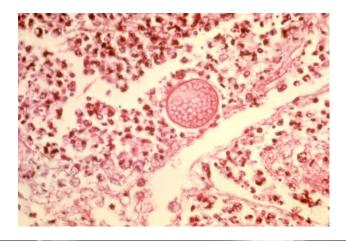
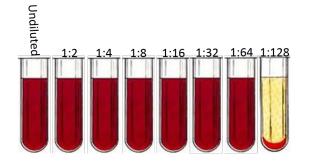

Future of Diagnostics: Metabolomics

Ian McHardy, PhD, D(ABMM)


Director, Clinical Microbiology & Core Laboratory Scripps Health mchardy.ian@scrippshealth.org



Brief Overview of Diagnostics

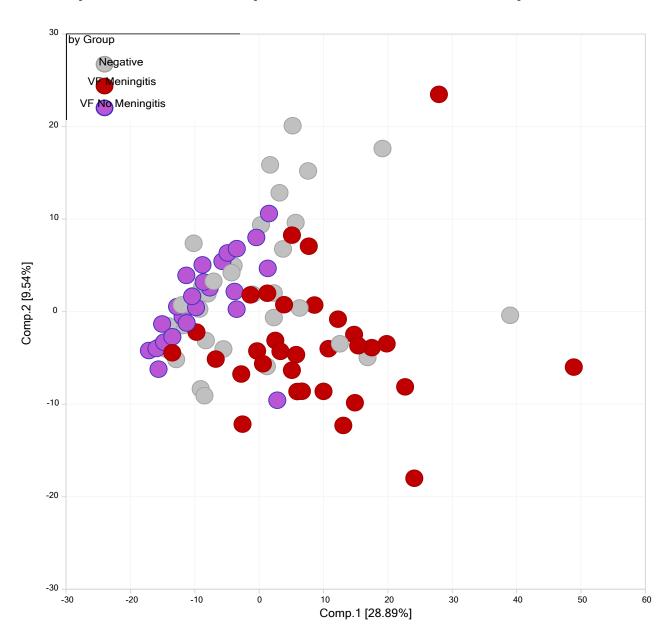
Test	Utility		
Immunodiffusion	Best serologic diagnostic		
Complement Fixation	Most commonly used prognostic and disease monitoring tool		
Enzyme immunoassays	Good for relatively fast serologic testing in endemic areas		
Antigen testing	Helpful for diagnosis of immunocompromised patients		
Culture	Helpful for diagnosis of acute and chronic infections		
Histopathology	Helpful for diagnosis of acute and chronic infections		
PCR/NGS etc	Helpful for diagnosis of acute infections		

Diagnosis of coccidiodal meningitis:

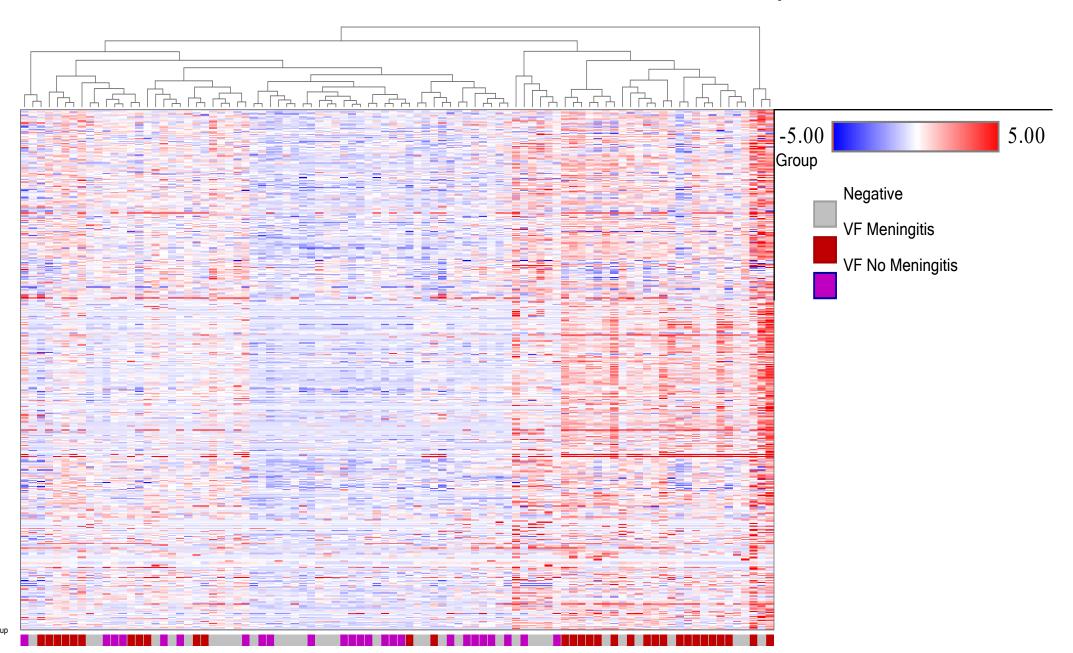
- CSF abnormalities
- Clinical presentation
- CSF anti-coccidioidal complement fixing antibodies (poor sensitivity)
- Culture/microscopy (poor sensitivity)

Consequences of **false negative**: Coccidioidal meningitis is fatal if untreated

Consequences of <u>false positive</u>: Lifelong antifungal therapy


Many side-effects → decreased quality of life

<u>Aims:</u> Identify metabolomic changes associated with progression of coccidioidomycosis to coccidioidal meningitis and develop improved diagnostic(s).


Study design:

Group Name	Group description	Patients
Negative	CSF specimens from patients without any serologic indication (in serum or CSF) of coccidioidomycosis	N=35
Valley Fever	Valley Fever CSF specimens from patients with serologic evidence of coccidioidomycosis in serum but not in CSF	
VF Meningitis	CSF specimens from patients with serologic evidence of coccidioidomycosis in both serum AND CSF	N=33

Principal Component Analysis (PCA)

Hierarchical Cluster Analysis

Summary of Metabolomic Findings

Metabolites	Indication	Pilot cohort	Validation cohort	Merged Cohorts
Kynurenine metabolites	Altered Inflammatory status	↑	↑	↑
Lipid mediators	Inflammatory status	↑	↑	↑
Steroid metabolites	Altered steroid biosynthesis	↑	↑	↑
Bile acid metabolites	Altered bile acid biosynthesis	↑	↑	↑
Glycolysis/TCA cycle intermediates	Energy production	↑	↑	↑
Neuro-peptides	Neurological signaling	↑ ↓	↑ ↓	↑ ↓
Microbiome-derived Changes in gut microbio composition		↑	↑	↑

Open Forum Infectious Diseases

BRIEF REPORT

Sex Differences in Susceptibility to Coccidioidomycosis

Ian McHardy, 1,23 Krystle L. Reagan, 4 Jamie F. Sebastian, 4 Bridget Barker, 5

Derek J. Bays, 2,6 Satya Dandekar, 2,3 Stuart H. Cohen, 2,3,6 Kathleen E. Jennings, 7

Jane Sykes, 2,5 and George R. Thompson III 2,3,6

¹Scripps Medical Laboratory, Scripps Health, San Diego, California, USA, ²University of California Davis Center for Valley Fever, Sacramento, California, USA, ³Department of Medical Microbiology and Immunology, University of California – Davis, Davis, California, USA, ⁴School of Veterinary Medicine, University of California – Davis, Davis, California, USA, ⁵Northern Arizona University, Flagstaff, Arizona, USA, ⁶Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA, and ⁷Born Free USA Primate Sanctuary, Cotulla, Texas, USA

Diagnostic potential?

Random Forest Confusion Matrix

RF Predicted Groups

roups	CSF	Negative	VF Meningitis	VF No Meningitis	Class Error
estabilshed groups	Negative	17	4	14	0.514
establ	VF Meningitis	2	28	2	0.125
npirically	VF No Meningitis	6	1	18	0.280
mpiri		Predic	tive accura	icy = 68.5%	

Note that random segregation would give a predictive accuracy of **33%**.

Questions?

Ian McHardy, PhD, D(ABMM)

Director, Microbiology Laboratory Sorrento Mesa Core Laboratory | Scripps Health

mchardy.ian@scrippshealth.org

