

The Importance of Pathogen Genomics to US Public Health

Gregory Armstrong, MD
Independent Consultant

Disclosures

- Previously employed by US CDC, including as Director of the Advanced Molecular Detection Program
- Non-profit consulting (ongoing):
 - Task Force for Global Health (with funding from BMGF)
 - Theiagen Global Health Initiative (volunteer board member)
- Private sector consulting (past):
 - Merck
 - ClearLabs
 - Ginkgo Bioworks

Cost per Raw Megabase of DNA Sequence

Implications of High-Throughput Sequencing for Pathogen Genomics

- Research settings
 - Earliest uses
 - Transformed the understanding of
 - Microbial evolution
 - Epidemiology (“genomic epidemiology”)
- Public health settings
 - Early 2010’s: first uses in public health
 - Provides actionable information
 - Directly
 - Indirectly (e.g., through better “situational awareness”)
- Clinical settings
 - (now in early phases)

Why is This Useful in Public Health?

(examples to follow)

- High-resolution sub-typing of pathogens
- Finding outbreaks
- Investigating outbreaks
- Inferring phenotype (including AMR)
- Informing development of vaccines, therapeutics and diagnostics
- Providing a more granular picture of epidemiology

High-Resolution Subtyping of Pathogens

- Legacy subtyping systems
 - PFGE (pulsed-field gel electrophoresis)
 - MLST (multi-locus sequence typing)
 - RFLP (restriction fragment length polymorphisms)
 - Spoligotyping, MIRU-VNTR
 - MEE (multi-locus enzyme electrophoresis)
 - Others
- Genomics provides a single technology to replace these
- Compared with these, whole-genome sequencing:
 - Provides (usually much) higher resolution
 - May be more expensive
 - Usually takes longer

Outbreak Detection

- Bacterial foodborne illness
 - PulseNet (clinical cases, run by CDC)
 - GenomeTrakr (food, environmental samples, run by FDA)
 - USDA
 - NCBI/Pathogens
- COVID-19; example: outbreak linked to a gymnastics events
- Tuberculosis
- Many other examples

Outbreak Investigation

- Used routinely in outbreaks
- Utility
 - Determining which cases are part of the outbreak
 - Linking to the source of the outbreak (e.g., to the food source in foodborne outbreaks, or to a cooling tower in a *Legionella* outbreak)
 - Elucidating transmission pathways (esp. with rapidly evolving viruses)
 - Providing evidence for or against transmission in healthcare settings (or other closed settings)

Determining Phenotype, Particularly AMR

- *Mycobacterium tuberculosis*
 - Now in use routinely in some locations for first-line drug susceptibility testing
 - Second-line drug susceptibility determination is more variable
- Malaria
 - Antimalarial resistance
 - Detectability by rapid tests (i.e., HRP-2 deletions)
- HIV
 - Antiviral resistance

Development of Vaccines, Therapeutics, and Diagnostics

- SARS-CoV-2
 - Vaccines
 - Monoclonal antibodies
 - Diagnostics
- Influenza—“sequence-first” approach
- Pertussis vaccine

Providing a More Granular Understanding of the Epidemiology—Better “Situational Awareness”

- SARS-CoV-2
 - Variant emergence
 - Vaccine breakthrough
- Hepatitis A

Some Other Considerations (part 1)

- Pathogens and Sequencing techniques are highly varied
 - Viruses, bacteria, eukaryotic pathogens
 - Whole-genome vs. targeted sequencing
- Cost issues
 - Sample collection
 - Sequencing (costs may be decreasing again; automation is improving)
 - Bioinformatics
 - Obtaining “metadata” (epidemiological and clinical data)
 - Data integration, analysis, visualization

Some Other Considerations (part 2)

- Integrating genomic and epidemiologic data
- Workforce development
 - Microbiologists
 - Bioinformaticians
 - Epidemiologists

Summary

- Pathogen genomics has implications across the spectrum of infectious diseases of public health importance
- The field is still young and rapidly evolving