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MACHINE LEARNING AND ANTIMICROBIAL RESEARCH
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HOw ANTIBIOTICS KILL BACTERIA: AN EXPANDED VIEW
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DEEP LEARNING & BIG DATA: BIOTECH & MEDICINE
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DEEP LEARNING APPROACH TO ANTIBIOTIC DISCOVERY
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TRAINING DATA SET: GROWTH INHIBITION AGAINST E. coLl
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DEEP NEURAL NETWORK FOR MOLECULAR PROPERTY PREDICTION
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DEEP LEARNING APPROACH TO ANTIBIOTIC DISCOVERY
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Al-BASED DISCOVERY AND DESIGN OF NOVEL ANTIBIOTICS
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Al-BASED DISCOVERY OF ABAUCIN
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Acinetobacter bacteria can survive a long time on surfaces. Nearly all carbapenem-resistant Acinetobacter
infections happen in patients who recently received care in a healthcare facility.

G Liu et al., Nature Chemical Biology, 2023




DEEP LEARNING FOR ANTIMICROBIAL ACTIVITY AND CYTOTOXICITY
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EXPLAINABLE DL FOR STRUCTURAL CLASSES OF ANTIMICROBIALS
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WHITE-BOX MACHINE LEARNING: IDENTIFYING ANTIBIOTIC MOA
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ANTIBIOTICS-Al PROJECT: LEVERAGING ALPHAFOLD

Growth inhibition screening

AlphaFold-enabled identification of protein-ligand interactions
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GENERATIVE Al FOR DE Novo ANTIBIOTIC DESIGN
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ANTIBIOTICS-Al PROJECT AND PHARE BIO
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