
Nosanchuk, et al. International Journal of Infectious Diseases, 1998

Overview of Valley Fever: why now?

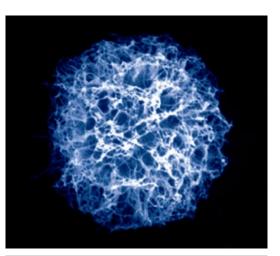
Joshua D. Nosanchuk, M.D. (he.him)

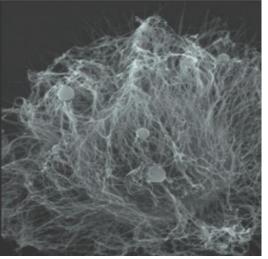
Senior Associate Dean Professor of Medicine (Infectious Diseases) Professor of Microbiology & Immunology Senior Attending Physician, Medicine (Infectious Diseases) Albert Einstein College of Medicine/Montefiore Medical Center

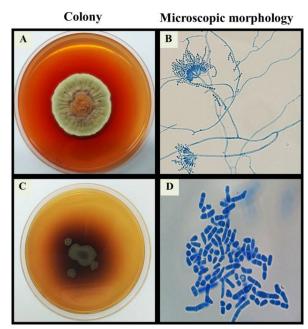
https://einsteinmed.org/faculty/5944/joshua-nosanchuk/

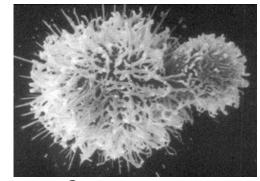
Disclosures

• Funding:


- NIH RO1 AI171093
- NIH R21AI156104
- NIH SBIR R41AI165204
- DoD CDMRP OR200187
- Scientific advisor, shareholder






FUNGI: WHO CARES?

Fungi are ubiquitous

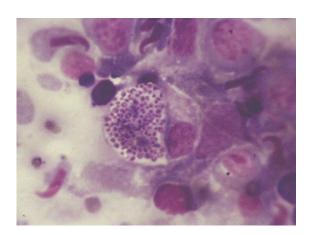
- Since the late 1970s, fungi have emerged as major causes of human disease.
- It is estimated that more than **6 billion people** throughout the world have fungal infections with 15–30% of these infections being serious (https://gaffi.org/)
- <u>Invasive mycoses contribute to ~1.5 million human deaths</u> each year.
- Invasive mycoses are responsible for >\$6.7 billion in human medical care costs annually in USA (2018 data)
- Total costs of all fungal-related hospital stays >\$37 billion.
- Mortality rates of invasive mycoses often in excess of 40%

Talaromyces marneffei

Cryptococcus

Open Forum Infectious Disea
MAJOR ARTICLE

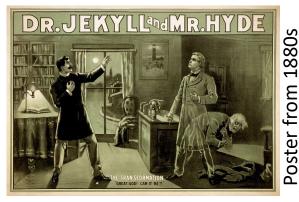
Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018


EmilyRayees,* and Karen A Norris

https://doi.org/10.1093/ofid/ofab593

THE FUNGI

- >1,500,000 species
- ~300 are mammalian "pathogens"
- ~20-30 are common invasive human pathogens



Armillaria ostoyae (honey mushroom) ~3.5 miles across

FUNGI: THE GOOD AND THE BAD

Poster from

PLANT DISEASES DUTCH ELM DISEASE

POTATO FAMINE

CORAL REEF BLEACHING

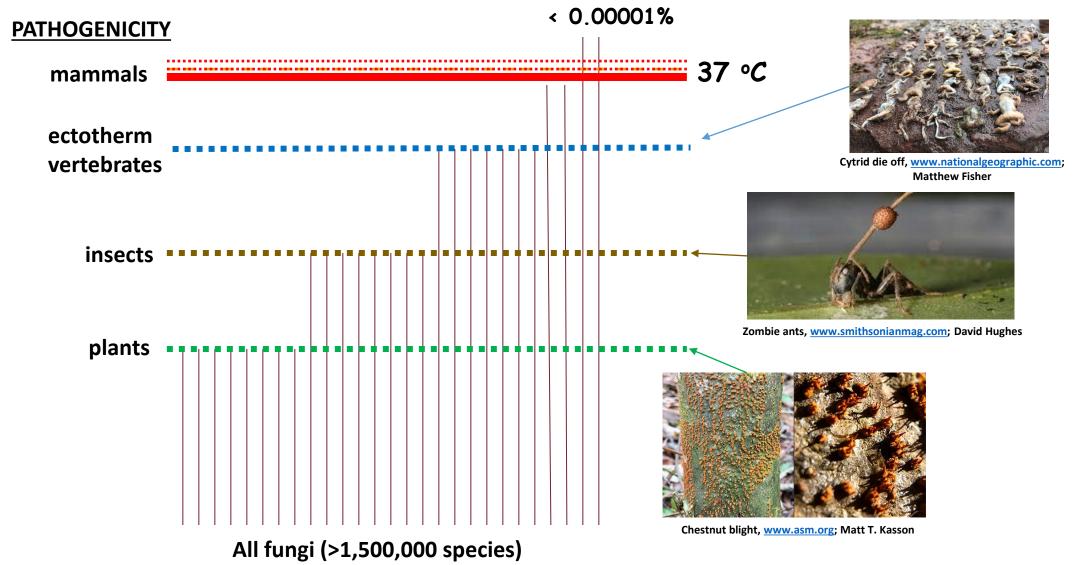
FOODSTUFFS

BEER WINE **FOOD**

THE **FUNGI**

TOXINS

LIVER CANCER SICK BUILDING SYNDROME


DRUGS

PENICILLIN CEPHALOSPORINS CYCLOSPORINS LOVOSTATIN LSD, ERGOT

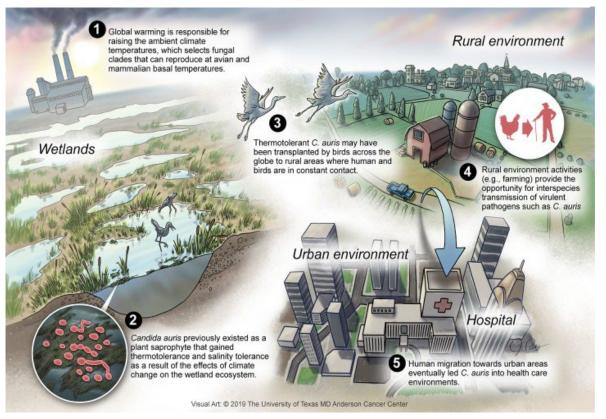
PATHOGENS

ANIMAL INSECT **HUMAN**

THE THERMAL BARRIER

Climate change

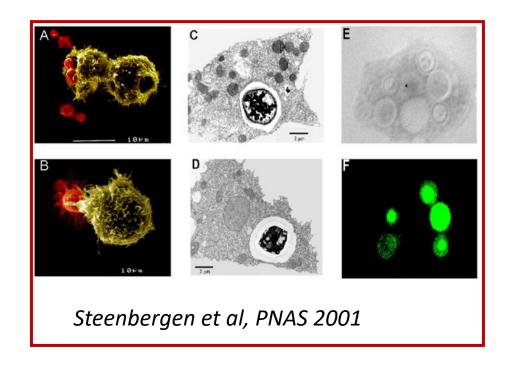
- An environmental "boot camp"
- Shifting geographic spread of pathogens, including fungi
- "New" fungi:
 - *Emergomyces* a leading invasive dimorphic fungus in setting of advanced HIV disease in Africa
 - Candida auris- multi- to pan-resistant yeast first identified in 2009, now on all continents except Antarctica.

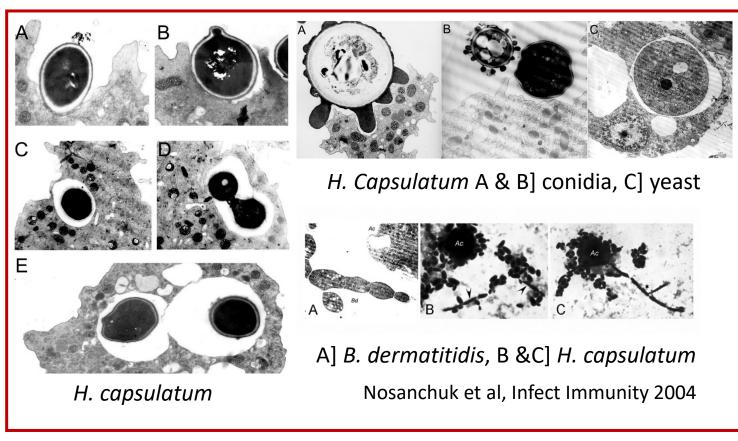


OPINION/HYPOTHESIS

Host-Microbe Biology
July/August 2019 Volume 10 Issue 4 e01397-19
https://doi.org/10.1128/mBio.01397-19

On the Emergence of *Candida auris*: Climate Change, Azoles, Swamps, and Birds


Arturo Casadevall (b) a, Dimitrios P. Kontoyiannis (b) b, Vincent Robert^c



Why do environmental fungi cause disease in humans (dead-end hosts)?

-How are environmental pathogens able to effectively infect humans?

-How do environmental pathogens maintain their virulence?

Infectious diseases 1900-2022 Organ transplants Chemotherapy DISEASES OF IMPAIRED HOSTS Opport histic Encapsulated microbes Toxin diseases of disease Viral diseases Prevalence Sanitation Viral & Polysaccharide vaccines **Toxoids** Urbanization Serum therapy 1900 1920 1940 1960 Global travel **Penicillin** Germ Intensive care units Theory Intravenous catheters

Many new risks: age of the biologics!

Table 1. Biological therapies associated with fungal infection susceptibility in humans.

Biological agent	Drug target	FDA-approved indication(s)	Fungal infection susceptibility	Mechanism(s) of fungal infection susceptibility (when known)
Alemtuzumab	CD52	CLL, MS	Mucosal candidiasis, PJP, cryptococcosis	Profound and prolonged T cell lymphopenia
Rituximab	CD20	CLL, NHL, RA, microscopic polyangiitis, Wegener's granulomatosis	PĴP	B cell lymphopenia, impaired T cell responses
Tocilizumab	IL-6R	RA, JIA, giant cell arteritis, cytokine release syndrome (CAR T cell therapy)	Invasive candidiasis, PJP, cryptococcosis, coccidioidomycosis	Impaired phagocyte recruitment and function (Candida)
Secukinumab Ixekizumab	IL-17A	Psoriasis, psoriatic arthritis, AS	Mucosal candidiasis	Impaired IL-17 cellular responses
Bimekizumab	IL-17A/IL- 17F	N/A		
Brodalumab	IL-17RA	Psoriasis]	
Ustekinumab	IL-12p40	Psoriasis, psoriatic arthritis, CD, UC		
Guselkumab Risankizumab Tildrakizumab	IL-23p19	Psoriasis CD		
Infliximab Adalimumab Etanercept Certolizumabpegol Golimumab	TNF-α	Psoriasis, psoriatic arthritis, RA, JIA, AS, CD, UC	IPA, invasive candidiasis, PJP, histoplasmosis, blastomycosis, coccidioidomycosis	Impaired IFN-y production and granuloma formation (endemic fungi); impaired phagocyte recruitment and activation (Candida and Aspergillus)
Emapalumab	IFN-γ	HLH	PJP, coccidioidomycosis	Impaired IFN-γ cellular responses
Eculizumab	C5a	PNH, HUS	IPA, invasive candidiasis	Impaired phagocyte function

Ibrutinib Acalabrutinib	ВТК	CLL/SLL, MCL, MZL, WM, GvHD	IPA*, mucormycosis, fusariosis, cryptococcosis, PJP, histoplasmosis, blastomycosis	Impaired macrophage activation (Aspergillus); impaired macrophage uptake and IgM production (Cryptococcus)
Ruxolitinib Baricitinib Tofacitinib Upadacitinib	JAK1/2/3	Myelofibrosis, polycythemia yera, GyHD, RA, psoriatic arthritis, UC	IPA, PJP, cryptococcosis, talaromycosis, histoplasmosis	Impaired IFN- γ/STAT1 signaling and lymphopenia (endemic fungi); impaired IFN-λ. signaling (Aspergillus)
Fostamatinib	Syk	ITP	Mucosal candidiasis, skin fungal infection	Impaired IL-17 cellular responses
Sorafenib	B-RAF C-Raf	HCC, RCC	IPA, mucosal candidiasis, <i>Rhodotorula</i> skin infection	Impaired ERK signaling (Aspergillus); impaired T cell responses (Candida, Rhodotorula)
Dasatinib	BCR-ABL	CML	PJP	Impaired T cell activation
Idelalisib	PI3K (p100δ)	CLL/SLL, NHL	PJP	Impaired T cell activation
Abatacept	ČTLA4	RA, JIA	IPA, invasive candidiasis, PJP, histoplasmosis	Impaired T cell activation (PJP, histoplasmosis)
Natalizumab	α₄integrin	MS	Cryptococcosis	T cell trafficking

IPA, invasive pulmonary aspergillosis (*with significant proportion of patients developing disseminated disease, including in the central nervous system); PJP; *Pneumocystis jiroveciii* pneumonia; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic leukemia; CML, chronic myelogenous leukemia; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; NHL, Non-Hogdkin's lymphoma; WM, *Waldenström macroglobulinemia: HLH, hemophagocytic lymphohistiocytosis; PNH, paroxysmal nocturnal hemoglobinuria; HUS, hemolytic uremic syndrome; RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; ITP, idiopathic thrombocytopenic purpura; MS, multiple sclerosis; RA, rheumatoid arthritis, JIA, juvenile idiopathic arthritis; AS, ankylosing spondylitis; UC, ulcerative colitis; CD, Crohn's disease; GvHD, graft-versus-host disease; CAR, chimeric antigen receptor; BTK, Bruton's tyrosine kinase; JAK, Janus kinase; Syk, spleen tyrosine kinase; RAF, rapidly accelerated fibrosarcoma; PI3K, phosphoinositide 3-kinase; CTLA4, cytotoxic T-lymphocyte associated protein 4; N/A, not available.

pathogens WHO fungal priority October 25,

Critical group

Cryptococcus neoformans

Candida auris

Aspergillus fumigatus

Candida albicans

Focus on fungi that cause systemic infections with treatment challenges. Health inequities. Purpose: to drive and focus research & policies in the global response to fungal infections and resistance.

High group

Nakaseomyces glabrata (Candida glabrata)

Histoplasma spp.

Eumycetoma causative agents

Mucorales

Fusarium spp.

Candida tropicalis

Candida parapsilosis

Medium group

Scedosporium spp.

Lomentospora prolificans

Coccidioides spp.

Pichia kudriavzeveii (Candida krusei)

Cryptococcus gattii

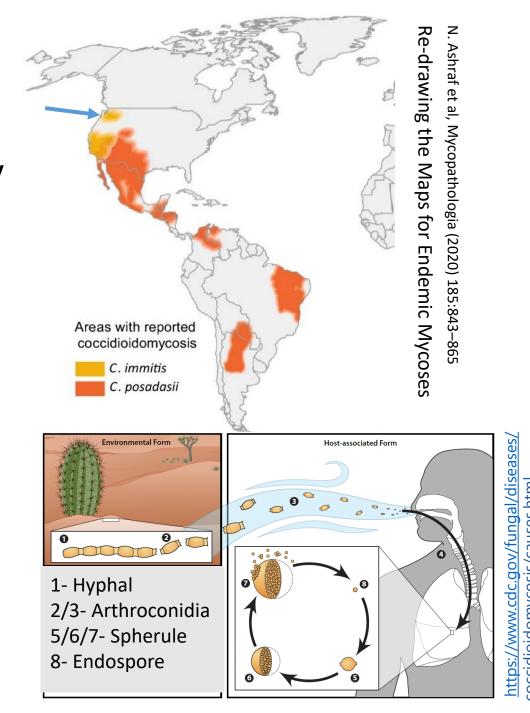
Talaromyces marneffei

Pneumocystis jirovecii

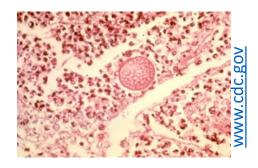
Paracoccidioides spp.

Table 2. Prioritization criteria, definitions and levels

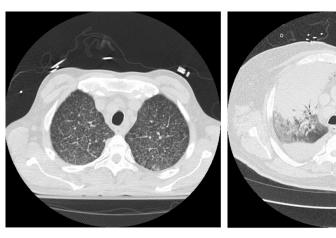
Criterion	Definition/description	Level value
Deaths	Average case fatality rate	Low: < 30% Medium: 30-70% fatality High: > 70% Unknown: no reliable data
Annual incidence	Number of new cases per million population each year	Low: < 2/million Medium: 2–50/million High: > 50/million Unknown: no data available
Current global distribution	Extent of geographic distribution across the globe	Localized in ≤ 2 WHO regions Globally distributed in ≥ 3 WHO regions Unknown: due to inadequate data
Trends in last 10 years	Evidence of change in incidence/prevalence patterns	Stable: no evidence of increasing incidence/prevalence Increasing: evidence of increasing incidence/prevalence Unknown: due to inadequate data
Inpatient care	Average length of hospital stay required for treatment following initial diagnosis	Low: < 2 days Medium: 2 days to 2 weeks High: > 2 weeks Unknown: no data available

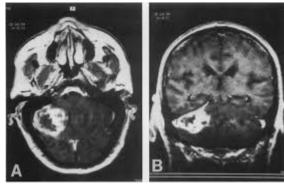

Complications and sequelae	Proportion of patients suffering long-term complications of disease	Low: expected to affect a minority of patients (e.g. < 10%). Medium: expected to affect a significant proportion of patients (e.g. 10–50%). High: expected to affect the majority of patients (e.g. > 50%).
Antifungal resistance	Rate (or level) of acquired or intrinsic resistance to antifungal treatment	Low: < 10% acquired or intrinsic resistance for all four classes of antifungals. Medium: acquired or intrinsic resistance (> 10%) described for agents from one to two classes of antifungals. High: acquired or intrinsic resistance (> 10%) described for agents from three to four classes of antifungals. Unknown: no reliable data available
Preventability	Transmission/ acquisition dynamics and availability of evidence-based, effective preventive measures	Low: transmission/acquisition dynamics well described, and preventive measures ineffective or of low-quality evidence, and/or not widely available or difficult to implement. Medium: transmission/acquisition dynamics are not well described, but preventive measures based on moderate or high-quality evidence are available and effective. High: transmission/acquisition dynamics are well described, and preventive measures based on moderate or high-quality evidence are universally available and effective. Unknown: transmission/acquisition dynamics not well described. No preventive measures described.
Access to diagnostic tests	Availability of diagnostics	Low: diagnostics are not available in reference laboratories. Medium: diagnostics are available in institutional or reference laboratories but not universally available due to cost, distribution or technical issues. High: diagnostics are available and have been successfully implemented in institutional diagnostic laboratories, in at least one but not all high-burden/low-resource settings where disease occurs. Very high: diagnostics are universally available in institutional diagnostic laboratories where disease occurs.
Evidence-based treatments	Treatment options are evidence based and accessible	Very low: treatment based on expert opinion with limited evidence. Low: peer-reviewed, high-quality guidelines available, but first-line treatment options are unaffordable, toxic or unavailable where disease occurs. Medium: peer-reviewed, high-quality guidelines with at least one first-line treatment option which is affordable, non-toxic and available where disease occurs. High: peer-reviewed, high-quality guidelines with at least one first-line treatment option which is affordable, nontoxic and available where disease occurs, and includes specific recommendations for all main host groups, including paediatrics.

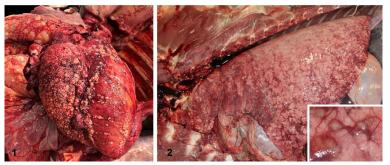
WHO fungal priority pathogens list October


Critical group High group Medium group Scedosporium spp. Cryptococcus Nakaseomyces glabrata neoformans (Candida glabrata) Candida auris Histoplasma spp. Lomentospora prolificans Coccidioides spp. Eumycetoma causative Aspergillus fumigatus agents Candida albicans Mucorales Pichia kudriavzeveii ₽. (Candida krusei) Fusarium spp. Cryptococcus gattii Candida tropicalis Talaromyces marneffei 8. *** Candida parapsilosis Pneumocystis jirovecii 8. * * Paracoccidioides spp.

"Valley Fever"


- Coccidioidomycosis is caused by two highly similar species
 - Coccidioides immitis
 - C. posadasii
- C. immitis- responsible for "Valley Fever"
 - 95% US Cases are in southern Arizona and the San Joaquin Valley region in California.
- Coccidioides spp. are dimorphic organisms that infect mammals through the respiratory track after disturbances in the environment:
 - earthquakes, construction, military activities, dirt bikes, armadillo-hunting, etc


"Valley Fever"


- ~40% of exposed humans develop fever, cough, etc.
- ~5-10% will have more significant disease, especially pneumonia.
- ~1% will develop serious disease, including meningitis.
- There are ~200 deaths annually.
- Average cost of hospitalization: ~\$50,000 (CDC data)
- In 2019, there were >20,000 patients with coccidioidomycosis in the US
 - Incidence is increasing over past decades.
- Coccidioidomycosis is also a significant cause of morbidity and mortality in animals.
 - Pneumonia, osteomyelitis, skin, etc

Malo et al, Ann Am Thorac Soc, 2014

Bañuelos, et al CID, 1996

Coccidioidomycosis in 26 horses in California, USA: case series and review of the literature

Journal of Veterinary Diagnostic Investigation 2022, Vol. 34(6) 995–999 © 2022 The Author(s) Article reuse guidelines: sagepub.com/journals-permissions POI: 10.1177/104063872731114622

Coccidioides challenges: examples

- Climate change- geographic expansion.
- Coccidioides spp. infect "healthy" individuals- anyone can get it!
- Immunologically compromised are more likely to develop severe disease.
 - Immune system sees different forms- arthroconidia, endospores, & spherules
- Structural determinants- certain groups of individuals more likely to be exposed.
- Limited antifungal arsenal and lack of approved vaccine.
- Antifungal resistance- particular concerns with high MIC for fluconazole.
- High virulence and easy spread with disturbance of colonies in the microbiology laboratory complicate antifungal testing.
- Lack of disease reporting in many states (only reportable in 26, plus DC) and low rates of reporting in Latin America.
- Lack of sensitive/specific rapid testing and low rates of screening.

So, the time to address coccidioidomycoiss is now! (& a quick history lesson)

• **1982**: Alejandro Posadas, an intern in Buenos Aires, Argentina described a 36-year-old soldier with cutaneous disease. Histology revealed a protozoan-like organism, *Coccidia*. Disease was successfully transmitted by injecting material from the patient into mammals.

• 1983: first report of a patient in San Francisco.

- 1896: named Coccidioides (resembling Coccidia) immitis (not mild).
- 1900: Dimorphism confirmed that this was a fungus.
- 1929: Second year medical student, Harold Chope, opened a plate with *C. immitis* in a Stanford University laboratory and developed "Valley Fever"

Epidemiology of Acute Coccidioidomycosis with Erythema Nodosum* ("San Joaquin" or "Valley Fever") CHARLES EDWARD SMITH, M.D., D.P.H.

American Journal of Public Health

June, 1940

September, 1937

VALLEY FEVER

ORIGINAL ARTICLES

"VALLEY FEVER" OF THE SAN JOAQUIN VALLEY AND FUNGUS COCCIDIOIDES*

By Ernest C. Dickson, M.D. San Francisco

DISCUSSION by K. F. Meyer, M.D., Ph.D., San Francisco; Hiram E. Miller, M.D., San Francisco; Roland B. Tupper, M.D., Fresno.