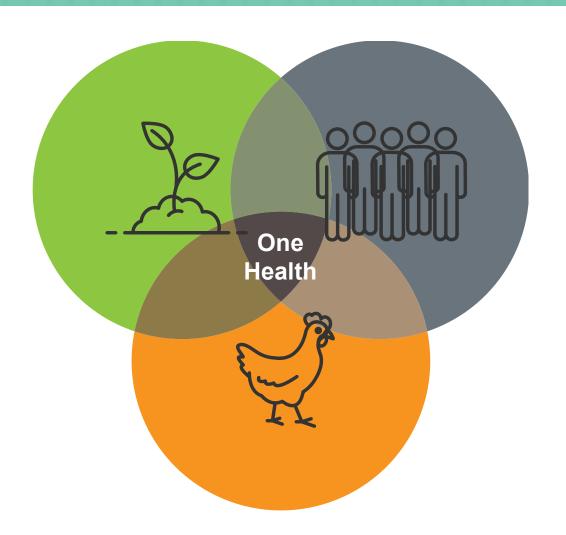
Complexities of tracking AMR at the One Health Interface

Paul Plummer—DVM, PhD, DACVIM (LAIM), DECSRHM

Executive Director,

The National Institute of Antimicrobial Resistance Research and Education

Associate Dean of Research and Graduate Studies,


Iowa State University's College of Veterinary Medicine

Chair,

US Presidential Advisory Council on Combatting Antimicrobial Resistant Bacteria

What Is "One Health?"

One Health is a collaborative, multisectoral, and transdisciplinary approach—working at the local, regional, national, and global levels—with the goal of achieving optimal health outcomes recognizing the interconnection between people, animals, plants, and their shared environment.

Clinical breakpoints and the interpretations (i.e. – S/I/R) associated with them are recommendations developed by organizations to assist in the interpretation of the success of treatment with an antimicrobial for a specific condition using a specific dosing regimen in a specific species

Table 1. USCAST MIC breakpoints compared to three other antimicrobial agent susceptibility breakpoint determining organizations (SDO), when testing the <u>fluoroquinolone</u> class compounds (modified from the current USCAST Quinolone Report).

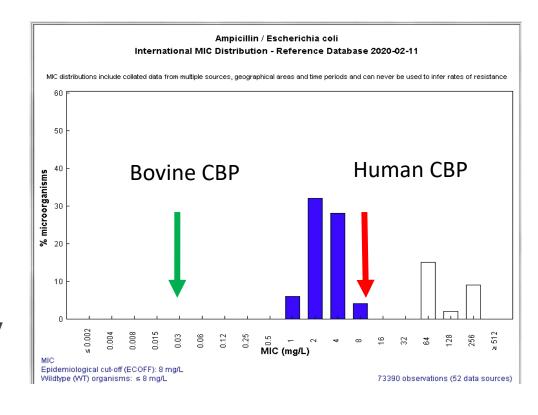
Organism/Antimicrobial	MIC breakpoints in µg/mL by criteria organization (Susceptible/Resistant)				
	CLSIa	USA-FDA	EUCAST ^b	USCAST	
<u>Enterobacteriaceae</u>					
Ciprofloxacin	≤0.25 / ≥2	≤1 / ≥4°	≤0.25 / >0.5 ^b	≤0.25 / ≥1	
Delafloxacin	-	≤0.25 / ≥1	≤0.12 / >0.12 (<i>E.coli</i> only)	≤0.25 / ≥1	
Levofloxacin	≤0.5 / ≥2	≤2 / ≥8 ^d	≤0.5 / >1	≤0.5 / ≥2	

Building a common language for antimicrobial resistance between human and animal health

The problems:

- 1) Clinical breakpoints for the same bacterial species differ between humans and animal species and thus are not ideal for One Health comparisons
- 2) Veterinary Medicine has very limited validated breakpoints

When "R" means different things


Clinical breakpoints can differ substantially between species!

Ampicillin E. coli CBP in humans

- •≤8 µg/mL = S
 - Ampicillin sodium given IV four times daily

Ampicillin E. coli CBP in cattle

- •≤0.03 µg/mL = S
 - Ampicillin trihydrate given IM once daily
 - All isolates will test resistant even if "wild-type"

Current bovine-specific clinical breakpoints (systemic)

Antibiotics	Bacterial species				
routinely tested via AST for	M. haemolytic	P. multocid	H. somni	E. coli	All other
bovine isolates	а	а	SUIIIII		*
Ampicillin	Yes	Yes	Yes	Yes	
Ceftiofur	Yes	Yes	Yes		
Danofloxacin	Yes	Yes			
Enrofloxacin	Yes	Yes	Yes		
Florfenicol	Yes	Yes	Yes		
Gamithromycin	Yes	Yes	Yes		
Penicillin	Yes	Yes	Yes		
Spectinomycin	Yes	Yes	Yes		
Tetracycline	Yes	Yes	Yes		
Tildipirosin	Yes	Yes	Yes		
Tilmicosin	Yes				
Tulathromycin	Yes	Yes	Yes		

Specific to body site, drug dosages and routes used in calculations -(almost) all respiratory

Current as of Vet01S 5th ed and Vet09 1st ed

Current porcine-specific clinical breakpoints (systemic)

Antibiotics routinely tested via AST for porcine isolates	Bacterial species					
	Salmonella Cholerasuis	Strep. suis	Bordetella bronchiseptica	P. multocida	APP	
Ampicillin		Yes	Yes	Yes	Yes	
Ceftiofur	Yes	Yes		Yes	Yes	
Enrofloxacin		Yes		Yes	Yes	
Florfenicol	Yes	Yes	Yes	Yes	Yes	
Penicillin		Yes		Yes		
Tetracycline		Yes		Yes	Yes	
Tiamulin					Yes	
Tildipirosin			Yes	Yes	Yes	
Tilmicosin				Yes	Yes	
Tulathromycin			Yes	Yes	Yes	

Specific to <u>body</u>
<u>site</u>, <u>drug dosages</u>
<u>and routes</u> used in
calculations – all
<u>respiratory</u>

Current as of Vet01S 5th ed and Vet09 1st ed

What AST is commonly performed?

Location from which culture was taken	Number of ASTs performed	Most common isolates (number in parenthesis)
Respiratory tract	4588	M. haemolytica (1729) P. multocida (1477) H. somni (943) Salmonella sp. (309) B. trehalosi (74)
Gastrointestinal tract/fecal	2621	E. coli (2090) Salmonella sp. (478)
Other (eye, CNS, joint, etc.)	1205	
TOTAL	15577 (includes multiple sites)	E. coli (5259) M. haemolytica (2847) Salmonella sp. (2447) P. multocida (2500) H. somni (1453) All others (2101)

Most commonly performed AST at the ISU VDL 2003-2018 for bovine samples

The need:

Create a common language between human and animal health in evaluating antimicrobial resistance

How do we interpret AST?

Food Animal Susceptibility #20453* Final Result

S.SD --> Salmonella species group D

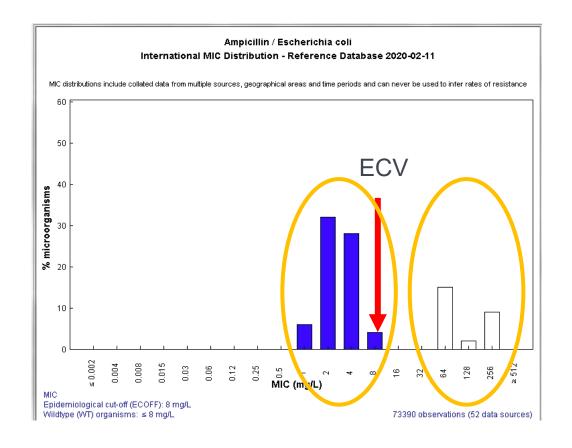
Antimicrobial

Option 1 – utilize clinical breakpoints to generate a susceptible/intermediate /resistant interpretation from the MIC for clinician to direct antimicrobial therapy

- —animal species specific
- —drug formulation/dosing specific

Option 2 – utilize epidemiologic cutoff values (ECV) to determine if the bacterial isolate has acquired resistance to antimicrobial of interest

- —independent of host
- independent of drug pharmacology



ECVs create a common language between human and animal health!

Epidemiologic cutoff values (ECV)

- "Bacteriologic" definition of susceptible vs resistant
- ECV is determined from MIC values from bacterial population
- Independent of drug or host factors
- Applies to all bacteria of that species regardless of where it came from

Implications

Use Caution when Interpreting

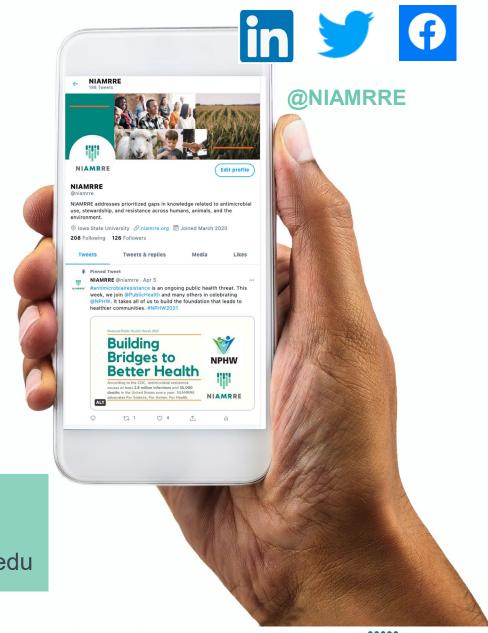
- In most cases, unless the antimicrobial resistance data is derived from raw MIC data using standard operating procedures, or uses ECV based interpretations, it is not comparable across One Health sectors
- "Resistance" as defined by clinical breakpoints does not equal the acquisition of acquired resistance mechanisms
- Frequently the easiest data streams have significant bias
 - For instance, diagnostic laboratory specimens that are often easiest to access in low and high resource areas are often submitted only after one or more treatment failures

Use Caution when Interpreting

Antimicrobial consumption and resistance in bacteria from humans and food-producing animals

Fourth joint inter-agency report on integrated analysis of antimicrobial agent consumption and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA

JIACRA IV - 2019-2021


"Although ecological studies are particularly useful for generating hypotheses, they cannot establish causation, no matter how strong the associations discerned, since traditional criteria for causality are not met. The findings of ecological analyses, such as those presented in this report, are not causal assessments. Therefore, it cannot be excluded that, while detecting a statistically significant association, concomitant phenomena were observed without any causal relationship. It is important to take this into account when interpreting the results of the analyses presented in this report."

Connect

Paul Plummer, DVM, PhD, DACVIM (LAIM), DECSRHM NIAMRRE Executive Director | pplummer@niamrre.org Iowa State College Veterinary Medicine | pplummer@iastate.edu

