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Why N307 Fragmentation of COVID-19 Patient Clinical Data

e Urgent need for observational
data at scale

e In the US, there is no
centralized healthcare, and
therefore no centralized
healthcare data

e [Data from a single person is
spread across multiple
providers across time and

geography
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Federated and
centralized approaches
are synergistic
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Centralized analytics
are good for discovery
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In patients under age 60,
which factors are
most predictive
of severe outcomes?

Collaboratively build,
test, and refine
algorithmic classifiers

Data
resides
centrally in
a secure
enclave
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What is N3C?
National COVID Cohort Collaborative

N3C: largest national ~ *

public HIPAA-limited  <#°
data set =
in US history v

22.8 M records from
>230 institutions

covid.cd2h.org/dashboard

Representative pan-US cohort: race, ethnicity,
gender, geography, socio-economic status, health
background

&

@ Harmonized: overcomes source data heterogeneity

Y

Linked: Patient records, viral variants, vaccine data,
CMS, environment, SDoH, etc.

Public Health Surveillance: new variants,
comparative effectiveness of drugs

N3C'’s data-model
agnostic,
data harmonization and
QC pipeline

Limited Data Sets

1) Data Partnership
& Governance

National Center
for Advancing
Translational Sciences
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Diverse impact of N3C collaborative analytics

RESULTED IN ATTRIBUTED AT TRANSFORMED DEVELOPED DEVELOPED
SIGNIFICANT SCALE AND CARE EVIDENCE- COMPLEX RISK
SCHOLARLY INCENTIVIZED GUIDELINES BASED PREDICTION
PRODUCTIVITY COLLABORATION DISEASE MODELS
DEFINITIONS

bit.ly/n3c-google-scholar >4300 citations, H index of 30
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Ensuring harmonization rigor with scalable,

COVID
Cohort

continuous monitoring and provenance

Complete transparency into lineage/provenance of harmonization pipelines for >232 sites (77
DTAs) and >50,000 transforms

Pipeline versioning, deployment, upgrades, and automated data quality checks of new and
existing sites

Curators and developers can quickly identify and address issues

Scalability of compute resources; pipelines can be refreshed in <20 mins




Algorithmic data repair is made possible by

Cohort

Collaborative haVing many Sites
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Humans measured in grams do not look the
same as humans measured in kilograms

Canonical unit

Uses a known conversion [l
Unit not plausible

Missing unit inferred

Unit still missing

https://academic.oup.com/jamia/article/29/7/1172/6569865
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N3C provided the earliest and most representative data
to predict risk and inform health policy

Problem:
o Conflicting research on effects of vaccination on long-covid
o Determining who is vaccinated is challenging in the US

Vaccination and Long-Covid Risk 'Survival' Curves
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Solution: N3C reconciled vaccination data and demonstrated using
multiple methods that vaccination lowers risk of Long-COVID

Nature Comms: https://doi.org/10.1038/s41467-023-38388-7

Problem:

o To plan pandemic response White House needed real-world
evidence that Paxlovid was effective

Cumulative % Paxlovid-treated patients Known

with any subsequent clinical visit ositive
y a 8OVID
test
n=78

Known
negative
COVID
test
n=71

=

3]

o

Unknown
COVID
test
status
n= 3,527

% patients with any visit
> 8 8 B8

o
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Date post initiation of Paxlovid treatment

Solution: N3C showed that few patients require care or
are hospitalized post-COVID following Paxlovid treatment

https://doi.org/10.1101/2024.01.20.24:



https://doi.org/10.1038/s41467-023-38388-7
https://doi.org/10.1101/2024.01.20.24301525

covie learning algorithm identifies T
Collaborative PASC patients before they are diagnosed B —

% naioa  First evidence-based definition of Long-COVID: a machine f‘f RECOVER

1) EHRs for patients 2) Learned patterns 3) Identify previously
diagnosed with PASC* of clinical features unknown cases
of PASC using learned

Search
% atterns
U09.9 code or Machine EHRs P

long-covid clinic  |earning

e Dyspnea for similar

e Fatigue atients

e No vax on record »
e New albuterol Rx -

e Many outpatient visits ‘

e New corticosteroid Rx

The N3C algorithm can be used to identify cohorts for study recruitment and
treatment considerations nationwide, in EHRs beyond N3C

. Lancet Digital Health; May 16, 2022; https://doi.org/10.1016/52589-7500(22)00048-6
NIH Director’s blog: https://directorsblog.nih.gov/tag/national-covid-cohort-collaborative
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Researching COVID to Enhance Recovery

Collaborative

An Initiative Funded by the National Institutes of Health
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RECOVER
<= .. Reinfections during different variant epochs fg

An Initiative Funded by the National Institutes of Health
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Majority of reinfections occurred during the Omicron epoch

Comms Medicine https://doi.org/10.1038/s43856-024-00539-2
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-é@- Rural disparities persisted throughout all variant epochs

Collaborative

(C) Pre-Delta Dominance Delta Dominance Omicron Dominance

urvival Probability
al Probability

S
Surviv
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Time Since COVID-19 Diagnosis, Days Time Since COVID-19 Diagnosis, Days Time Since COVID-19 Diagnosis, Days

Urban —— Urban-Adjacent Rural MNonurban-Adjscent Rural Wb an Urban-Adpacent Rursl MNonurban-Adjacent Rural Wban — Urban-Adacent Rural Monurban-Adjscent Rural

Rural patients had higher hospitalization odds, greater inpatient death hazard, and greater risk of other
adverse events compared to urban dwellers. Effectiveness of some therapeutics varied based on rurality.

Journal of Rural Health: https://doi.org/10.1111/jrh.12857
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Putting the Patient back together again: | Do

o Multimodal Data

EHR data is necessary, but not sufficient A" Cohort

Discover
CMS Data I

SDOH Data

Viral .
B hom 5 £3)
{¥|n3  Clinical Data

* 0

=, Vaccine data
% Imaging
2 o Privacy Preserving Record Linkage (PPRL) securely connects
Registries _/  records across different data sources while maintaining

Nnrivacy



National

Conon PPRL meets the definition of de-identified data under HIPAA

Collaborative

DATA SOURCE A DATA SOURCE B
e.g., Allof Us Tokenize each dataset with client- e.g., Claims Dataset

1 and site-specific encrypted tokens

Ensure tokens are encrypted
while in transit

Use matching tokens to join
participant records without

sharing any PHI

DATA USERC

=

CC0001 = CC0001

What does a token actually look like?
This is just one! We use multiple of these

jO05G69K7BHOugG3VbSusHLbeL7sNm6H3xpiwM6DHfjl=
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Secure PPRL from EHR data to other data
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https://national-covid-cohort- The Researcher’s Guide to N3C

collaborative.qgithub.io/guide-to-n3c- A National Resource for Analyzing Real-World Health Data
v/



https://national-covid-cohort-collaborative.github.io/guide-to-n3c-v1/
https://national-covid-cohort-collaborative.github.io/guide-to-n3c-v1/
https://national-covid-cohort-collaborative.github.io/guide-to-n3c-v1/

Collaborative

-é:@- <2 Sending viral variants collected from patients to N3C should be easier

Viral variant info and
specimen ID sent to N3C

Data Enclave @

1, PPRL

Data P -
contributing 1111 e l d l
sites —_—
Match tokens between Local
Q Specimen ID, NCBI
& Accession ID, and N3C
C 3 Patient ID via Linkage Honest

Viral variant sequence
and specimen ID sent to NCBI
NCBI Repository

Broker

github.com/National-COVID-Cohort-Collaborative/variants/wiki
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Roads not taken: challenges in linking clinical outcomes

e EHR data from rural and small clinics very hard
to obtain
o Lack of representativeness

e No patient genomic or other ‘omic data to link to
o Lack of understanding patient response to
infection and modifier variants

e Vaccination data very hard to obtain and trust
o Incomplete vaccination record makes it hard to
understand clinical impacts

e Viral variant data incomplete and challenging to
link to patient records
o Temporality used more than actual known

variants to infer correlations
Image credit: https://www.behance.net/gallery/78642157/fwad-Not-Taken
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Open science and team science at an unprecedented scale in clinical informatics!
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