

The Twin Pillars of Global Vaccine Partnerships: Addressing Equity & Hesitancy

@PeterHotez

Peter Hotez MD PhD

Texas Children's Hospital Endowed Chair in Tropical Pediatrics

Dean, National School of Tropical Medicine at Baylor College of Medicine

Senior Fellow, James A Baker III Institute for Public Policy, Rice University

Texas Children's CVD

NATIONAL SCHOOL OF TROPICAL MEDICINE, BAYLOR COLLEGE OF MEDICINE

- Portfolio of Global Health
 & Neglected Disease
 Vaccines
- Schistosomiasis
- Hookworm
- Chagas Disease
- Leishmaniasis
- Coronavirus Infections
 - SARS CoV
 - SARS CoV2
 - MERS

Antipoverty Vaccines

Available online at www.sciencedirect.com

Vaccine 24 (2006) 5787–5799

Vaccine

www.elsevier.com/locate/vaccine

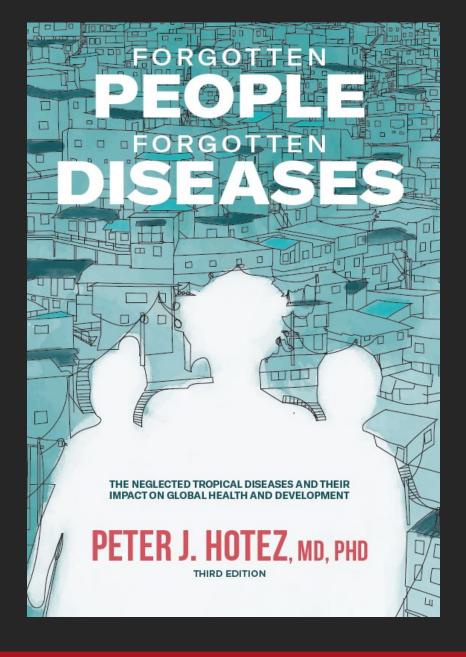
Review

The antipoverty vaccines

Peter J. Hotez a,*, Meghan T. Ferris b,c

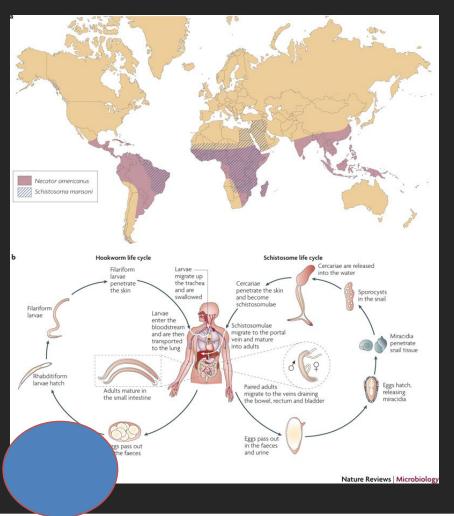
^a Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University and the Sabin Vaccine Institute, Washington, DC 20037, United States

b Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States
C Department of Internal Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, United States


Received 19 April 2006; received in revised form 8 May 2006; accepted 9 May 2006 Available online 17 May 2006

Abstract

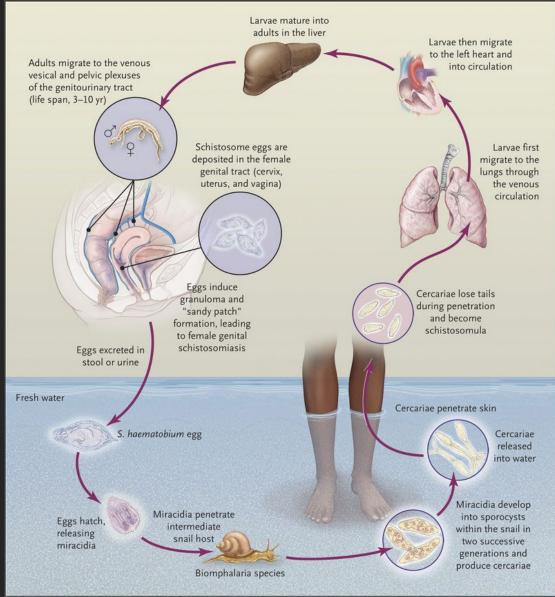
The neglected tropical diseases represent a group of parasitic and bacterial diseases, occurring primarily in rural areas or impoverished urban areas of developing countries. Because of their chronic and stigmatizing character and their impact on child development, pregnancy outcomes, and worker productivity, the neglected tropical diseases are considered poverty-promoting conditions. Through the activities of public-private partnerships, first or second-generation recombinant vaccines for three of these conditions—hookworm, teishmaniasis, and schistosomiasis, have undergone early development and clinical testing. However, through the acquisition of extensive bioinformatics information or animal model testing for several other neglected tropical diseases pathogens, it is possible to consider new generation vaccines as well for amebiasis, Buruli ulcer, Chagas disease, Chlamydia infections (including trachoma), leprosy, leptospirosis, and the treponematoses. Early development of such antipoverty vaccines will require the establishment of product development public-private partnerships and partnerships with innovative developing countries where these diseases are endemic.


© 2006 Elsevier Ltd. All rights reserved.

Keywords: Neglected tropical diseases; Antipoverty vaccines; Amebiasis; Buruli ulcer; Chagas disease; Chlamydia infections; Hookworm; Leishmaniasis; Leprosy; Leptospirosis; Schistosomiasis; Treponematoses

Vaccine Targeting Hookworm and Schistosomiasis Co-Infections

A MULTIVALENT
VACCINE TARGETING
HOOKWORM + SCHISTO

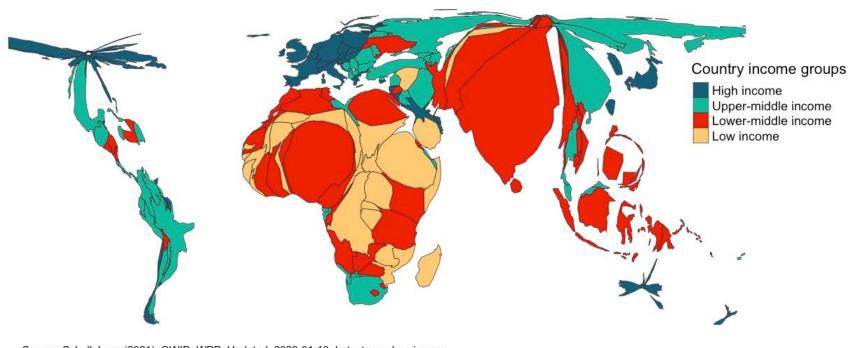


Female Genital Schistosomiasis

- 40 million Girls and Women in Africa
- Pain, bleeding, stigma, depression
- 2-3 OR in acquiring HIV/AIDS

Developing Country Vaccine Manufacturers Network

- Bangladesh
- China
- India
- Indonesia
- Thailand
- Vietnam
- Argentina
- Brazil
- Cuba



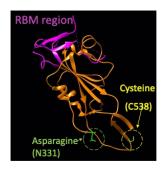
COVID-19 Vaccinations

The unvaccinated population

Land mass scaled to reflect absolute number of unvaccinated (transformed EPSG 3410 equal-area projection)

Source: Schellekens (2021); OWID; WPP. Updated: 2022-01-13. Latest: pandem-ic.com.

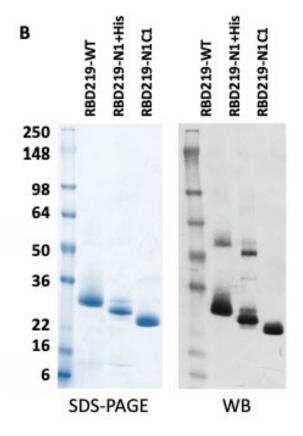
CORBEVAX (Biological E)



Engineering and Cloning Strategy

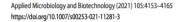
Selection of SARS CoV-2 RBD 219-N1C1 Construct (residues 331-549)

RBD219-WT	ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL 60
RBD219-N1	ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL 59
RBD219-N1C1	ITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL 59
RBD219-WT	CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN 120
RBD219-N1	CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN 119
RBD219-N1C1	CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN 119
RBD219-WT	YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV 180
RBD219-N1	YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV 179
RBD219-N1C1	YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV 179
RBD219-WT RBD219-N1 RBD219-N1C1	VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGT 219 VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGT 218 VVLSFELLHAPATVCGPKKSTNLVKNKAVNFNFNGLTGT 218

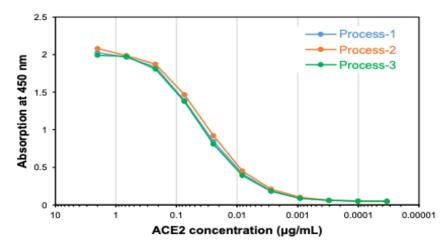


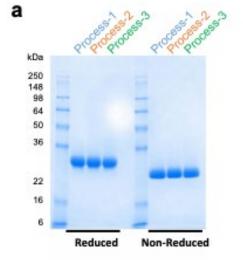
Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate

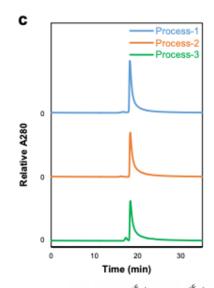
Wen-Hsiang Chen ^{a,b}, Junfei Wei ^a, Rakhi Tyagi Kundu ^a, Rakesh Adhikari ^a, Zhuyun Liu ^a, Jungsoon Lee ^a, Leroy Versteeg ^a, Cristina Poveda ^a, Brian Keegan ^a, Maria Jose Villar ^a, Ana C. de Araujo Leao ^a, Joanne Altieri Rivera ^a, Portia M. Gillespie ^a, Jeroen Pollet ^{a,b}, Ulrich Strych ^{a,b}, Bin Zhan ^{a,b}, Peter J. Hotez ^{a,b,c,d,*}, Maria Elena Bottazzi ^{a,b,c,d,*}



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955913/

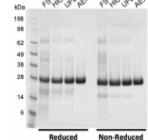

Process Development and Scale-up Strategy




BIOTECHNOLOGICAL PRODUCTS AND PROCESS ENGINEERING

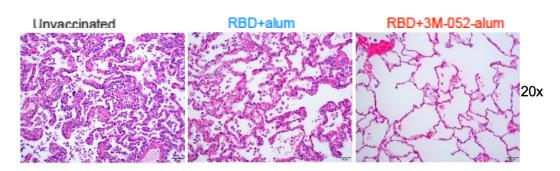
Process development and scale-up optimization of the SARS-CoV-2 receptor binding domain-based vaccine candidate, RBD219-N1C1

Jungsoon Lee ^{1,2} • Luyun Liu ^{1,2} • Wen-Hsiang Chen ^{1,2} • Junfei Wei ^{1,2} • Rakhi Kundu ^{1,2} • Rakesh Adhikari ^{1,2} • Joanne Altieri Rivera ^{1,2} • Portia M. Gillespie ^{1,2} • Ulrich Strych ^{1,2} • Bin Zhan ^{1,2} • Peter J. Hotez ^{1,2,3,4,5} • Maria Elena Bottazzi ^{1,2,3,4}

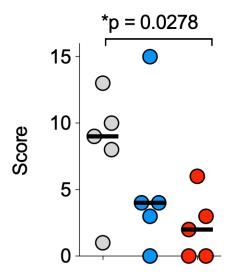


			~~	ൗ
-	O	Je	55	-2

	Yield (mg)	Step Recovery (%)	Overall Recovery (%)	Purity, Non-Reduced (%)
FS	345.0 ± 7.1			77.0 ± 0.4
HIC	154.4 ± 0.0	45 ± 1	45 ± 1	95.2 ± 0.9
UFDF	173.6 ± 5.7	113 ± 4	50 ± 3	94.6 ± 1.2
AEX	134.9 ± 1.8	78 ± 4	39 ± 0	95.1 ± 0.4



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102132

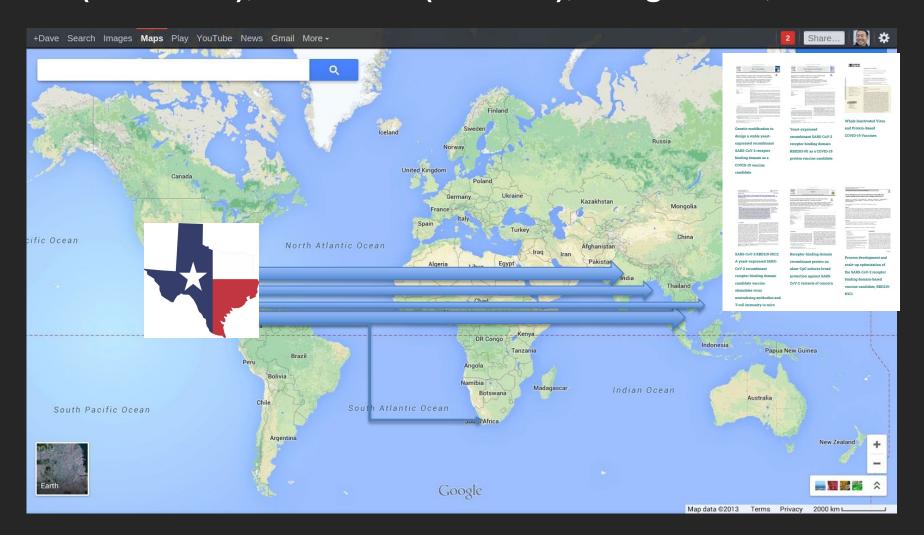

Safety and Efficacy in a NHP Model

RBD formulated with 3M-052+alum promotes significant reduced lung pathology after respiratory challenge with SARS CoV-2

Hematoxylin and eosin-stained sections of lung lobes from representative animals in the study at (20x) magnifications. Scale bars = $50\mu M$.

Total pathology score

Total and average pathology scores quantified as explained in methods.



Technology Transfer:

India (Corbevax), Indonesia (IndoVac), Bangladesh, S Africa

CORBEVAX Phase 1 and Phase 2

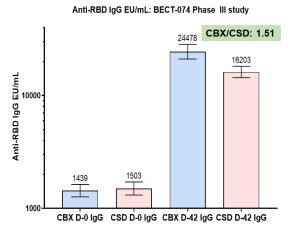
eBioMedicine

Part of THE LANCET Discovery Science

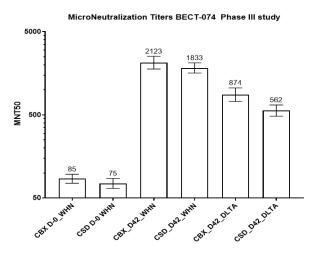
ARTICLES | VOLUME 83, 104217, SEPTEMBER 01, 2022

Evaluation of safety and immunogenicity of receptor-binding domainbased COVID-19 vaccine (Corbevax) to select the optimum formulation in open-label, multicentre, and randomised phase-1/2 and phase-2 clinical trials

Subhash Thuluva A D • Vikram Paradkar • Subba Reddy Gunneri • Vijay Yerroju • Rammohan Mogulla • Kishore Turaga • et al. Show all authors


Open Access • Published: August 12, 2022 • DOI: https://doi.org/10.1016/j.ebiom.2022.104217 •

Immunogenic superiority and safety of Biological E's CORBEVAX™ vaccine compared to COVISHIELD™ (ChAdOx1 nCoV-19) vaccine studied in a phase III, single blind, multicenter, randomized clinical trial


Anti-RBD IgG concentration

Texas Children's Hospital

Vaccine Arm & Number of subjects	Day-0 Testing		Day-42 testing		Ratio of Corbevax to Covishield	% SCR
	GMC ; EU/mL	95% CI	GMC, EU/mL	95% CI		
Corbevax N=304	1439	1268 -1633	24478	21075 -28431		91%
Covishield	1503	1316 – 1716	16203	14428 – 18196	1.51	88%

nAb titers against Wuhan and Delta strains

	# of Subjects	MNT Titres GMT (95% CI)
CX-day-0	303	85 (75 – 96)
D-day-0	307	75 (65 - 86)
Corbevax-	301-Wuhan 95% SCR	2123 (1801 – 2514)
day-42	301-Delta	874 (724 – 1055)
Covishield	304-Wuhan 94% SCR	1833 (1632 - 2089)
- day-42	304-Delta	562 (482 – 657)

CORBEVAX in Children & Adolescents

Vaccine

Available online 31 October 2022

In Press, Corrected Proof (?)

Safety, tolerability and immunogenicity of Biological E's CORBEVAX™ vaccine in children and adolescents: A prospective, randomised, double-blind, placebo controlled, phase-2/3 study

Subhash Thuluva ^a $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Vikram Paradkar ^a, Subhash Thuluva ^a $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$ Nikram Paradkar ^a, Subhash Thuluva ^a $\stackrel{\circ}{\sim}$ $\stackrel{\longrightarrow}{\sim}$ $\stackrel{\longrightarrow}{\sim}$ $\stackrel{\longrightarrow}{\sim}$ $\stackrel{\longrightarrow}{\sim}$ Nikram Paradkar ^a, Subhash Thuluva ^a $\stackrel{\longrightarrow}{\sim}$ $\stackrel{\longrightarrow}{\sim}$ Pothakamuri Venkata Suneetha^a, Kishore Turas Adabala a, Aditya Sri Javvadi a, Guruprasad Medi Aymaan Zaheer b, Amit Awasthi b, Manish Nara

Show more 🗸

+ Add to Mendeley & Share 55 C

https://doi.org/10.1016/j.vaccine.2022.10.045

Highlights

- Limited data availble on safety and immunogenicity of sub unit COVID-19 vaccines in children from large phase-3 trials.
- · We demonstrated the safety and immunogenicity of RBD based sub unit covid-19 vaccine (CORBEVAXTM) in pediatric population.
- CORBEVAX™ was found to be safe and tolerable when compared to placebo group.
- · The nAbs elicited in pediatric age cohorts were non-inferior to the adult cohort in terms of ratio of GMT's.

Times of India March 15, 2022

Indovac (BioFarma) Indonesia

A Second Chance for Equity

Comment

https://doi.org/10.1038/s41579-022-00824-8

SARS-CoV-2 variants offer a second chance to fix vaccine inequities

Peter J. Hotez

Global COVID-19 vaccine equity remains aspirational for much of the world. But the emergence of rapidly evolving SARS-CoV-2 variants provides new opportunities to correct past public policies, support local vaccine production and combat rising anti-vaccine aggression.

Omicron RBD-escape subvariants, will the death rate increase further? The key to prevent this from happening is to look at lessons learned during the first years of the pandemic, when LMICs were denied access to mRNA vaccines in adequate amounts. The countries could not afford them, and vaccine donations came too little, too late. Beyond the tragic losses in life that ensued, this situation bred resentment among LMIC populations⁴. Anti-vaccine activists from the United States and elsewhere also piled on to promote widespread vaccine hesitancy and refusal⁵.

This time around, we cannot afford to repeat the missteps of 2020–

2022 We must ansure a rapid turner and of next generation be estars

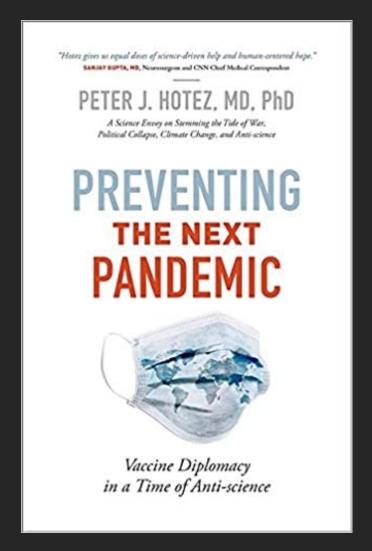
WHO Immunization Agenda 2030

IMPLEMENTING THE IMMUNIZATION AGENDA 2030:

A Framework for Action through Coordinated Planning, Monitoring & Evaluation, Ownership & Accountability, and Communications & Advocacy

The Concern

- We don't bounce back
- A new rise in US and global antivaccine activism
- Something new and ominous has happened



New 21st Century Drivers

- Poverty
- War
- Political Instability
- Urbanization
- Deforestation
- Climate Change
- Anti-Science

Antivaccine-Antiscience Ecosystems and Empires

V.1.0 Vaccines and Autism V.2.0
Politicization
Health
Freedom

V.3.0 Globalization "The Empire"

V.1.0: Vaccines and Autism "Moving Goalposts"

Autism

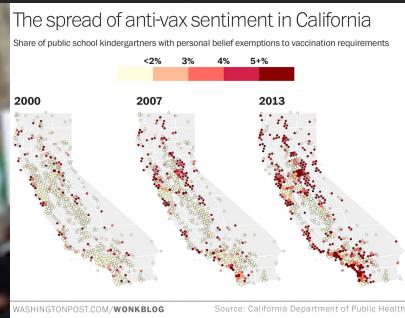
Spacing Alum

HPV

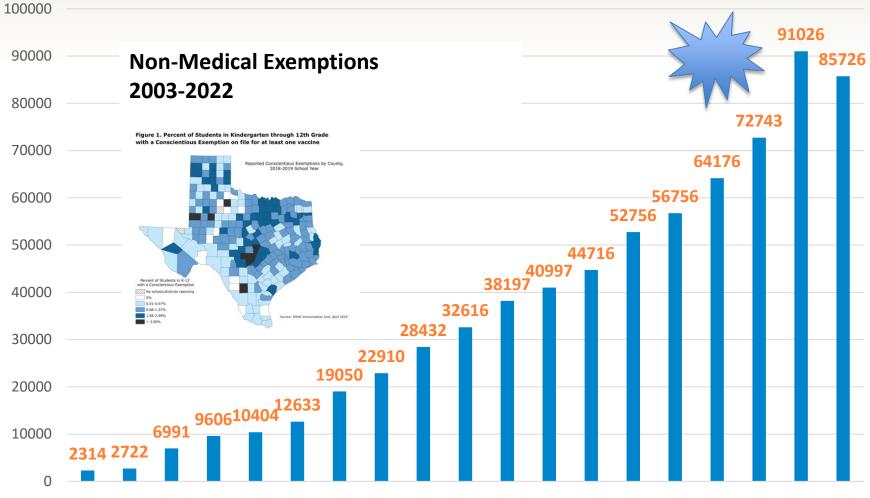
Infertility
Autoimmunity

Chronic Illness

Vaccine Scientist, Pediatrician, Parent of Adult Daughter with Autism, and the "OG Villain"



V.2.0: Origins of the Health Freedom Movement in Orange CA



Expansion of Health Freedom to Texas

Texas Antivax Protests April 2019

PUBLISH

ABOUT

BROWSE

PLOS GLOBAL PUBLIC HEALTH

OPINION

The great Texas COVID tragedy

Peter J. Hotez 🗹

Published: October 20, 2022 • https://doi.org/10.1371/journal.pgph.0001173

Article	Authors	Metrics	Comments	Media Coverage
*				

References

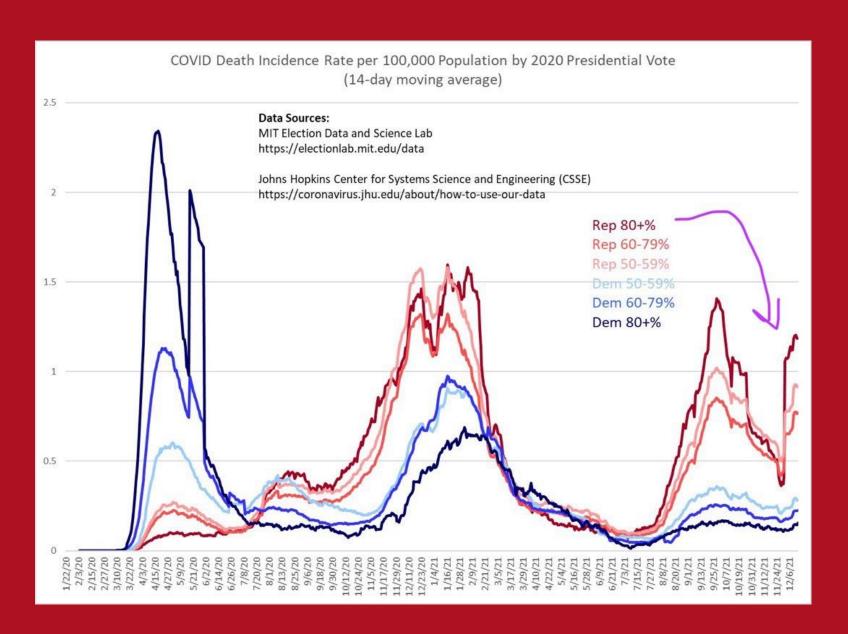
Figures

Reader Comments

Figures



Daily Trends in Number of COVID-19 Deaths in Texas Reported to the CDC, per 100,000 population, 2020–2022


Antiscience Kills: 200,000 Americans Needlessly Lost

USA: Up to 40% of Deaths after COVID-19 Vaccines Widely Available After May 1, 2021

Red COVID Deaths

V.3.0: Globalization of American Anti-Science Western Europe, Canada, African Nations

nature reviews immunology

COMMENT

Will anti-vaccine activism in the USA reverse global goals?

Peter J. Hotez

In the time of the COVID-19 pandemic, anti-vaccine activism in the USA accelerated, amplified and formed an alliance with political groups and even extremists. An organized, well-funded and empowered anti-science movement now threatens to spill over and threaten all childhood immunizations in the USA and globally.

