Clinical Trials For Multisystem Inflammatory Syndrome In Children (MIS-C) And Long COVID

Alessio Fasano, M.D.

W. Allan Walker Chair in Pediatric Gastroenterology and Nutrition Professor of Pediatrics Harvard Medical School Professor of Nutrition Harvard T.H. Chan School of Public Health Mucosal Biology and Immunology Research Center And Center for Celiac Research Massachusetts General Hospital for Children

Overview

- 1. Description of the target population (for inclusion & exclusion criteria)
- 2. Overview on pathogenesis to identify mechanistic targets for patients' stratification (precision medicine) and therapeutic interventions
- 3. Study design and execution

Prevalence Of Symptoms Following COVID In Children And Adolescents

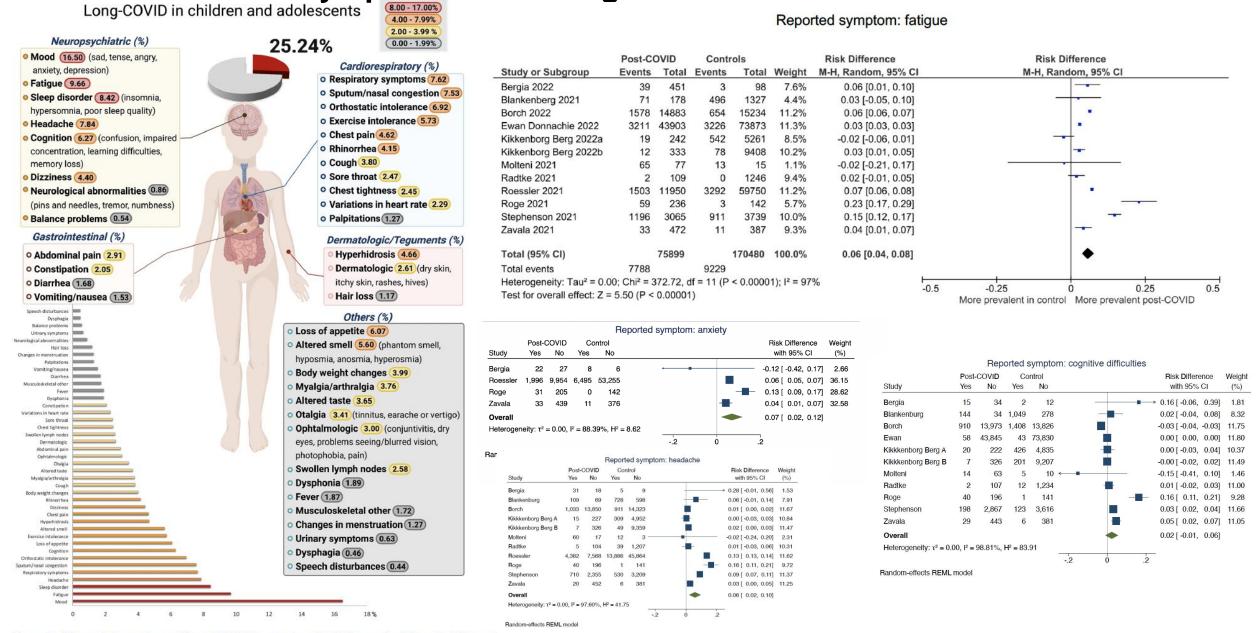
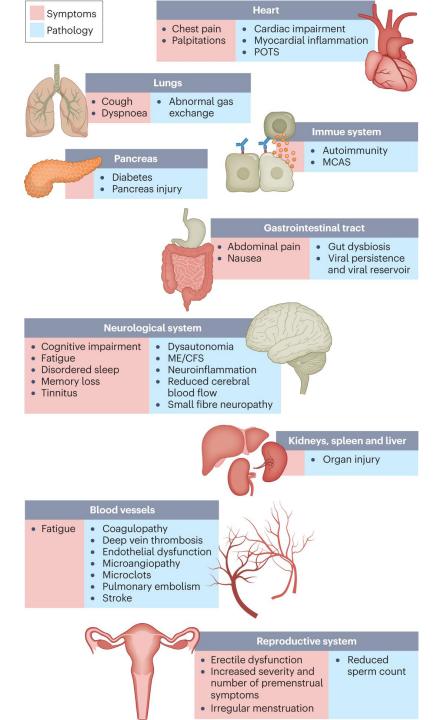
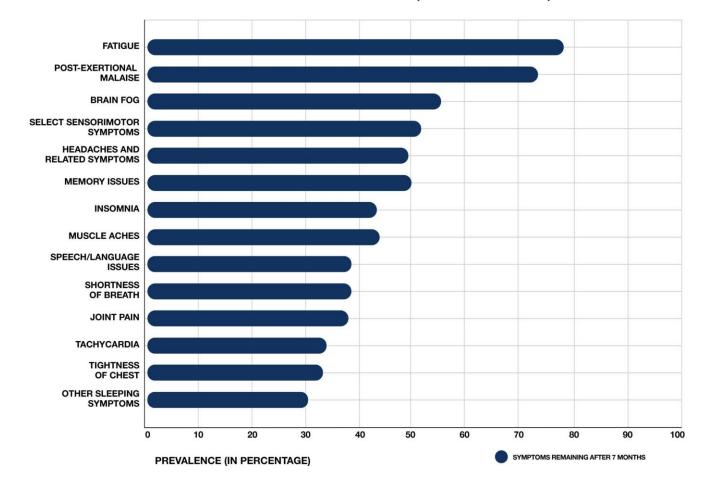
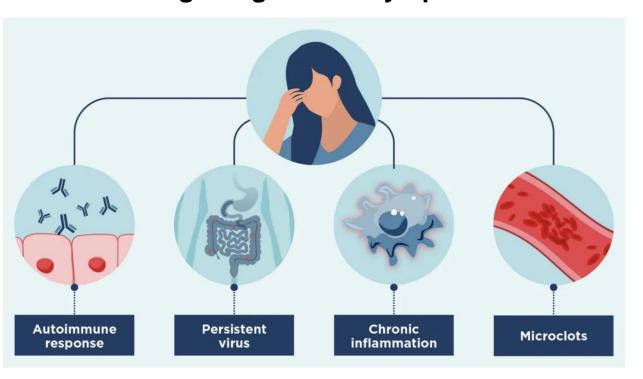
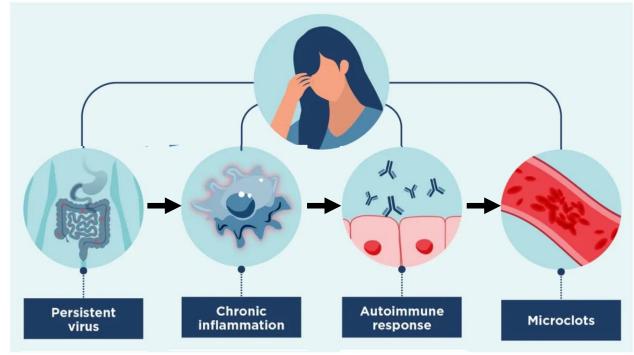




Figure 2. The pooled prevalence of long-COVID by symptoms in children and adolescents. Meta-analyses revealed that the prevalence of more than 40 long-COVID symptoms in children and adolescents. The presence of one or more symptoms following a SARS-CoV-2 infection was 25.24%.

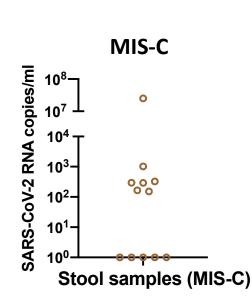

Prevalence Of Symptoms Following COVID In Adults

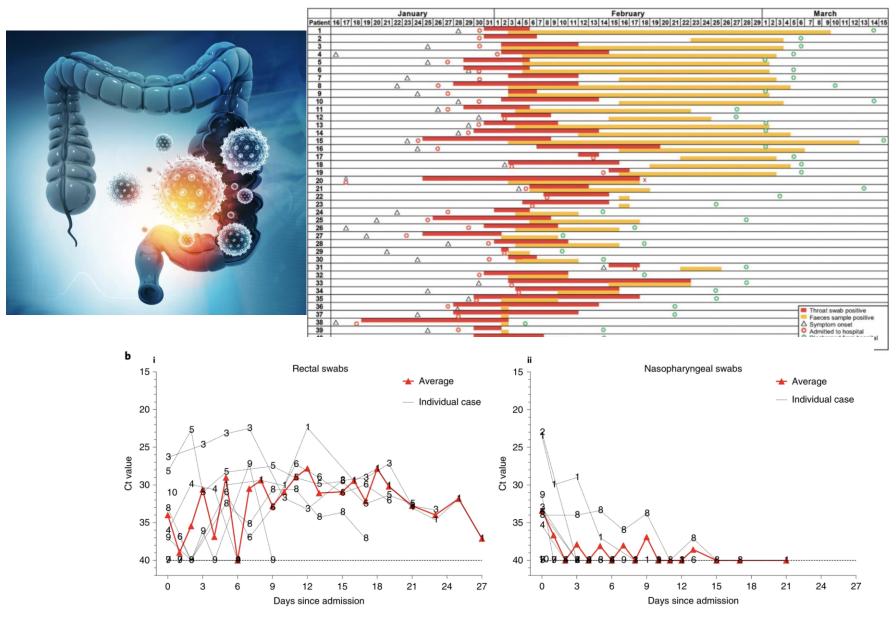
REMAINING SYMPTOMS AFTER MONTH 7 (PREVALENCE >30%)

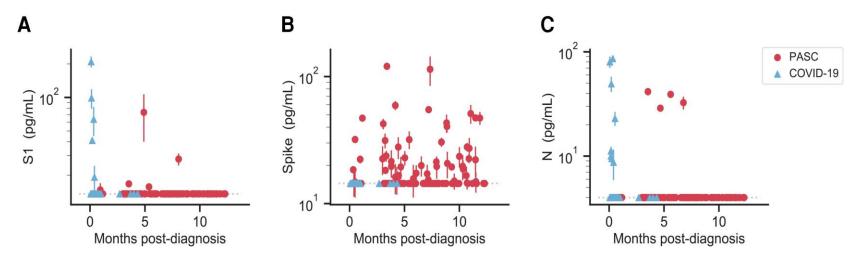


What Causes Long COVID?

Four Hypothesis As To What Might Be Causing Long COVID Symptoms




Four Interconnected Steps Leading To Long COVID Symptoms


1. Persistent Virus: The Role of The Gut in COVID-19

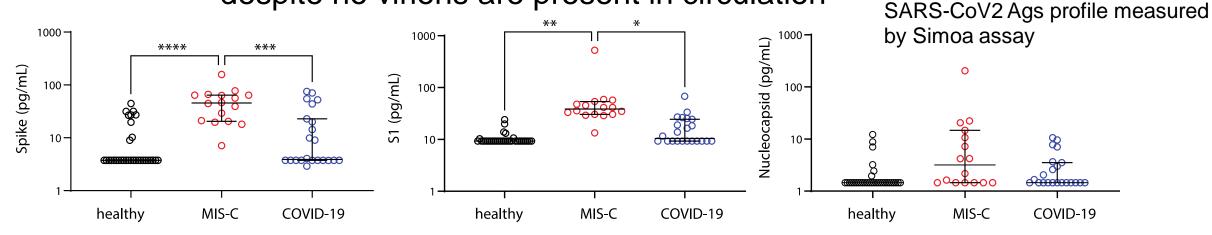
- Prolonged shedding of virus in stools
- Role in acute illness (?)
- Role in long COVID
- Role in MIS

Spike protein present in the serum of long COVID patients despite no virions are present in circulation

Spike glycoprotein (S)

Membrane protein (M)

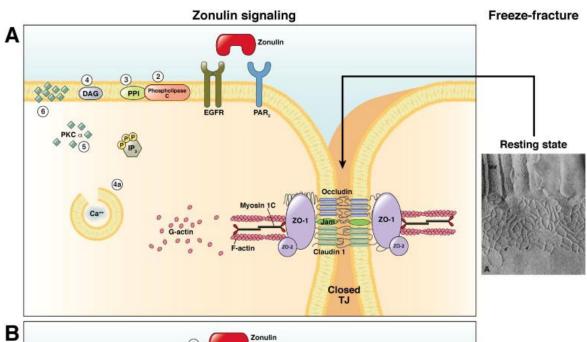
Small envelope protein (E)

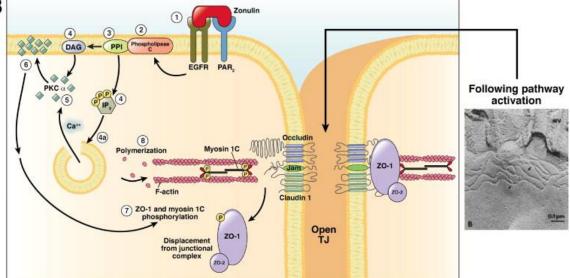

Nucleocapsid protein (N)

Genomic +ssRNA

Clin Infect Dis, Volume 76, Issue 3, 1 February 2023, Pages e487–e490, https://doi.org/10.1093/cid/ciac722

Why? How?


Spike protein is present in the serum of MIS-C patients despite no virions are present in circulation



2. Chronic Inflammation **Loss of Mucosal Immune Homeostasis** Paracellular Zonulin-dependent **SARS-CoV2** in the GI tract Normal/physiologically barrier defect leads to causes dysbiosis and controlled permeability **SARS-CoV2** spike influx Increased zonulin release SARS-CoV2 superantigen triggers **Defensins** T cell proliferation, Mucus SIgA **Synthesis & Quality** cytokines storm, and microclots **Zonulin Inhibitor** Superantigen-like activity AT1001 (Larazotide) IVIG **Microclots** Nonspecific T-cell proliferation **Mucosal Tolerance Homeostasis Endothelial vessels** Anergy SIgA Steroids Regulatory DC's Spike C3 & C4 activation Macrophages MIS-C Cytokine storm Tregs IL-1 β , IL-6, IL-8, IL-10, IP-10, IFN- γ , IL-17, TNF- α IL-10/TGF-β Hyperinflammation **Long COVID** associated with severe COVID-19

Disease	Model	PMID: Reference
ADHD	Human	36786182
Aging	Human	29896420
Ankylosis spondylitis	Human	28069576
Autism	Human	36447452
Bipolar Disorders	Human	37098666
Celiac Disease	Human	32162764
Colitis/IBD (Crohn's disease)	Human	34979917
Colitis	Mouse	28423466
Depressive Disorders	Human	34320451
Gestational diabetes	Human	35994108
Glioma	Human	19701495
Glioma	Cells	23637756
Irritable bowel syndrome	Human	31210949
HIV	Human	29762690
Long COVID	Human	1182544
MIS-C	Human	34032635
ME/CFS	Human	35946099
Multiple sclerosis	Cells	30449598
Multiple sclerosis	Mouse	25184418
Multiple sclerosis	Human	31317818
Necrotizing Enterocolitis (NEC)	Human	35279661
Nonalcoholic fatty liver disease	Human	32255299
Non-Celiac Gluten Sensitivity	Human	32060130
Obesity/Insulin resistance	Human	35666025
Sepsis	Human	23457771
Type 1 diabetes	Human	16644703
Type 2 diabetes	Human	24347174

Literature Report On Zonulin Association With CID

MIS-C is driven by zonulin-dependent loss of gut mucosal barrier

Exposure to SARS-CoV-2 Gut SARS-CoV-2 in the GI tract Hyperinflammatory response viral RNA GI tract **Bloodstream** IFN-γ, TNF-α, IL-6, IL-10, IL-1β Lamina propria perantigen motifs (normalized concentration) *** **** 1000-Spike (pg/mL) 100-Zonulin 14 10-

MIS-C

Control

COVID-19

MIS-C

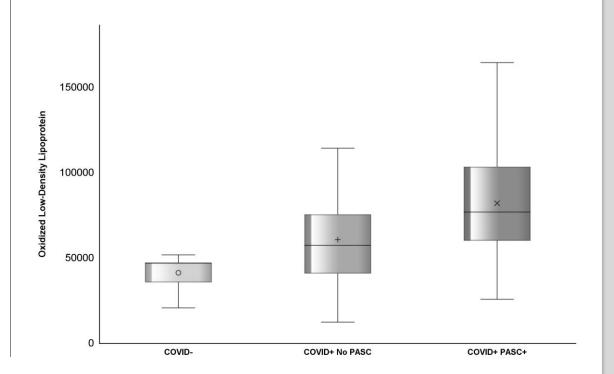
Control

COVID-19

Pathogenesis of MIS-C

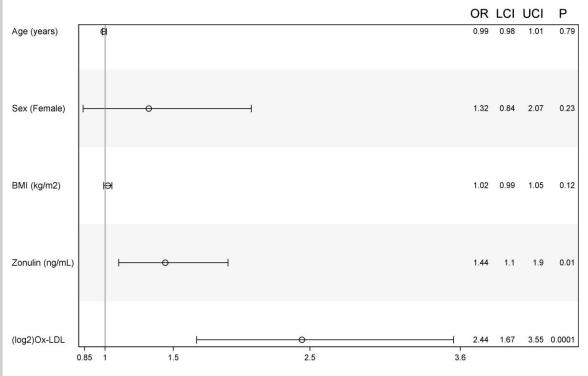
- SARS-CoV-2 detected in the stool weeksmonths after COVID-19 first encounter.
- SARS-CoV2 presence in GI tract causes microbiome imbalance (dysbiosis)
- Zonulin release detected in MIS-C plasma.
- Highly inflammatory viral particles leak into circulation.
- Current treatments target immune hyperactivation, not mucosal barrier integrity.

Increase In Zonulin And Oxidized LDL Is Associated With Post-Acute Sequelae of SARS-CoV-2


		CO'	COVID+	
	COVID- (n=258)	No PASC (n=72)	PASC+ (n=85)	p-value
	n (%)	or median (IQR) / mean	± std	
Age (years)	43.68 ± 13.69	44.85 ± 13.31	47.81 ± 13.49	0.05
Female Sex	101 (24.34)	35 (8.43)	50 (12.05)	0.01
Non-white Race*	108 (26.02)	25 (6.02)	26 (6.27)	0.14
BMI (kg/m2)	27.91 ± 6.05	30.68 ± 9.49	31.82 ± 8.63	0.0002
Current Smoker	158 (38.35)	19 (4.61)	9 (2.18)	<.0001
Median number of days from infection	**	292 (IQR: 172, 518)	229 (IQR: 147, 478)	0.22
Comorbidities				
Hypertension	27 (10.47)	14 (19.44)	23 (27.06)	0.001
Diabetes	5 (1.94)	5 (6.94)	9 (10.59)	0.0002
HIV infection	98 (37.98)	22 (30.56)	22 (25.88)	0.1
Medications				
Statin	5 (1.94)	11 (14.1)	10 (9.17)	0.28
Ox-LDL (U/L)	47.02 (35.52, 62.77)	57.24 (40.7, 75.37)	76.75 (59.95, 103.28)	<.0001
IL-6 (pg/ml)	2.65 (1.62, 4.25)	2.21 (1.44, 3.63)	2.46 (1.77, 4.01)	0.25
D-dimer (ng/mL)	423.7 (256.02, 705.09)	429.96 (243.58, 677.41)	451.57 (266.36, 626.74)	0.93
hs-CRP (ng/ml)	2720.07 (941.82, 7205.25)	2764.87 (1188.0, 7241.84)	3182.65 (1423.9, 8931.79)	0.35
sTNF-RI (pg/ml)	1103.11 (887.11, 1375.03)	966.99 (755.06, 1331.06)	1099.98 (886.19, 1316.1)	0.08
Zonulin (mg/mL)	3.37 (2.13, 4.91)	3.43 (1.65, 5.25)	4.76 (3.2, 7.35)	<.0001
LBP (ng/mL)	16657.37 (11899.67, 21686.01)	14441.98 (9919.42, 23111.83)	16438.56 (10640.08, 22563.73)	0.66

Characteristics of participants by COVID and PASC (Long COVID) Status

Distribution of Zonulin by COVID And PASC Status


15.0 12.5 10.0 7.5 5.0 2.5 0.0 COVID- COVID- No PASC COVID+ PASC+

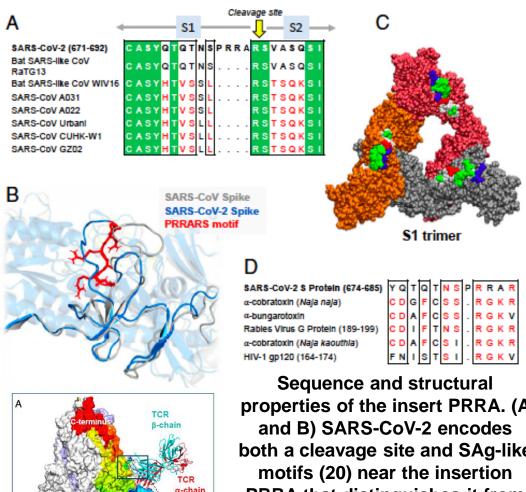
Distribution of Oxidative-LDL by COVID And PASC Status

Mouchati C et al, Front Immunol, 2023

Association of Gut Permeability And Oxidated-LDL with PASC

^{*}Race*Smoke[aOR:3.85(95%CI:1.41,10.51; p=0.01)]
*LCL = lower confidence limit; UCL = upper confidence limit

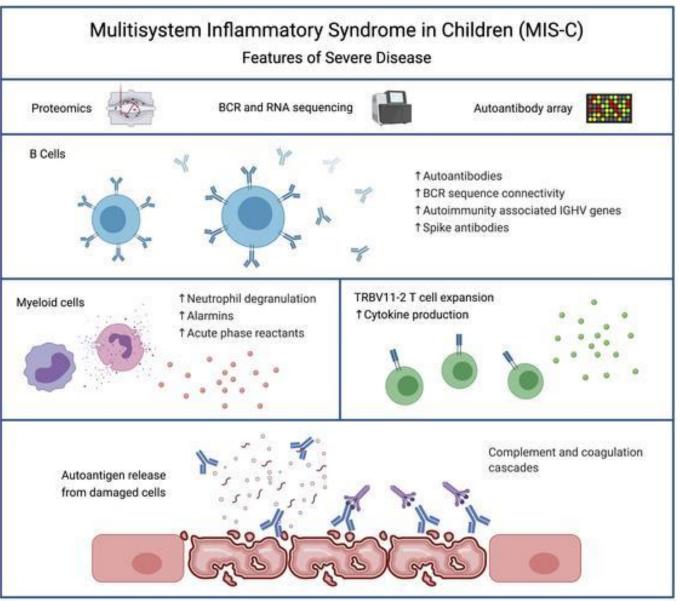
Independent Associations with COVID+ PASC+


	uOR (95% CI)*	p-value
Age	1.02 (1.002, 1.03)	0.02
Female vs. Male Sex	1.88 (1:26.2.78)	0.001
non-White vs. White Race	506 (0.44, 0.99)	0.04
BMI	1.02 (1.002, 1.03) 1.88 (1.26.2.78) 1.06 (1.03, 1.09) 0.13 (0.08, 0.22)	<.0001
Current Smoker	0.13 (0.08, 0.22)	<.0001
IL-6	0.84 (0.65, 1.09)	0.2
hs-CRP	1.09 (0.95, 1.26)	0.23
D-dimer	0.86 (0.68, 1.07)	0.18
Ox-LDL	Biomarkers	<.0001
Zonulin Poten	tial Biomankers 1.48 (1.14, 1.91)	0.003
LBP	0.8 (0.61, 1.06)	0.12

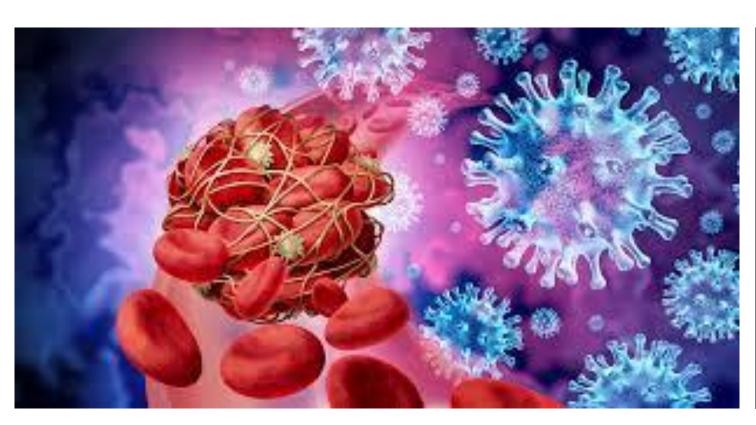
^{*}uOR=Unadjusted Odds Ratio and 95% Confidence Intervals. Numbers in Bold indicates statistical significance (P < 0.05).

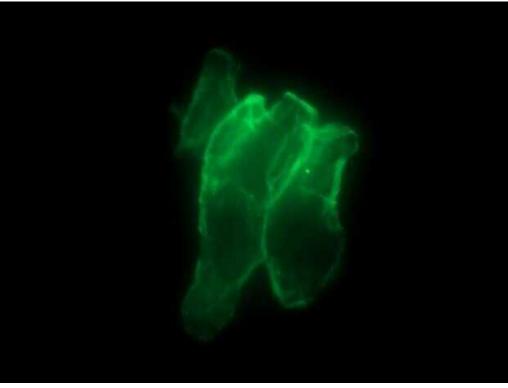
Mouchati C et al, Front Immunol, 2023

3. Autoimmune Response Post-COVID-19 Autoimmunity Reports


- 1.Immune thrombocytopenic purpura ITP
- 2.Guilliam Barrè Syndrome (GBS)
- 3.Miller Fisher Syndrome (MFS)
- 4. Antiphospholipid antibodies and thrombosis
- 5.Multisystem inflammatory syndrome in children (MIS-C) (?)
- 6. Long COVID (?)

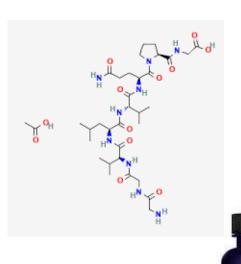
properties of the insert PRRA. (A both a cleavage site and SAg-like PRRA that distinguishes it from all SARS-related β-CoVs

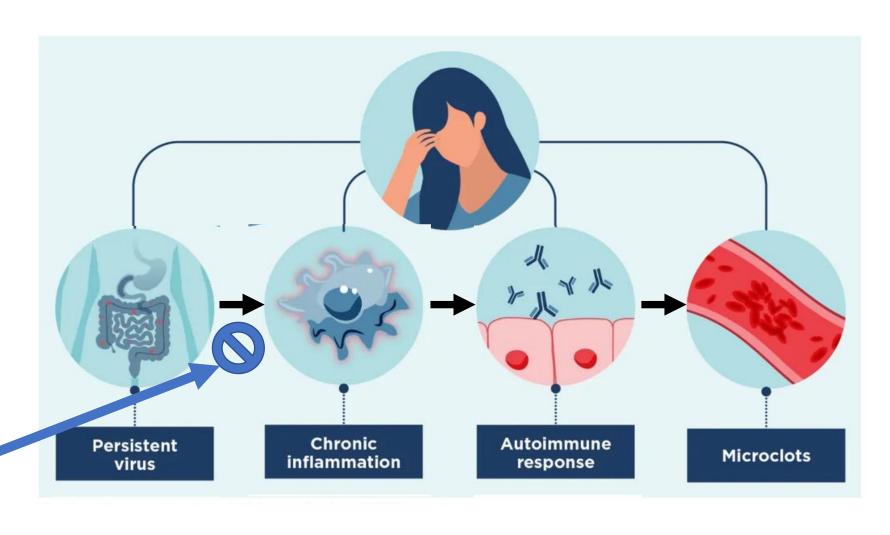

Binding of TCR to SARS-CoV-2 spike trimer near the "PRRA" insert


Spike Superantigen Structural Signature Supported by **Skewed TCR Repertoire in Children Affected By MIS-C**

Cheng M.H. et al PNAS 2020 Porritt R.A. et al , J Clin Invest 2021

4. Microclots

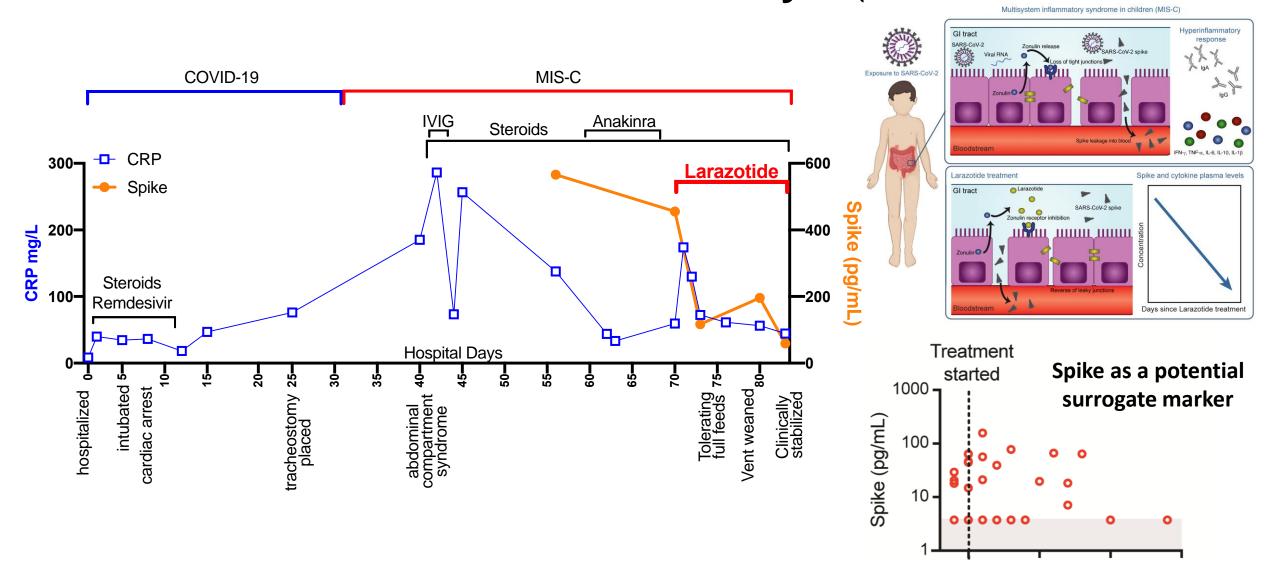




The spike protein has the capability to change soluble clotting proteins to insoluble little microclots

Blocking Zonulin to Stop The March Toward Chronic Inflammation Onset (Experimental Medicine At Work)

Zonulin Inhibitor Larazotide Acetate (AKA AT1001)


Larazotide Expedites GI Symptoms Resolution and Spike Clearance in MIS-C

- FDA approval for compassionate use
- IRB approval
- Clinical team approval
- Patient/family consent
- Larazotide 10mcg/kg (max 500mcg/dose) four times daily x 21 days

- Larazotide treatment associated with:
- Significantly shorter time to resolution of GI symptoms
- Significantly faster clearance of Spike antigenemia
- *Trend* toward improvement in:
 - Length of stay
 - Fever duration
- No escalation of care in larazotide-treated group
- Currently in phase 2 DBPC trial

Patient characteristics Age (years) Sex	Patient 1 17 F White	Patient 2 3 F Asian	Patient 3 6 F Black	Patient 4 9 M White	MIS-C with larazotide add-on vs historic controls	Larazotide treated (n=4)	Historic controls (n=22)	P value
Race, Ethnicity	Non-Hispanic	Non-Hispanic	Non-Hispanic		Age, mean years (range)	8.8 (3-17)	9.1 (1-21)	ns
SARS-CoV-2 RT-PCR or antibody positive	Yes	Yes	Yes	Yes	LOS, mean days (range)	4.5 (3-7)	7 (2-16)	ns
SARS-CoV-2 Spike antigenemia	Yes	Yes	Yes	Yes	Escalation of care, number	0	3	ns
Cardiac involvement	None	None	coronary aneurysm	Mild dilation of coronary artery	Fever duration, post steroids/IVIG, mean days (range)	0.8 (0-2)	1.6 (0-6)	ns
Gastrointestinal involvement	adbominal pain, diarrhea	abdominal pain, vomiting, diarrhea	abdominal pain, vomiting	vomiting,	Time to resolution of GI symptoms, mean days (range)	2.3 (1-3)	6.7 (1-17)	0.03
Highest level of care	Ward	Ward	PICU	Ward				
Treatment with approved, expanded use of larazotide	Yes	Yes	Yes	Yes	Time to first clearance of Spike, median days (95% CI)	1 (1-12)	10 (6-190)	0.04

Spike As A Potential Surrogate Marker For Larazotide Efficacy Signal

Yonker, Gilboa, Ogata et al, JCI, July 2021

ClinicalTrials.gov

AT1001 for the Treatment of Long COVID

About This Site ~

Data About Studies ~

Study Basics ~

ClinicalTrials.gov ID NCT05747534

Sponsor Massachusetts General Hospital

Information provided by Lael Yonker, M.D., Massachusetts General

Hospital (Responsible Party)

Last Update Posted 2023-06-22

Study Overview

Contacts and Locations

Participation Criteria

Study Plan

Collaborators and Investigators

Publications

More Information

Study Overview

Brief Summary:

The primary objective of this study is to evaluate the safety and efficacy of Larazotide (AT1001) versus placebo in children and young adults 7 to \leq 21 years of age who present with symptoms of Long COVID in the presence of SARS-CoV-2 antigenemia. AT1001 (n=32) or placebo (n=16) will be administered orally four times a day (QID) for 21 days.

Detailed Description:

This is a Phase 2a randomized, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of AT1001 for use in children and young adults with symptoms of Long COVID in the setting of SARS-CoV-2 antigenemia. Eligible participants (N= 48) will be treated with AT1001 (n= 32) or matching placebo (n= 16) orally four times a day (QID) for 21 days. The study will consist of three phases:

I. Baseline Screening Visit

After obtaining informed consent and before starting treatment with Larazotide or placebo, an initial study visit will be conducted in person to confirm subject eligibility. Subjects will be asked complete a...

+ Show more

OFFICIAL TITLE

Phase 2a Randomized, Double-Blind, Placebo-Controlled, Multi-Center Study to Evaluate the Safety and Efficacy of **Larazotide** (AT1001) for the Treatment of **Long COVID** in Children and Young Adults

STUDY START (ACTUAL) 1

2023-05-31

PRIMARY COMPLETION (ESTIMATED) 1

2025-03-31

STUDY COMPLETION (ESTIMATED) 1

2026-03-31

ENROLLMENT (ESTIMATED) 1

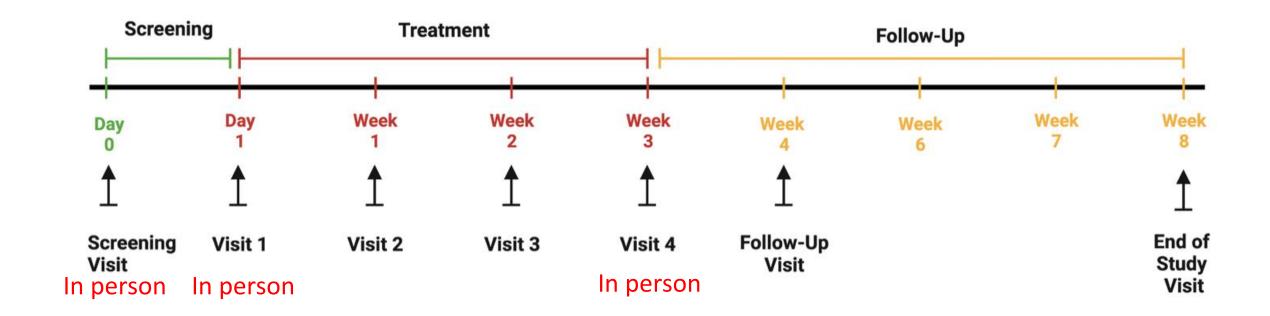
48

STUDY TYPE 1

Interventional

PHASE 1

Phase 2


OTHER CTURY IS NUMBERS

Long COVID Clinical Trial: Targeted Population

Spike/S1 biomarkers for patients' stratification and targeted intervention

Inclusion Criteria	Exclusion Criteria
Age 7 to ≤21 years	Age ≤6 years or >22 years at time of enrollment
History of SARS-CoV-2 infection, documented by	Pregnancy and/or lactation
positive PCR and/or antigen test	
SARS-CoV-2 Antigenemia, defined as any detectable presence of full-length spike protein	Female participant of childbearing age unwilling to use an acceptable method of birth control for
and/or Spike S1 subunit in plasma	the duration of the study
present ≥4 weeks after SARS-CoV-2 infection.	Inability to tolerate drug Unstable medical conditions or significant comorbid disease that, by the investigator's
Symptoms include but are not limited to fatigue, malaise, headache, cognitive impairment,	determination would make the participant unsuitable for enrollment
neuropsychiatric symptoms, decreased exercise tolerance, post exertional malaise, dyspnea, cough, chest pain, palpitations, tachycardia, gastrointestinal symptoms, musculoskeletal symptoms, fever, lightheadedness, insomnia and other sleep disturbances, anosmia or dysgeusia, pain, paresthesia, menstrual cycle irregularities, erectile dysfunction.	Participation in any other clinical investigation using an experimental drug within 30 days prior to screening
	Intent to participate in another clinical study while participating in this clinical trial
	Blood/plasma donation and or blood loss greater than 400 mL within 90 days, or greater than 200 mL within 30 days prior to screening
	Known hypersensitivity to any of the formulation components of AT1001.
	Abnormal baseline liver function as indicated by AST or ALT ≥3 times the upper limit of normal
	(ULN), or direct bilirubin ≥2x ULN for age
	Abnormal baseline renal function, defined as glomerular filtration rate ≤50 mL/min/1.73m²

Long COVID Clinical Trial: Study Design

- 48 participants (N= 48) will be enrolled: study drug 4 times/day x 21 days
- 32 treated with Larazotide
- 16 placebo

Acknowledgments

MGH

Cidar Sinai Wyss Institute

- Lael Yonker
- Rachel Bloom
- Brittany Boribong
- Abigail Kane
- Serena Rossi
- Aisha Seardf

Moshe Arditi's Lab
 David Walt's Lab

Funding

