionally approved for TB. Showing most advanced stage reported for each. Details for projects listed can be found at http://www.newtbdrugs.org/pipeline/clinical. Ongoing projects without a lead compound series identified: http://www.newtbdrugs.org/pipeline/discovery

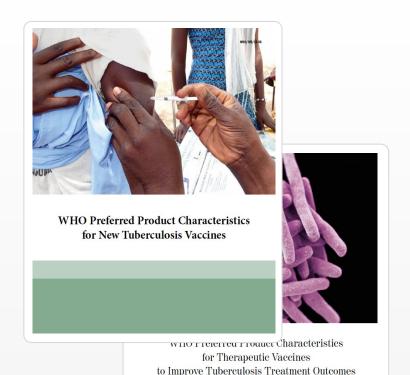
The TB Drug Accelerator

Cornell University College of Veterinary Medicine



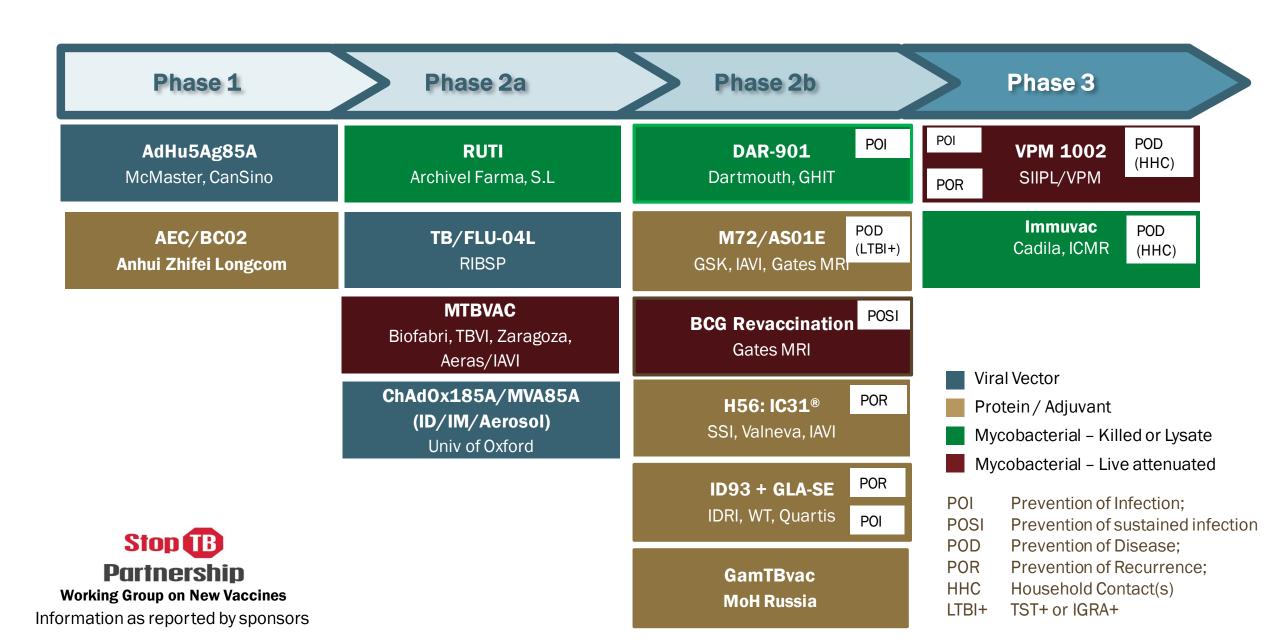
With Participation From:

BILL & MELINDA GATES foundation



PAN-TB Collaboration

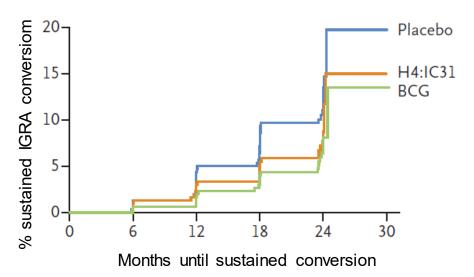
Focused on achieving Pan-TB Target Regimen Profile


NEW TB VACCINES ARE NEEDED TO ACCELERATE THE END OF THE TB EPIDEMIC

WHO priority targets:

- Developing a safe, effective and affordable TB vaccine for adolescents and adults
 - Immunization for <u>Prevention</u> <u>Of active pulmonary TB <u>Disease</u> (POD)
 </u>
 - <u>Prevention Of Mtb Infection</u> (POI) if relationship btw. POI and POD can be established
- Developing an affordable TB vaccine for neonates and infants with improved safety and efficacy as compared to BCG
 - Prevention of TB disease, including severe, disseminated TB, TB meningitis and pulmonary TB, in infants and young children
- 3. Therapeutic Vaccines
 - Protection against TB recurrence, following initial cure
 - Increase the proportion of cure at end of drug treatment

GLOBAL CLINICAL PIPELINE OF CANDIDATE TB VACCINES


BCG REVACCINATION OF ADOLESCENTS FOR POSI

Aeras C-040-404 trial: 330 participants per group

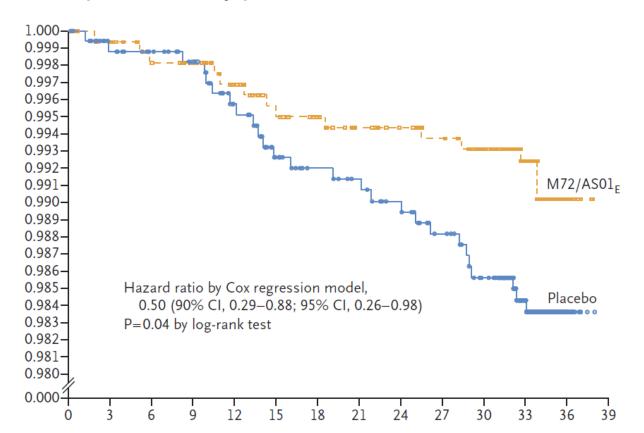
 BCG Revaccination is associated with 45%: reduction in sustained IGRA conversion

ORIGINAL ARTICLE

Prevention of *M. tuberculosis* Infection with H4:IC31 Vaccine or BCG Revaccination

Nemes et al, NEJM 2018, DOI: <u>10.1056/NEJMoa1714021</u>

Gates MRI BCG ReVax trial


- Randomized, controlled, observer-blind Phase 2b trial
- 1,800 IGRA-negative participants 10-18 years of age are randomized 1:1 to receive BCG or placebo
- Follow-up for 48 months with biannual IGRA test & post- conversion evaluation
- Primary objective: To demonstrate the efficacy of BCG revaccination against sustained Mtb infection
- Event-triggered analysis once 118 cases are observed
- Other objectives (selected):
 - / Evaluate safety & reactogenicity
 - / Evaluate durability of efficacy
 - / Explore and/or develop candidate correlates of risk (CoRs) and correlates of protection (CoPs)

ClinicalTrials.gov NCT04152161

M72/AS01_E & PREVENTION OF TB DISEASE

PHASE 2B TRIAL IN A IGRA-POSITIVE POPULATION

- Vaccine Efficacy (VE) 49.7% (95% CI 2.1 to 74.2%)
- Acceptable safety profile

DOI: 10.1056/NEJMoa1803484 & DOI: 10.1056/NEJMoa1909953

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Phase 2b Controlled Trial of M72/AS01_E Vaccine to Prevent Tuberculosis

O. Van Der Meeren, M. Hatherill, V. Nduba, R.J. Wilkinson, M. Muyoyeta, E. Van Brakel, H.M. Ayles, G. Henostroza, F. Thienemann, T.J. Scriba, A. Diacon, G.L. Blatner, M.-A. Demoitié, M. Tameris, M. Malahleha, J.C. Innes, E. Hellström, N. Martinson, T. Singh, E.J. Akite, A. Khatoon Azam, A. Bollaerts, A.M. Ginsberg, T.G. Evans, P. Gillard, and D.R. Tait

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Final Analysis of a Trial of M72/AS01_E Vaccine to Prevent Tuberculosis

D.R. Tait, M. Hatherill, O. Van Der Meeren, A.M. Ginsberg, E. Van Brakel, B. Salaun, T.J. Scriba, E.J. Akite, H.M. Ayles, A. Bollaerts, M.-A. Demoitié, A. Diacon, T.G. Evans, P. Gillard, E. Hellström, J.C. Innes, M. Lempicki, M. Malahleha, N. Martinson, D. Mesia Vela, M. Muyoyeta, V. Nduba, T.G. Pascal, M. Tameris, F. Thienemann, R.J. Wilkinson, and F. Roman

M72/AS01_E PRODUCT DEVELOPMENT

Gates MRI obtained a commercial license from GSK to enable continued development and potential use in LMICs

CMC

- Process development
- Scale up manufacturing for Phase 3 & commercial supply
- Develop release assays
- Develop look-alike placebo
- Status: Work ongoing, Phase 3 material release expected in late 2022

Phase 2 trial in PLHIV

- Goal: enable inclusion of PLHIV in pivotal Phase 3 trial
- Randomized, controlled, observer-blind Phase 2 trial in 400 PLHIV 16-35 yoa in South Africa
- Status: Enrolment completed in July 2021

Epi study & capacity

- Goal: Identify clinical trial sites with very high incidence of TB and build Phase 3 capacity where needed
- Enrol 8,000 participants
 15-34 years of age at 50 sites in 12 to 15 countries
- Determine IGRA positivity by site by age at baseline and conduct active & enhanced passive TB surveillance, switch to Phase 3 asap
- Status: Enrolment start in Q1 2022

Phase 3 VE trial

- Goal: Demonstrate VE for POD & support licensure irrespective of IGRA status, incl. PLHIV
- Global study in Africa, Asia and LatAm
- Up to 20,000 participants, incl. PLHIV and IGRAnegative participants
- Intended first dossier submission in South Africa
- Status: Enrolment start in 2023

Perspectives

- After COVID-19 is (hopefully) brought under control, TB will return to being the largest infectious disease cause of global mortality.
- The ongoing response against COVID has demonstrated the importance of focused political commitment/coordination, and enhanced funding to address the challenges.
- The technical/scientific "substrates" for improved and impactful TB therapies and vaccines exist. Their
 continued development requires (minimally) the same level of global engagement and funding as that
 for the COVID response.