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1. Understand
2. Estimate
3. Predict

4. Forecast

What developments enabled these and what would
the next breakthrough look like?
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We all use “models”

Modelling is just a way of expressing those assumption and ideas in a mathematical form



Mechanistic models

Review

Mathematical models for dengue fever epidemiology: A 10-year
systematic review

Maira Aguiar ***, Vizda Anam *, Konstantin B. Blyuss ', Carlo Delfin S. Estadilla®,
Bruno V. Guerrero *, Damidn Knopoff “¢, Bob W. Kooi ¢, Akhil Kumar Srivastav *,
Vanessa Steindorf *, Nico Stollenwerk "

Aguiar et al. Phy. of Life Rev 2022
https://doi.org/10.1016/j.plrev.20
22.02.001

Forecasting models

RESEARCH ARTICLE

A systematic review of dengue outbreak
prediction models: Current scenario and
future directions

Xing Yu Leung', Rakibul M. Islam', Mohammadmehdi Adhami', Dragan llic',
Lara McDonald', Shanika Palawaththa', Basia Diug', Saif U. Munshi?, Md
Nazmul Karim®'*

Leung et al. PLoS NTDs 2023
https://doi.org/10.1371/journal.p

ntd.0010631

Risk mapping models

. , ®
A systematic review of the data, methods =
and environmental covariates used to map
Aedes-borne arbovirus transmission risk

Ah-Young Lim'?", Yalda Jafari>*, Jamie M. Caldwell®, Hannah E. Clapham?, Katy A. M. Gaythorpe’,

Laith Hussain-Alkhateeb®?, Michael A. Johansson'®, Moritz U. G. Kraemer'", Richard J. Maude**, Clare P McCormack’,
Jane P Messina'?'3, Erin A. Mordecai'*, Ingrid B. Rabe'®, Robert C. Reiner Jr'®7, Sadie J. Ryan'®, Henrik Salje'®,

Jan C. Semenza?, Diana P. Rojas'® and Oliver J. Brady'
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023-08717-8
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Using model to test hypotheses about:

— Immunity

— Climate

— Environment

— Origins of epidemics

Usually using observational data
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Why did the Zika epidemic decline in Salvador, Brazil?
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Why did the Zika epidemic decline in Salvador, Brazil?
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Why did the Zika epidemic decline in Salvador, Brazil?
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Why did the Zika epidemic decline?
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Models for improving understanding
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Enabling factors:

4
— Higher spatial and temporal resolution data b .
* Of cases 4 \“‘”
* Of explanatory variables (infrastructure, human 5,,
movement)

Future developments:

Integration of causal inference methods into
modelling

e DAGs



Can improve experimental estimates of epidemiological parameters or
estimate relevant new parameters:

* Reproduction number
* Burden
» Effectiveness

Models fill the gap where experimental measurement is impractical or
impossible



Effective reproduction number (R,)

Number of new infections generated
by the average infected individual

Critical for outbreak management
Difficult to directly measure

Can be inferred from case data using
models

Incidence

Epidemic curve
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Cori et al. EpiEstim vignette https://cran.r-
project.org/web/packages/EpiEstim/vignettes/demo.html
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Effective reproduction number (R,)

Number of new infections generated
by the average infected individual

Critical for outbreak management
Difficult to directly measure

Can be inferred from case data using
models
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Rio de Janeiro

Last update: June 22, 2023

Filter description: Cases of Dengue between 04/12/2022 and 03/12/2023, sex: Mulher, Homem, ages: 00-04 anos, 05-09 anos, 10-19 anos,

20-29 anos, 30-39 anos, 40-49 anos, 50-59 anos, 60+ anos
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Measuring incidence of infections is
expensive

Data sparsity necessitates extrapolation

Importance of different approaches

i

Ahnual infections
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Enabling factors:

— Accessibility and speed of computational methods
— Recognition of modelled estimates

Future developments:

— Integration across more disciplines
* Routinely measuring effectiveness of vector control
* Model-informed trial design
* Targeted data collection to improve modelled estimates
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Predicting the consequences of different intervention
choices:

— Best long-term usage strategy for an intervention
— How to best combine interventions

Increasingly critical piece of evidence needed for
iInvestment in new interventions



Models for prediction- Intervention strategy
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Enabling factors:

— Good collaborations with intervention developers,
governments and international health organisations

— Consensus among models c*
Future developments: 2 e e
E 101 monitoring Initially uncompetitive
— More realistic and locally-relevant ; Lo s
predictions to improve robustness

50
Cost {millions USD}

Brady et al. BMC Med. 2020 https://doi.org/10.1186/s12916-020-01638-2
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Enabling factors:
— Better understanding of drivers of arboviruses
— Efficient Bayesian inference methods

— More relevant approaches to validation developed with
ministries of health

Future developments:
— More prospective evaluation of forecasts
— cRCT of forecast-informed outbreak prevention



Purpose Enabling developments Future opportunities

Understand  More abundant and detailed case data Use of causal inference methods

Estimate New answers to difficult questions and Routine use of models in data dashboard and
rapid and easy to use frameworks study design

Predict Collaborations with intervention More specific and realistic predictions for
developers and between modelling context-specific decision making
groups

Forecast Capitalising on improved understanding ~ Better evaluation of operational performance

of dynamics and closer collaboration with and epidemiological effectiveness
users
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