## Introduction and Historical Perspective

\*\*\*\*\*

### Anthony L. Komaroff, MD

Simcox-Clifford-Higby Professor of Medicine, Harvard Medical School; Senior Physician, Brigham and Women's Hospital

\*\*\*\*\*

### NASEM Workshop:

Toward A Common Research Agenda in Infection-Associated Chronic Illnesses

June 29, 2023

### **TOPICS TO BE COVERED**

- A similar group of symptoms are experienced by a subset of people following a variety of acute infections: viral, bacterial and protozoal
- These symptomatically similar syndromes may share similar pathophysiology: emerging evidence from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID.
- What triggers the shared pathophysiology and leads to the symptoms of the illness: the sickness behavior theory?
- The impact of these problems on society

### **Post-Acute Infection Syndromes**

Choutka J...Iwasaki A. Unexplained post-acute infection syndromes. Nat Med 2022;28(5):911-923.

### **Post-Acute Infection Syndromes**

- Infectious-like illnesses<sup>1-3</sup>
- Epstein-Barr virus<sup>4,6,7</sup>
- Lyme disease<sup>5</sup>
- Coxiella burnetti<sup>7</sup>
- Ross River virus<sup>7</sup>
- Mycoplasma pneumoniae<sup>8</sup>
- Enteroviruses<sup>9</sup>
- Human herpesvirus-6<sup>10</sup>

- Ebola<sup>11</sup>
- West Nile Virus<sup>12</sup>
- SARS<sup>13</sup>
- Dengue<sup>14</sup>
- Parvovirus<sup>15</sup>
- Giardia<sup>16</sup>
- COVID-19<sup>17</sup>

<sup>&</sup>lt;sup>1</sup> Shelokov A. *NEJM* 1957:257:345.

<sup>&</sup>lt;sup>2</sup> Poskanzer DC. NEJM 1957:257:356.

<sup>&</sup>lt;sup>3</sup> Acheson ED. *Am J Med* 1959;4:569.

<sup>&</sup>lt;sup>4</sup> Jones JF. *Ann Intern Med* 1985;102:1.

<sup>&</sup>lt;sup>5</sup> Sigal LH. *Am.J.Med.* 88:577-581, 1990.

<sup>&</sup>lt;sup>6</sup> White PD. *Br J Psychiatry* 1998;173:475

<sup>&</sup>lt;sup>7</sup> Hickie I. *BMJ*;2006;333:575.

<sup>8</sup> Salit IE. Can Dis Wkly 1991;17:E:9.

<sup>&</sup>lt;sup>9</sup> Chia JKS. *J Clin Pathol* 2008;61:43.

<sup>&</sup>lt;sup>10</sup> Komaroff AL. *J Clin Virol* 2006;37:S39.

<sup>&</sup>lt;sup>11</sup> Epstein L. *NEJM 2015;*373:2483.

<sup>&</sup>lt;sup>12</sup> Sejvar JJ. *J Neuropsychol* 2008;2:477.

<sup>13</sup> Moldofsky H. *BMC Neurol 2011;*11:37.

<sup>&</sup>lt;sup>14</sup> Seet RC, et al. *J Clin Virol* 2007;38:1.

<sup>&</sup>lt;sup>15</sup> Kerr JR, et al. *J.Gen.Virol.* 2010;91:893.

<sup>&</sup>lt;sup>16</sup> Litleskare S. *Gast Hepatol* 2018;16:1064

<sup>&</sup>lt;sup>17</sup> Komaroff AL. *Front Med 2021;*7, 606824.

### Symptoms of ME/CFS and Long COVID: Similarities and (a few) Differences

### Symptoms: ME/CFS vs. Long COVID

|                         | ME/CFS   | LC           |
|-------------------------|----------|--------------|
| Fatigue                 | <b>V</b> | <b>V</b>     |
| Post-exertional malaise | √        | <b>√</b>     |
| Orthostatic intolerance | √        | <b>V</b>     |
| Sleep disorder          | <b>V</b> | <b>√</b>     |
| <b>▼</b> cognition      | <b>V</b> | <b>√</b>     |
| <b>▼</b> memory         | <b>V</b> | <b>V</b>     |
| <b>▼</b> attention      | <b>V</b> | $\checkmark$ |
| Depression              | <b>V</b> | <b>V</b>     |
| Anxiety                 | <b>V</b> | <b>V</b>     |
| ▼ activity              | <b>V</b> | <b>V</b>     |
| Myalgia                 | <b>V</b> | <b>V</b>     |
| Headache                | √        | <b>√</b>     |
| Arthralgia              | 1        | <b>√</b>     |
| Hot/cold spells         | <b>√</b> | <b>√</b>     |

|                               | ME/CFS       | LC           |
|-------------------------------|--------------|--------------|
| Anorexia                      | $\checkmark$ | $\sqrt{}$    |
| Muscle weakness               | <b>√</b>     | <b>√</b>     |
| Palpitations                  | V            | 1            |
| Dyspnea                       | <b>√</b>     | <b>√</b>     |
| GI (n/v, diarrhea)            | <b>√</b>     | <b>√</b>     |
| Fever/chills                  | $\checkmark$ | $\checkmark$ |
| Cough                         | <b>√</b>     | $\checkmark$ |
| Sore throat                   | <b>√</b>     | <b>√</b>     |
| <b>Chemical sensitivities</b> | <b>√</b>     |              |
| Tinnitus                      | <b>√</b>     |              |
| Lymph ▲, pain                 | $\checkmark$ |              |
| ▼ smell/taste                 |              | <b>√</b>     |
| Speech problems               |              | <b>√</b>     |
| Rash/hair loss                |              |              |

From: Wong TL, Weitzer DJ. Medicina 2021;57:418 (syst. rev. of 21 studies)

### Symptoms: ME/CFS vs. Long COVID

|                         | ME/CFS   | LC       |
|-------------------------|----------|----------|
| Fatigue                 | <b>V</b> | <b>V</b> |
| Post-exertional malaise | √        | <b>√</b> |
| Orthostatic intolerance | √        | <b>√</b> |
| Sleep disorder          | <b>√</b> | <b>V</b> |
| <b>▼</b> cognition      | <b>V</b> | <b>V</b> |
| <b>▼</b> memory         | <b>V</b> | <b>V</b> |
| <b>▼</b> attention      | <b>V</b> | <b>V</b> |
| Depression              | <b>V</b> | <b>V</b> |
| Anxiety                 | <b>√</b> | <b>√</b> |
| <b>▼</b> activity       | <b>V</b> | <b>√</b> |
| Myalgia                 | <b>V</b> | <b>V</b> |
| Headache                | <b>V</b> | <b>V</b> |
| Arthralgia              | <b>√</b> | <b>√</b> |
| Hot/cold spells         | √        | <b>√</b> |

|                               | ME/CFS   | LC           |
|-------------------------------|----------|--------------|
| Anorexia                      | V        | $\sqrt{}$    |
| Muscle weakness               | √        | 1            |
| Palpitations                  | V        | 1            |
| Dyspnea                       | <b>√</b> | <b>V</b>     |
| GI (n/v, diarrhea)            | <b>√</b> | <b>√</b>     |
| Fever/chills                  | <b>√</b> | $\checkmark$ |
| Cough                         | <b>√</b> | $\checkmark$ |
| Sore throat                   | <b>V</b> | <b>V</b>     |
| <b>Chemical sensitivities</b> | <b>√</b> |              |
| Tinnitus                      | <b>√</b> |              |
| Lymph ▲, pain                 | <b>√</b> |              |
| ▼ smell/taste                 |          | <b>V</b>     |
| Speech problems               |          | <b>√</b>     |
| Rash/hair loss                |          | <b>√</b>     |

From: Wong TL, Weitzer DJ. Medicina 2021;57:418 (syst. rev. of 21 studies)

## So ME/CFS and Long COVID have similar symptoms.

But are there *objective* biological abnormalities?

If so, are they similar?

## Review Article On The Pathophysiology of Long COVID

Davis HE, McCorkell L, Vogel LM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023(3):133-46.

### Review Article Comparing Biology of **ME/CFS and Long COVID**

Komaroff AL, Lipkin WI. ME/CFS and Long **COVID** share similar symptoms and biological abnormalities: Road map to the literature. Frontiers in Medicine 2023;10:1187163. doi: 10.3389/fmed.2023.1187163

Detailed comparison of neurological, immunological, infectious, microbiome, metabolic, and cardiopulmonary abnormalities.

560 references.

## Underlying Biological Abnormalities In Different Systems, In Both Diseases

- Immune system
- Reactivated viruses
- Central and autonomic nervous system
- Metabolism
- Cardiovascular and pulmonary system
- Gut microbiome

## ME/CFS vs. Long COVID: Neurological Abnormalities

| Finding                                              | ME/CFS | Long COVID |
|------------------------------------------------------|--------|------------|
| Cognitive deficits                                   | X      | X          |
| Autonomic dysfunction                                | X      | X          |
| Neuroendocrine abnormalities                         | X      | X          |
| Neurovascular abnormalities                          | X      | X          |
| Autoantibodies against neural targets in CNS and ANS | X      | X          |
| Hypometabolic state in the brain                     | X      | X          |
| Gray and white matter abnormalities on imaging       | X      | X          |
| Small fiber neuropathy                               | X      | X          |
| Neuroinflammation on imaging                         | X      | X          |

From: Komaroff AL, Lipkin WI. Front Med 2023;10:1187163

## ME/CFS vs. Long COVID: Metabolic Abnormalities

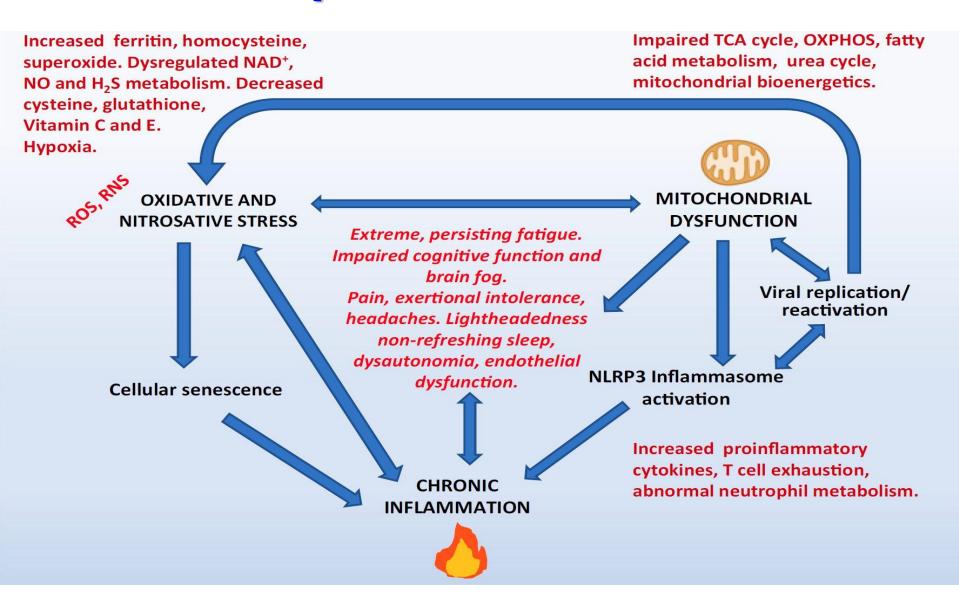
| Finding                                                          | ME/CFS | Long COVID |
|------------------------------------------------------------------|--------|------------|
| ↓ ATP production from O₂<br>(impaired OxPhos)                    | X      | X          |
| ↓ ATP production from glucose<br>(both TCA cycle and glycolysis) | X      | X          |
| ↓ ATP production from fatty acids                                | X      | X          |
| ↓ ATP production from amino acids                                | X      | X          |
| Redox imbalance (oxidative stress and nitrosative stress)        | X      | X          |
| Hypometabolic state, blood & brain                               | X      | X          |

From: Komaroff AL, Lipkin WI. Front Med 2023 (in press)

## ME/CFS vs. Long COVID: Cardipulmonary Abnormalities

| Finding                                                      | ME/CFS | Long COVID |
|--------------------------------------------------------------|--------|------------|
| Diminished exercise capacity (↓ VO₂ max)                     | X      | X          |
| Reduced ventilatory efficiency (↑ VE/VCO <sub>2</sub> slope) | X      | X          |
| Endothelial dysfunction                                      | X      | X          |
| ↑ oxidative stress with exercise                             | X      |            |
| ↓ venous return to the heart<br>(preload)                    | x      | X          |
| Platelet abnormalities                                       | X      | X          |

From: Komaroff AL, Lipkin WI. Front Med 2023 (in press)


### **Low-Grade Chronic Gut Inflammation**

#### Due in part to:

- Reduced numbers of bacteria producing anti-inflammatory molecules (e.g., butyrate and acetate)<sup>1,2</sup>...
- ...and that correlate strongly with severity of fatigue<sup>1</sup>
- Reduced levels of these molecules in stool<sup>1</sup> and plasma<sup>2</sup>
- Dysbiosis wanes over years, but is followed by longlasting metabolic changes, particularly in lipids<sup>2</sup>
- Resulting gut inflammation allows bacterial products and organisms to enter the systemic circulation<sup>3,4</sup>, possibly causing systemic and neuro-inflammation
- Replicated in multiple cohorts of ME/CFS<sup>1,2</sup>

## What Triggers the Pathophysiology of ME/CFS and Long COVID?

### Relationship Between Abnormalities



From: Paul B, Lemle M, Komaroff AL, Snyder SH. PNAS 2021;118(34):e2024358118

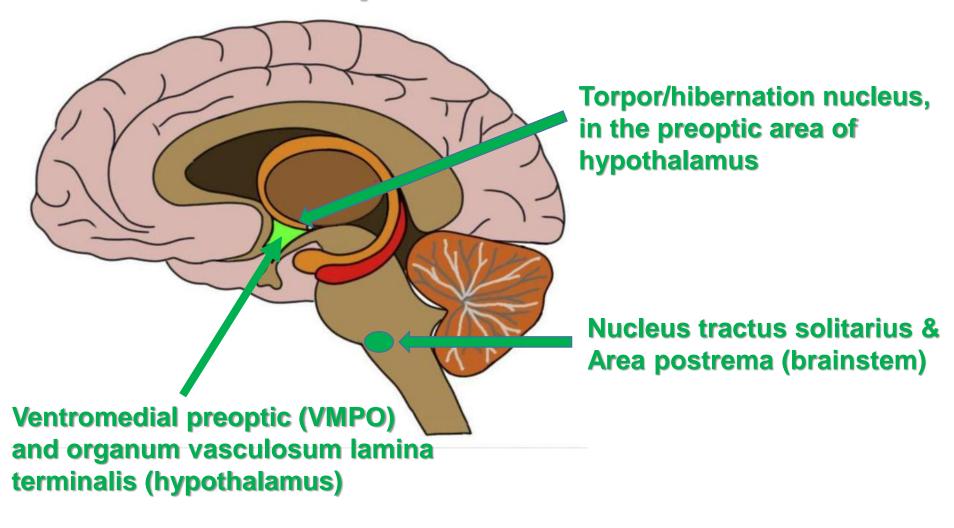
# What Causes the Symptoms Of ME/CFS and Long COVID? The Sickness Behavior Hypothesis

## How People Describe Symptoms Of ME/CFS and Long COVID

"It's like a flu that never goes away."

## Is There A Reason Why We Feel The Way We Do When We Get Infected?

- Sickness symptoms are a hard-wired, evolutionarily-preserved protective response
- The sickness symptoms lead to behavioral change, to sickness behaviors: less physical and mental activity, less eating and digestion, less sex—less of major energy-consuming behaviors, preserving available ATP to fight the infection until it is eradicated

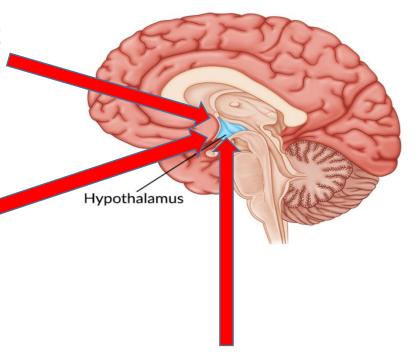

## In ME/CFS and Long COVID This Response *Persists*

- The inflammation, and the source of the inflammation (such as microbes or the tissue injury caused by microbes), persists
- The protective response, meant to be temporary, gets "stuck": the neurochemical mechanism to turn it off is defective

### What Is Causing the Symptoms?

- So, these "sickness symptoms" persist in people with ME/CFS and Long COVID
- But what is causing the symptoms?
  - Symptoms are experienced in the brain.
  - A set of symptoms that has been preserved by evolution is likely orchestrated by a group of neurons (nucleus) dedicated to that task
  - Molecular switches activate/inactivate those nuclei

### Discovery of Sickness Symptoms And Torpor Nuclei in Mice




Osterhout J...Dulac C. Nature 2022;606:937. Ilanges, A. et al. Nature 2022;609:761. Hrvatin S. Nature 2020;583:115. Takahashi T. Nature 2020;583:109

### How SARS-CoV-2 and Other Microbes Could Chronically Stimulate the Brain's Nuclei

New microbes infect, or latent viruses are reactivated, in the brain: brain inflammation

Infection outside the brain:
systemic inflammation ▶
brain inflammation through
both humoral and neural
pathways



Pro-inflammatory gut microbiome, creates systemic inflammation

brain inflammation

## How Serious Are These Problems for Society?

### Impact of ME/CFS & Long COVID in US

### ME/CFS

- 2.5 million cases<sup>1</sup>
- Direct/indirect costs: \$17-24 billion/year<sup>1</sup>

#### **Post-COVID Illnesses**

- 16 million cases<sup>2</sup>
- Direct/indirect costs: \$ 544 billion/year,
   \$3.7 trillion over next 5 years<sup>3</sup>

<sup>&</sup>lt;sup>1</sup>CDC and National Academy of Medicine, 2015

<sup>&</sup>lt;sup>2</sup>Brookings Institution; Nat. Ctr. for Health Statistics

<sup>&</sup>lt;sup>3</sup>Cutler D, Summers LH. JAMA 2020;324:1495

### Conclusion

### In Summary...

- ME/CFS and Long COVID and other postinfection illnesses share similar symptoms
- ME/CFS and Long COVID also share underlying pathophysiology: primarily, central and autonomic nervous system, immune system, infection, gut microbiome, energy metabolism, oxidative stress, cardiopulmonary exercise test and other cardiovascular abnormalities
- Is this pathophysiology also shared with other post-infection syndromes?

### In Summary...

- In both illnesses, the symptoms may reflect the expression of an ancient, evolutionarilypreserved, orchestrated response meant to be protective — a "sickness behavior response" — the final common pathway of which involves activation of neurons dedicated to generating sickness symptoms
- An understanding this underlying biology —
  particularly the final common pathway leading
  to symptoms will ultimately lead to good
  diagnostic tests and effective treatments