Sustainable use of available medicines Session 5: Access NASEM Meeting March 4-5 2024

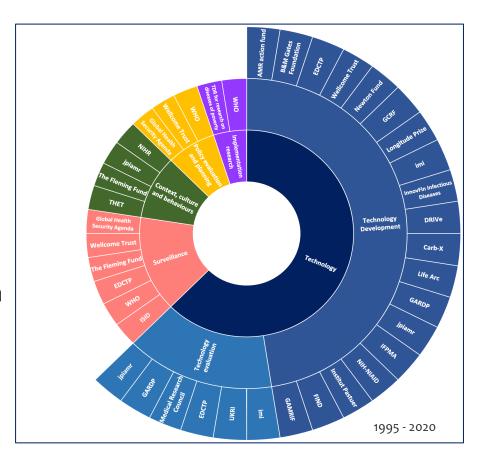
Esmita Charani, MPharm, MSc, PhD

Associate Professor (Wellcome Trust Career Development Fellow), University of Cape Town

Honorary Reader in Infectious Diseases, AMR and Global Health, University of Liverpool

Research Landscape

Inequities abound:


LMIC vs HIC funding

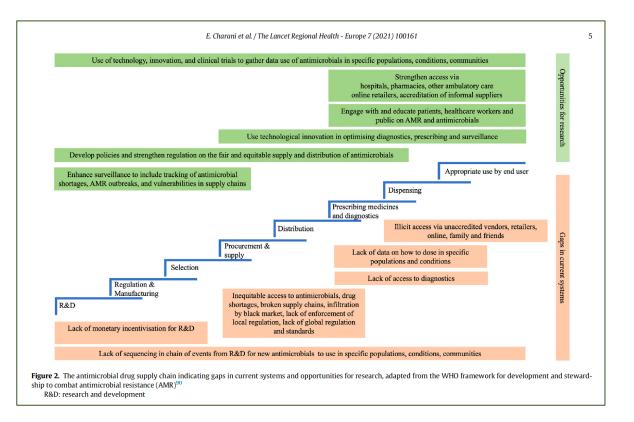
R&D for new drugs vs optimising existing ones

Tech development vs implementation

Policy and strategy – gaps in operationalisation

Contextual and culture under investigated

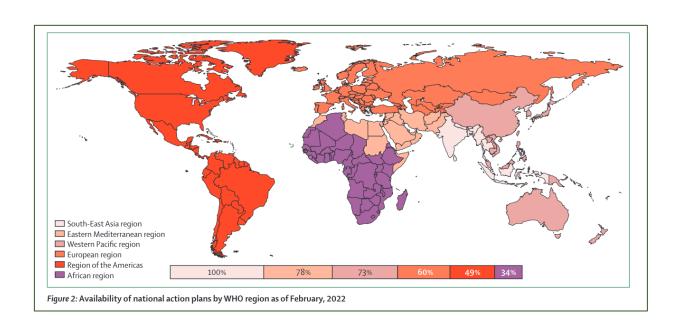
The Lancet Regional Health - Europe (2021)


Why Access?

Composition of global infection-related deaths, 2019

https://vizhub.healthdata.org/microbe/

Access to antibiotics



Existing NAPs

An analysis of existing national action plans for antimicrobial resistance—gaps and opportunities in strategies optimising used to use in human populations

Emit Charur', Mar Medichor', Scal J C Fullett, Rahvelda Ahmed, Minfa Maynda, Oloch Mhomdia, Candice Bonazonsa, Verial Nampochii, Saigney Singh, Natur J Office Sanda, Nature Heldings, Lake S P Moore, Jeron Schotzer, Tomislav Kastyano, Vera Valeouic Patevold, Diamontis Kofferidis, Julians Silve Coreta, Aliana H Holms.

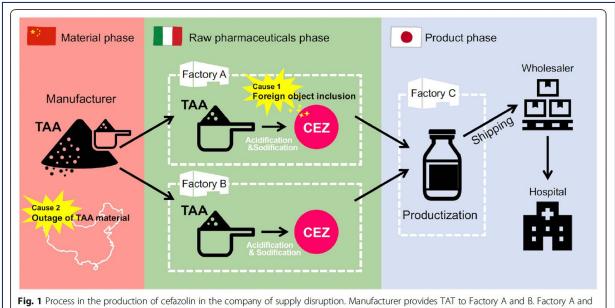
Key recommendations

Policy and strategic planning

Economic impact assessment of the strategies implemented to tackle AMR and the resource and infrastructure requirements as a tool for gaining **political and financial commitment**

Medicines management

Assess existing prescribing tools for optimum prescribing and surveillance Identify mechanisms for data sharing on supply chain issues (local, national, and international) Develop and evaluate strategies to enforce antibiotic prescribing, purchase, and access-related legislation


Technology and diagnostics

Investigate the whole-health-system integration of technologies – **Fit for context, affordable**

Patient and public engagement

Interventions across socioeconomically diverse populations – intersectional research

Fragile and fractured systems

Fig. 1 Process in the production of cefazolin in the company of supply disruption. Manufacturer provides TAT to Factory A and B. Factory A and B synthesize CEZ, then Factory C productizes it. Foreign body inclusion was found in Factory A, and the factory stopped working. Thereafter, the outage of TAA material occurred in Manufacturer. These events caused a short of materials in Factory C, and resulted in a cease of cefazolin production. Abbreviation: TAA, Tetrazole-Acetic Acid. CEZ, Cefazolin

Collateral damage

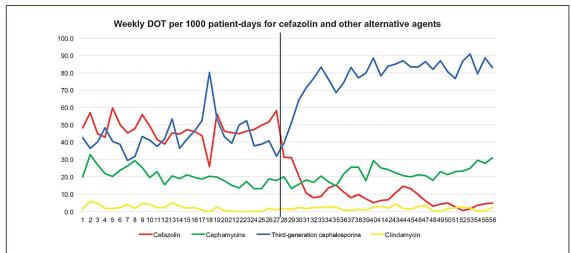


Figure 1. Changes in the use of cefazolin and alternative antimicrobial agents during a cefazolin shortage. Data were tracked from September 2018 to September 2019. The x-axis represents a weekly time period (periods 1–56), and the y-axis represents days of therapy per 1000 patient-days (PD). The vertical line represents the shortage started at the study institution (period 2p: from 11 March 2019). The time-series model revealed an increase of third-generation cephalosporins (+18.88 days of therapy [D0T] per 1000 PD [P0.01 for intercept] and +0.65 DOT per 1000 PD (week [P0.04 for trend]), cefamycins (+0.78 DOT per 1000 PD/week [P0.001 for trend]), and clindamycin (+1.78 DOT per 1000 PD [P1.008 for intercept] and +0.12 DOT per 1000 PD/week [P2.001 for trend]), and significantly decreased use of cefazolin (-27.6 DOT per 1000 PD/week [P2.001 for intercept] and -0.59 DOT per 1000 PD/week [P2.005 for trend]).

Undermining stewardship efforts

Treatment failure, e.g. vancomycin for MSSA Increased consumption of other agents Shortage of substitute antibiotics

Reported causes

Manufacturers not legally required to provide reason for shortages

Active pharmaceutical ingredient – 60 to 80% of raw material produced outside of Europe

Dwindling interest in manufacturing due to increased regulatory requirement and quality control

Price competition of off patent agents - includes many on EML

Procurement mismanagement

Reported consequences

Cefazolin - Japan (Nakaraj et al., 2021) Surgical prophylaxis – **increased reoperation and surgical site infection rates**

Piperacillin-Tazobactam - USA (Gross et al., 2017) Increased *C. difficile* rates reported

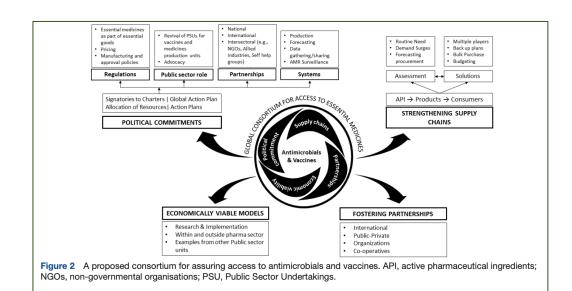
Penicillin G – Brazil, (Araoju et al., 2020) Global (Findlay et al., 2017) **Increased congenital syphilis and still births**, poorer outcomes associated with socioeconomic deprivation index

Increased out of pocket costs for patients, increased medication errors (Phoung et al., 2019)

Reported consequences

Antibiotic use – broad-spectrum use

Clinical outcomes – varied evidence


Economic – no robust evaluations, indirect evidence of cost to systems

Mitigation strategies – AMS key feature of successful mitigation strategies

What do the experts say?

Shafiq et al., 2020

A GARDP funded research project at the University of Cape Town, with collaborating sites in India and UK

Provided platform for follow on Wellcome Trust Funding

Thank you

University of Cape Town Marc Mendelson Oluchi Mbamalu

PGIMER, Chandigarh India Nusrat Shafiq Avaneesh Pandey Ritika Kondal

GARDP Jennifer Cohn Manica Balasegaram

Uppsala University Thomas Tängden

Amrita Institute of Medical Sciences, India Sanjeev Singh Vrinda Nampoothiri Anu George

Imperial College London Amrita Ghautare

University of Liverpool Anne- Grete Martson

University of Pennsylvania
Uttara Gadde