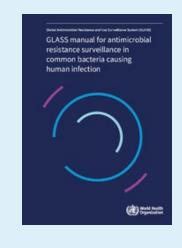


Global surveillance of AMR

Complementary methods to address global data scarcity

Global antimicrobial resistance and use surveillance system (GLASS)

116 countries enrolled in GLASS by the end of 2022. 87 reported 2021 AMR data

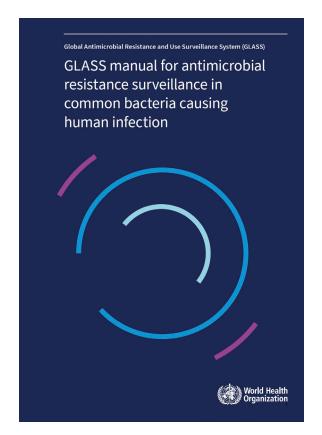

2023 WHO "GLASS manual for antimicrobial resistance surveillance in common bacteria causing human infection"

Shifting focus from aggregated- to individual-level data

More infectious syndromes, bacterial pathogens, and antibiotic combinations under surveillance

Individual-level molecular AMR data to characterize resistance mechanisms

Detailed population coverage meta-data to facilitate the interpretation of AMR rates



Complementary methods to address the global data scarcity

Enhanced surveillance of fungal infections

GLASS <u>new</u> target pathogens and <u>new</u> specimen types

Target pathogens	Blood	<u>CSF</u>	Urine	Stool	Lower respiratory tract	Urethral, cervical, <u>rectal,</u> <u>pharyngeal</u> swabs
Acinetobacter spp.	•	0				
E. coli	•	0	•		0	
K. pneumoniae	•	0	•		•	
P. aeruginosa	•	0			•	
S. aureus	•	0			•	
S. pneumoniae	•	•			•	
N. meningitidis	•	•				
H. influenzae	0	•			•	
Salmonella spp. (non-typhoidal)	•	0		•		
S. enterica serovar Typhi	•			0		
S. enterica serovar Paratyphi A	•			0		
Shigella spp.				•		
N. gonorrhoeae						•

13 bacterial pathogens; 9 specimen types; 32 antibiotics across 11 antimicrobial classes (11 "Access"; 18 "Watch"; 3 "Reserve" antibiotics according to WHO AWaRe classification. https://www.who.int/publications/i/item/9789240076600)

Limitations of "routine" AMR surveillance data

Undocumented sources of variance limit the interpretation of AMR data at national and global level

ACCESS

Diagnostics access and affordability

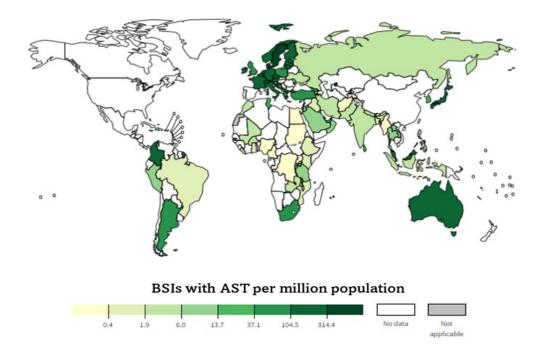
Diagnostic stewardship

Microbiology and AST practices

COVERAGETesting coverage

REPORTING

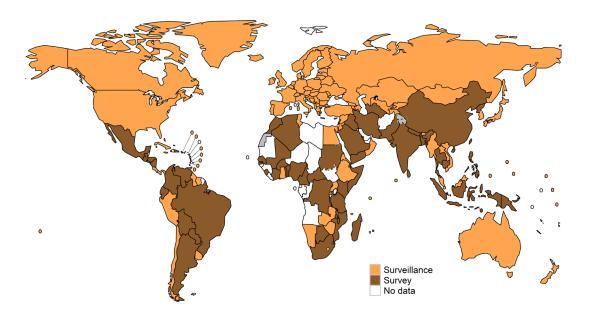
AMR cases reported and not reported



Antibiotic prophylaxis and therapy, invasive devices etc.

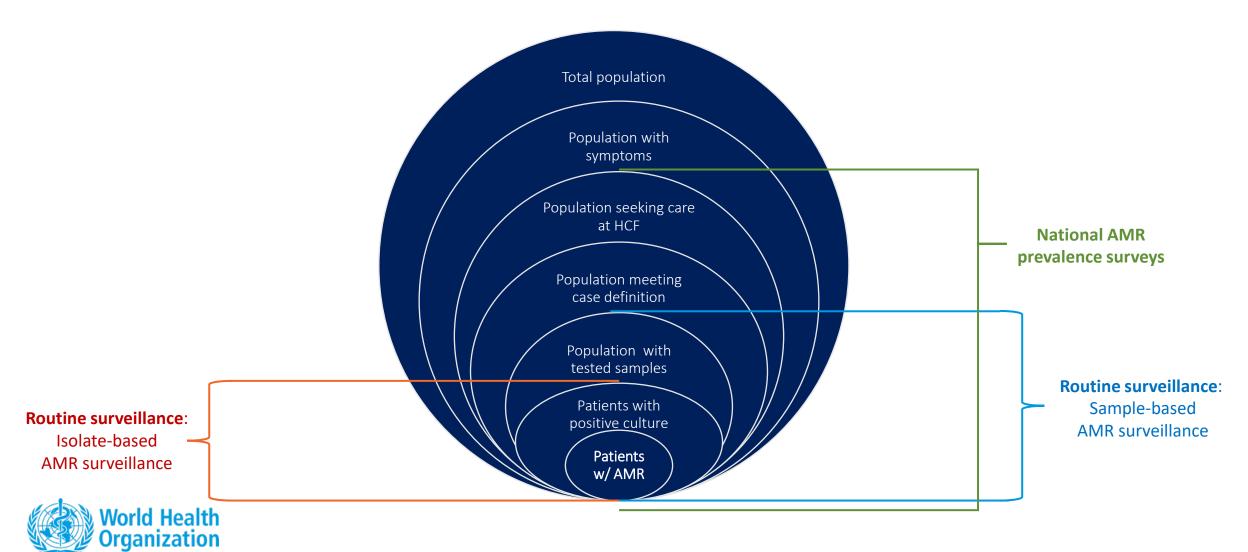
Inaccurate classification of infection origin

Data are not comparable: Limited coverage and representativeness and selection bias



Staphylococcus aureus bloodstream isolates with methicillin-resistance susceptibility test results per million population (2021)

Two-pronged model for global surveillance of AMR


- "Successfully implemented since the 1990s by WHO global programmes monitoring and tackling drug resistance in malaria, tuberculosis and HIV
- Combines data collection based on routine clinical sampling of patients, and complementary strategies such as periodic surveys to improve quality, completeness and representativeness of data
- Surveys have greatly contributed to evidencebased policy development and advocacy, and diagnostic and treatment capacity

Example: source of data for rifampicin resistance among new tuberculosis cases, 1995-2020

Surveys to help forecast needs and cost-effectiveness of microbiology diagnostic services

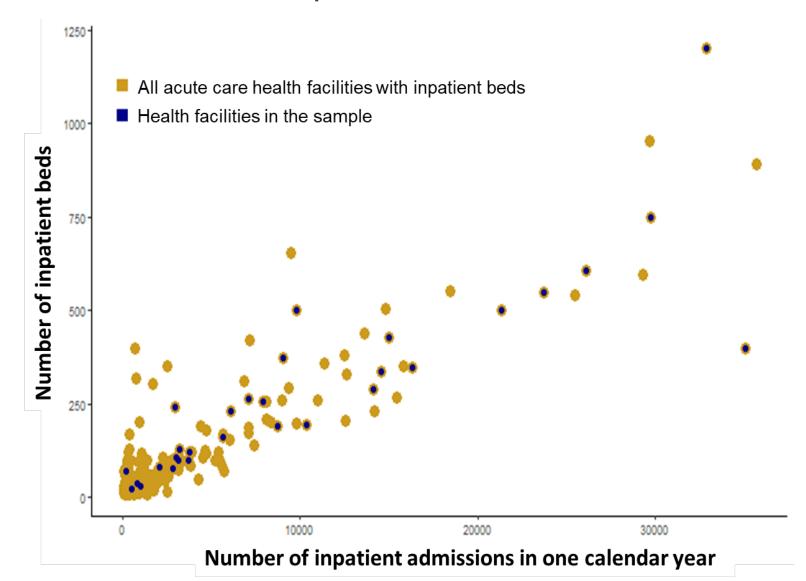
Methodological principles of nationally representative surveys as a platform for global surveillance of antimicrobial resistance in human bloodstream infections

https://www.who.int/publications/i/item/9789240067004

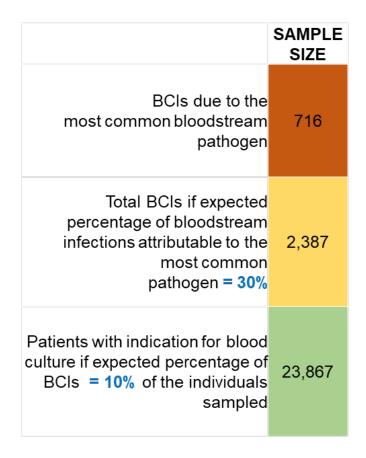
Nationally representative AMR prevalence surveys

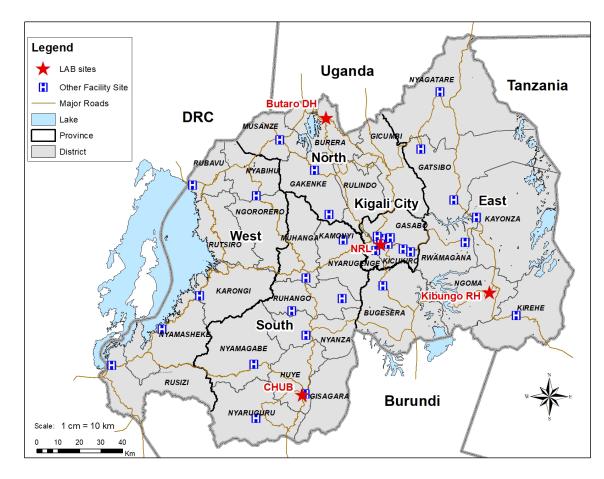
- Cross-sectional (< 12 months survey)
- Acute care health facilities with inpatient services, selected using probability sampling methods independent of the availability of microbiology diagnostic services (access to be granted)
- Inclusion of consecutive patients with suspected BSIs (meeting case definition)
- Quality-assured microbiology diagnostics for pathogen identification and AST
- Collation of demographics and clinical information

Survey design


 Survey powered to estimate resistance with the desired precision in the most common bacterial pathogen

$$n = \frac{N * Z_{\alpha}^{2} p * q}{d^{2} * (N-1) + Z_{\alpha}^{2} * p * q}$$

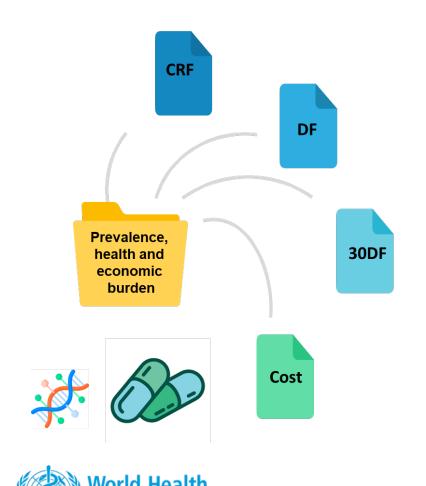

 Data for less common pathogens is collected opportunistically until the sample for the target bacterial species is reached


World Health Organization

Probability proportional to size sampling of patient-clusters in healthcare facilities with inpatient beds

Rwanda survey design and logistics

Design: 85 clusters of 281 patients with indication for blood culture in 35 out 102 acute healthcare facilities with inpatient services (45 in the private sector). Referral of positive blood cultures to four laboratories covering all areas (< 3.5 hours commute). **BCI:** Bacteriologically confirmed bloodstream infection.


HOSTED BY

Surveys of prevalence, health and economic burden of AMR

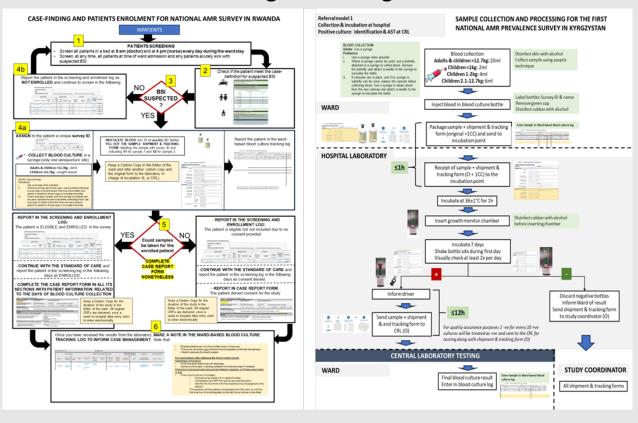
Granular information allows consideration of health and economic burden metrics

Infected cohort (DR, DS)	Uninfected cohort
Case report form	и
Discharge form	и
30 days follow-up form	и
Cost of hospital episode	и
n = 2,400 /country	n = 2,400 / country

E.g.

- Mortality associated and attributable to AMR
- Excess length of stay
- Disability-adjusted life years (DALYs)
- Years of life lost
- Cost per disability-adjusted life year (DALY)

https://www.who.int/publications/i/item/9789240 000650


Conclusions

- "Two-pronged" model in new phase of GLASS to remedy paucity of data.
- Surveys to help scale up comprehensive nationally representative studies addressing evidence gaps on antimicrobial use, health and economic burden of AMR, and the molecular basis of AMR.
- Combined, the data can inform on the health and economic advantages of interventions to reduce AMR.
- Planning and implementation of pilot AMR prevalence surveys began in 2022 and is ongoing.

High scientific and quality standards ensure that survey data are comparable within and between countries and over time, and can be used to strengthen and inform national policies

Tools for active case finding and management of blood cultures

