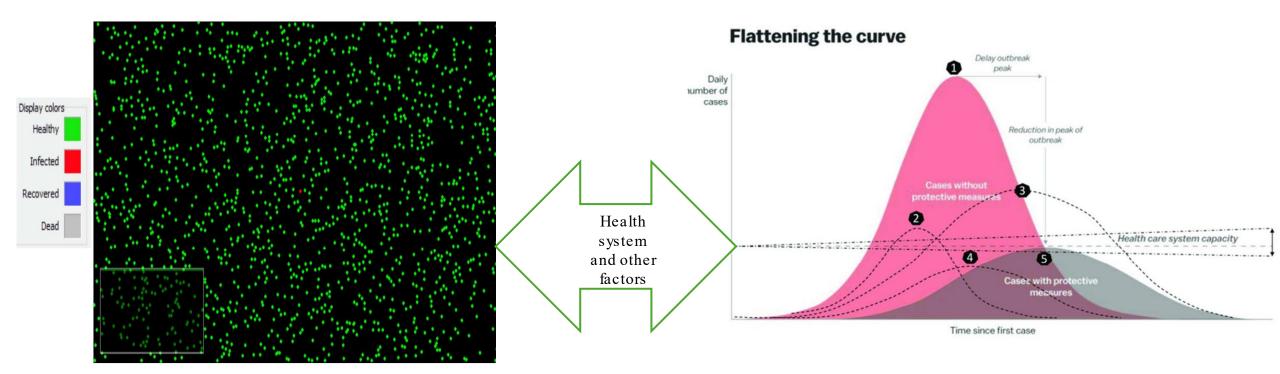


Understanding the Introduction of Pathogens into Humans-Preventing Patient Zero:

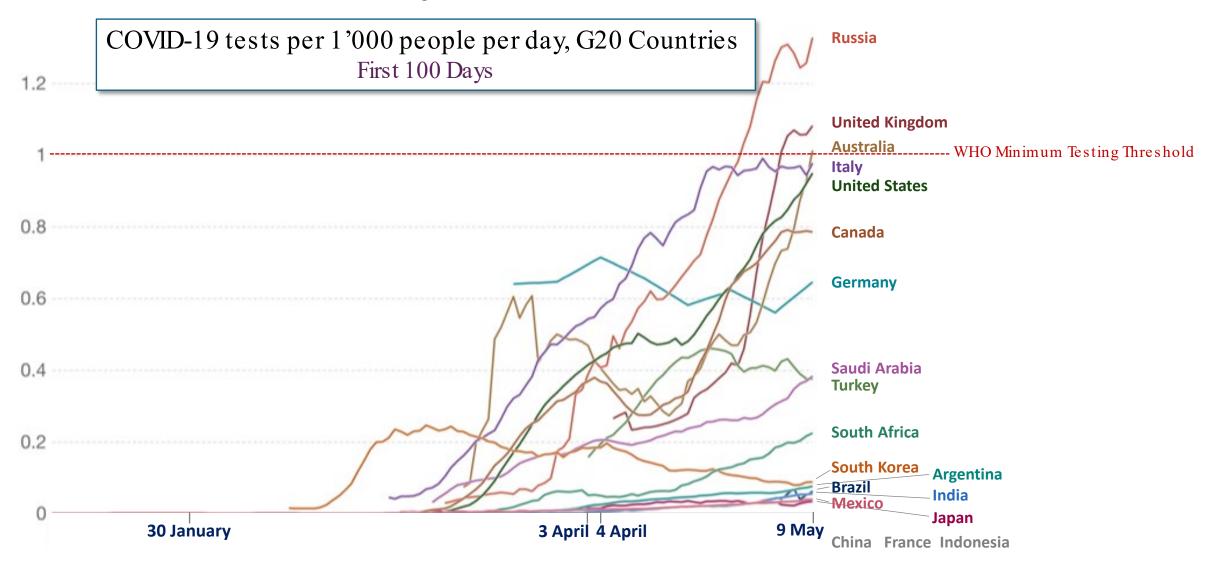
DIAGNOSTIC

CONSIDERATIONS FOR

EPIDEMIC


PREPAREDNESS AND

RESPONSE


Dr Emmanuel Agogo
 Director Pandemic Threats

From Patient Zero- to containing the outbreak...

• CRITICAL NEED FOR A QUICKER DIAGNOSTIC RESPONSE

POST COVID-19 - WHAT EXPERIENCE TAUGHT US

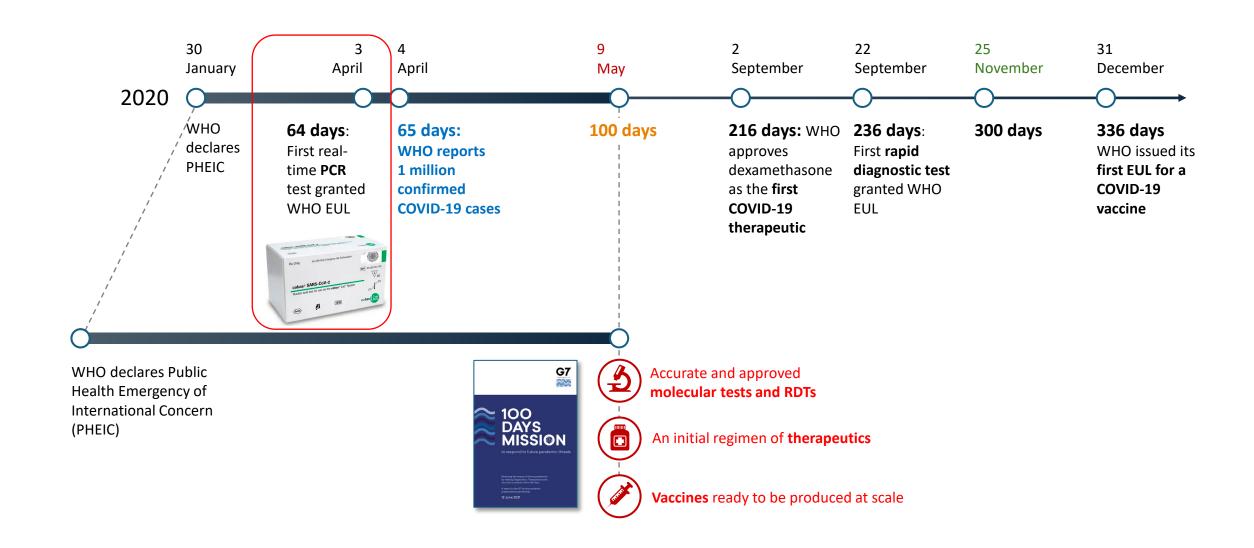
CHALLENGES

Developers initially hindered due to:

- Slow access to samples / reference material
- Lack of clear product requirements
- Insufficient regulatory harmonisation

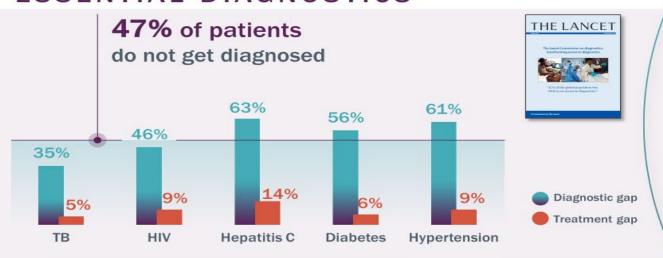
Lack of demand and supportive policy for affordable, fast and accurate diagnostics prior to COVID-191

- Limited evidence to inform policy
- Limited manufacturing capacity
- Market underprepared


Access to accurate tests in LMICs and integration of with surveillance networks remain fundamental issues^{2,3}

SUCCESSES

Collaboration between academia and industry^{3,4}


- Automated PCR tests available in 64 days from PHEIC
- Rapid diagnostic tests approved in 236 days Increase demand from Governments, increasing manufacturing capacity and capabilities^{5,6}
- Reduced costs for diagnostics
- Increased access for LMICs

• CRITICAL NEED FOR A QUICKER DIAGNOSTIC RESPONSE

MASSIVE DIAGNOSTIC GAPS

HALF THE WORLD LACKS ACCESS TO ESSENTIAL DIAGNOSTICS

Appropriate tests do not exist for 60% of infectious agents with outbreak potential² and 50% of the top 20 diseases responsible for most lives lost³

LAB.INVESTIGATION	PATIENT/CL.	
·HAEMATOLOGY:	REQUIREMENT	(KSHS.)
- FULL HAEMOGRAM		350
~ HB		200
~ ESR		200
~ PBF		350
BONE MARROW ASPIRATE		1200
·BIOCHEMISTRY:	250	
-LFT ^s		1200
- UECs		1200
- BILIRUBIN LEVELS		200
~ PREGNANCY TEST		200
~RANDOM BLOOD SUGAR		100
ot exist for 60%	FASTING FOR 8 HRS.	100

FIND >>>

Basic diagnostic capacity

in some LMICs1

is available in only 1% of primary

care clinics and 14% of hospitals

RSA QUANTITATIVE 1300
TT FASTING FOR 8 Hrs. 1200

¹ Leslie et al. Bull World Health Organ 2017;95:738–748, http://dx.doi.org/10.2471/BLT.17.191916.

² Kelly-Cirino et al. BMJ Glob Health 2019;4:e001179. doi:10.1136/bmjgh-2018-001179

³ Pai et al. Analysis from Global Burden of Disease Report 2020

Health System Impact of Rapid Diagnostic Tests

LMIC Use Setting/Capacity: L0-L4

	Self-Testing	Level 0 (L0) - Community	Level 1 (L1) - Primary Care	Level 2 (L2) - District Hospital Lab	Level 3 (L3) - Regional/Provincial Lab	Level 4 (L4) – Reference/National Lab
Use setting	Home testing	Community outreach Home testing	Primary care facility	Near-patient laboratory Referral hospital laboratory Emergency Department testing	Near-patient laboratory Referral hospital laboratory Emergency Department testing	Reference laboratory
Lab Infrastructure	No mains power No water No lab equipment No environmental control (e.g., temp, dust, humidity)	No mains power No water No lab equipment No environmental control (e.g., temp, dust, humidity)	No mains power (unreliable) Minimal lab equipment (may not support cold chain) BSL-1 containment No environmental control (e.g., temp, dust, humidity)	Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) -20 freezers (some) BSL-2/1 containment (some) Environmental control (e.g., temp, dust, humidity) (some)	Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) -20 freezers BSL-2/1 containment Environmental control (e.g., temp, dust, humidity)	Mains power (reliable) High infrastructure facility -20 freezers -80 freezers (some) BSL-2/3 containment Environmental control (e.g., temp, dust, humidity)
Operator skill	 Self-testing Simple reagent/sample transfer 	 Nurse/pharmacist Community health workers Simple reagent/sample transfer 	Nurse Trained laboratory worker Minimal sample processing (≤ 3 steps)	 Laboratory technician (1-2 year certif) ➤ Sample processing with calibrated volumes (≤ 3 steps) 	 Laboratory technician (1-2 year certif) Sample processing with calibrated volumes (≤ 3 steps) 	Science research specialists Laboratory technician (1-2 year certif)
Specimen capacity	Can process minimally invasive samples: fingerstick blood, nasal swabs, saliva, urine	Can process minimally invasive samples: fingerstick blood, nasal swabs, saliva, urine	 Can process upper respiratory specimens; clinic may not have capacity for lower respiratory, venipuncture, plasma 	Can process most BSL-2 specimens; depends on clinic sample capacity	Can process most BSL-2 specimens; depends on clinic sample capacity	Can process most BSL2/3 specimens
Test capacity	True-POC MDx (some) RDT	True-POC MDx (some) RDT	True-POC MDx Basic microscopy RDT	Near-POC MDx ELISA with simple reader Microscopy RDT Clinical chemistry (some)	Blood culture and microbiology capacity (some) Near-POC MDx ELISA with simple reader Microscopy RDT Clinical chemistry	Blood culture and microbiology capacity Lab MDx / PCR / LDT ELISA/EIA/CLIA/PRNT Fluorescence microscopy Clinical chemistry Sequencing (some) Mass spectrometry (some)

Souche plus mortelle

"Les risques d'explosion sont réels" - La variole du singe inquiète

Une nouvelle souche de la variole du singe, aussi appelée Mpox, identifiée en République démocratique du Congo (RDC) puis signalée dans plusieurs pays voisins fait craindre une propagation de ce virus, deux ans après la précédente épidémie mondiale.

Science & technology | Viruses

A deadly new strain of mpox is raising alarm

Health officials warn it could rapidly spread beyond the Democratic Republic of Congo

Monde Publié le 13 août 2024 à 17:48

« Partage

La rapide propagation en Afrique d'une nouvelle souche plus mortelle du mpox inquiète

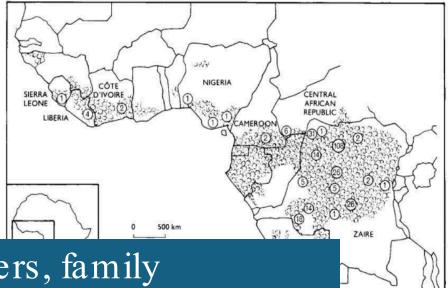
NEWS | HEAL

Amid Congo's deadliest mpox outbreak, a new worry: virus has become sexually transmissible

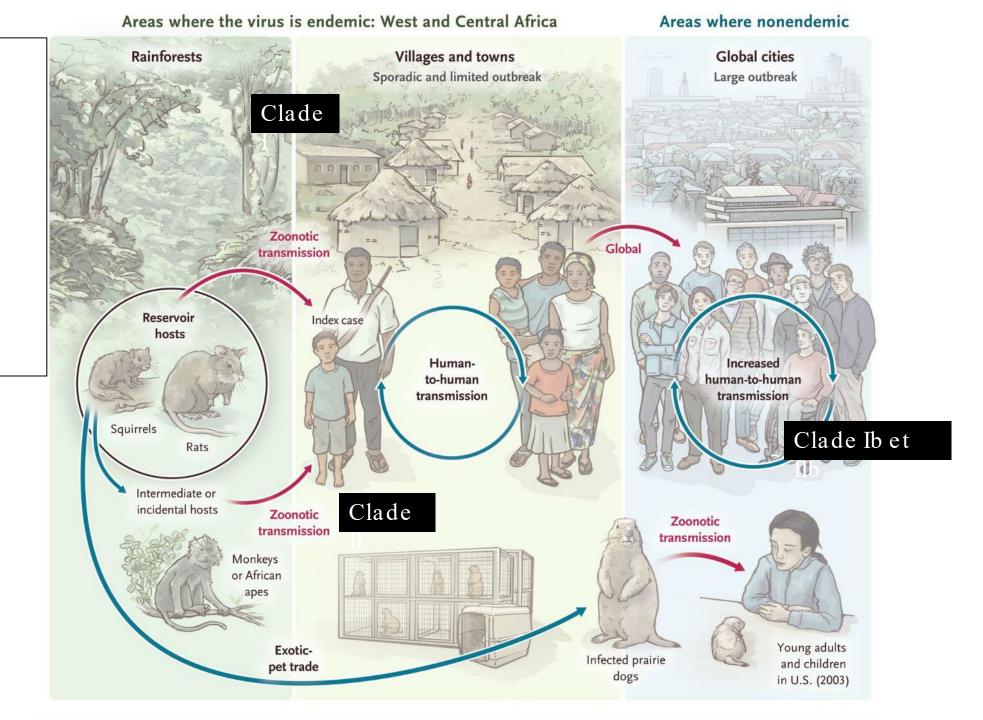
A related viral strain caused a global mpox outbreak in men who have sex with men

Mpox

- Virus monkeypox (MPXV), genus Orthopoxvirus, family Poxviridae
- Same family as variola virus, the cause of smallpox
- Historically:
 - Classic zoonosis endemic in Africa
 - First isolated from a monkey imported to Denmark in 1958, but monkeys are not a natural reservoir
 - The name "monkeypox" is a misnomer and has now been changed to mpox
 - Thought maintained in small mammals, such as forest squirrels, Gambian pouched rats, dormice and others
 - Classically 2 clades distinguished by geography and virulence:
 - Clade I in Central Africa (CFR ~10%)
 - Clade II in West Africa (CFR 1-3%)


Mpox Modes of Transmission

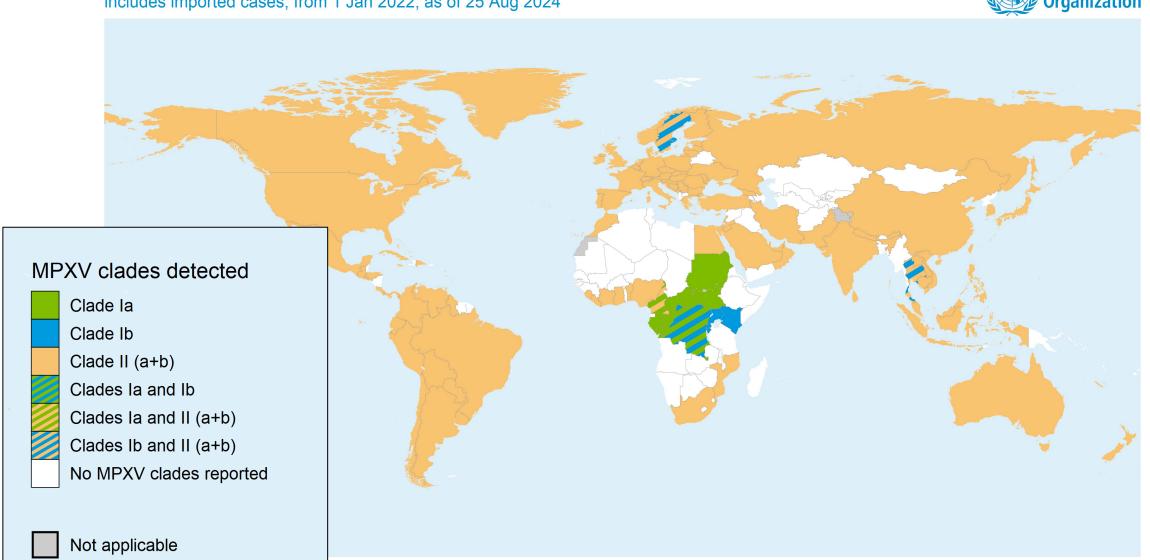
- From animals to humans
 - Bites or scratches from infected animals? Hunting and food preparation?
- Between humans
 - Close physical contact (sexual or non-sexual) with a symptomatic person
 - Cutaneous and mucosal lesions, body fluids (e.g. serous fluid, pus, or blood from lesions) and lesions crusts are particularly infectious.
 - Mouth ulcers, saliva
 - Fomites: Contact with contaminated clothes, bed linens, or kitchen utensils
 - Vertical transmission during pregnancy


the locations where cases

<u>Persons at elevated risk</u>: household members, family caregivers and sexual partners, health workers without adequate personal protection

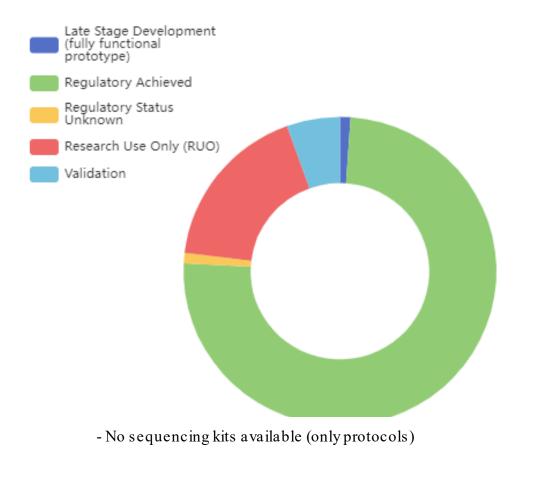
Simultaneous epidemics

- Distinct clades
- Various modes of transmission
- Varied risks



Current Global Situation

MPXV clades detected globally

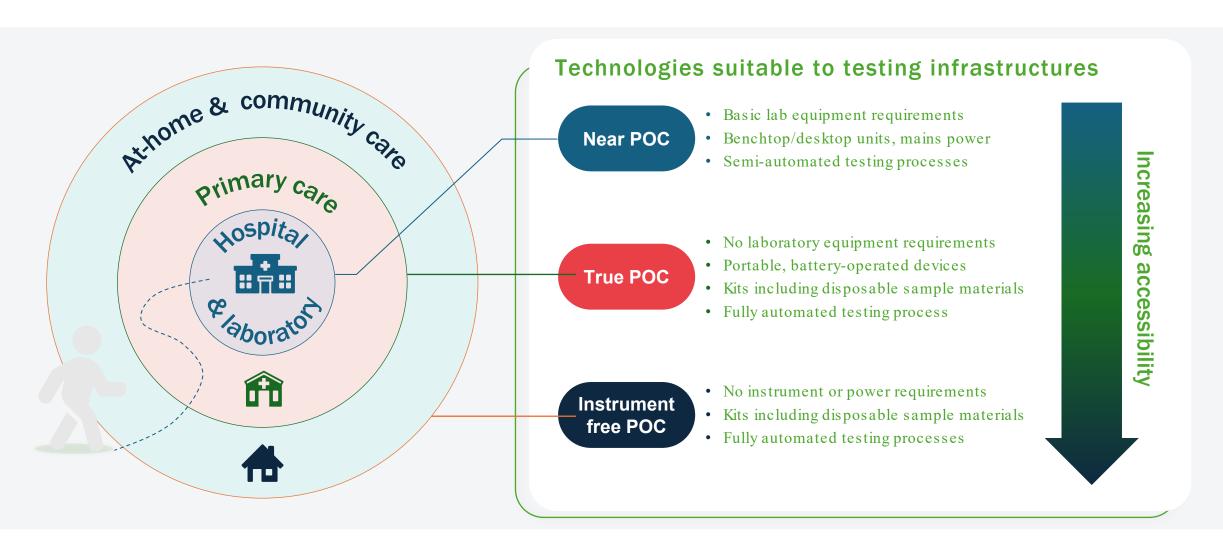

includes imported cases; from 1 Jan 2022, as of 25 Aug 2024

• 91 LAB-BASED MOLECULAR TESTS (2022-2023 DATA)

Mpox Diagnostic Landscape

69 regulatory achieved tests

5 US FDA EUA


60 CE-IVDD

Others

I	Clade(s) detected	Sensitivity (IFU)	Specificity (IFU)	
Alinity m MPXV (Abbott)	MPX Clade I / MPX Clade II	100%	100%	
QuantiVirus MPXV Test Kit (Dicarta)	MPX Clade I / MPX Clade II	100%	100%	
Monkeypox Virus Qualitative Real-Time PCR (Quest Diagnostics)	MPX Clade II	n/a	n/a	
cobas MPXV (Roche)	MPX Clade I / MPX Clade II	100%	100%	
Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set (US CDC)	OPX	100%	100%	

MOLECULAR DIAGNOSTICS AT the point of care COULD

FILL CRITICAL GAPS ACROSS DIFFERENT HEALTHCARE SETTINGS

Key requirements for new INNOVATIVE diagnostic tools

TO CLOSE THE GAP AT POC

Improved performance

POINT-OF-CARE (POC)

Usable where people live and seek care

(incl. communities and primary care settings)

AFFORDABLE

Pricing structures adapted to LMICs

MULTI-PATHOGEN

Able to identify multiple diseases in one sample (incl. outbreak-prone pathogens)

ACCURATE

Robust and highly sensitive results

Improved access

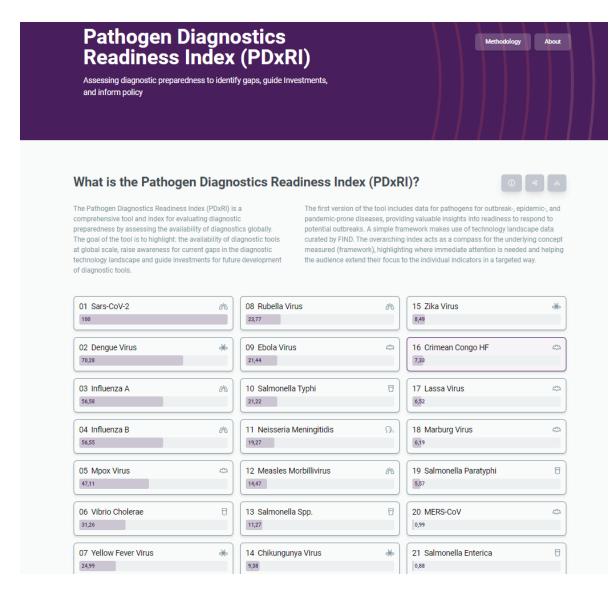
30% of 7-1-7 bottlenecks identified were laboratory related

- Laboratory Confirmation
- Human Resources gaps for Health
- Delayed Specimen Collection
- Specimen Transportation
- Data entry delay
- New or Unexpected pathogen
- Logistics and shipment delays
- Scarcity of Diagnostic commodities (Lab reagents, Rap. Diagnostic tests, or specimen collection kits)

	·				
		1(2%)	7 (22%)	1 (2%)	9 (7%)
ed in remote, fragile, or conflict settings)			1 (3%)	5 (9%)	8 (6%)
ر مان معرب '^rities (including COVID-19)			0	5 (9%)	8 (6%)
resources gaps for public health			3 (9%)	3 (5%)	7 (5%)
`ility of	countermeasures or personal protective equipment	0	0	7 (13%)	7 (5%)
lini	ination			4 (7%)	6 (5%)
nge for electronic surveillance or reporting systems (eg, network coverage)			4 (13%)	0	5 (4%)
'point or capacity			2 (6%)	1 (2%)	4 (3%)
	a	3 (7%)	1 (3%)	0	4 (3%)
	trust	2 (5%)	0	2 (4%)	4 (3%)
` ~alth m	collaboration (eg, between human health and animal health)	2 (5%)	1 (3%)	1 (2%)	4 (3%)
rortati	on	0	1 (3%)	3 (5%)	4 (3%)
di	nation, including incident management and rapid response team capacity	0	1 (3%)	3 (5%)	4 (3%)
uelay		2 (5%)	1 (3%)	0	3 (2%)
o conduct early risk assessment or event verification			2 (6%)	0	3 (2%)
ivew or unexpected pathogen			2 (6%)	0	3 (2%)
ansitivity of community detection			0	0	3 (2%)
elay n. re seeking by patients			0	0	2 (2%)
officient clinical case management capacity			0	2 (4%)	2 (2%)
nata rick accord	ments or preparedness plans	0	0	1 (2%)	1 /1%\

ementation of the 7-1-7 target for detection, tification, and response to public health threats in tive countries: a retrospective, observational study

nchner, Issa Makumbi, Olaolu Aderinola, Aschalew Abayneh, Ralph Jetoh, Rahel L Yemanaberhan, Jenom S Danjuma, Francis T Lazaro, Mahin Sud, Trokon O Yeabah, Lydia Nakiire, Aperki K Yahaya, Renato A Teixeira, Mohammed Lamorde, Immaculate Nabukenya, Ifedayo M O Adetifa, Wanderson Oliveira, Amanda McClelland, Christopher T Lee


notimal detection and response to recent outbreaks, including COVID-19 and mpox (formerly known have shown that the world is insufficiently prepared for public health threats. Routine monitoring of the performance of health emergency systems through timeliness metrics has been proposed to the preparedness and contain health threats early. We implemented 7-1-7 to measure the tion (target of ≤7 days from emergence), notification (target of ≤1 day from detection), and the response actions (target of ≤7 days from notification), and we identified bottlenecks to and mance.

Lancet Glob Health 2023; 11: e871-79

Published Online April 12, 2023 https://doi.org/10.1016/ S2214-109X(23)00133-X See Comment page e805

Resolve to Save Lives, New York, NY, USA

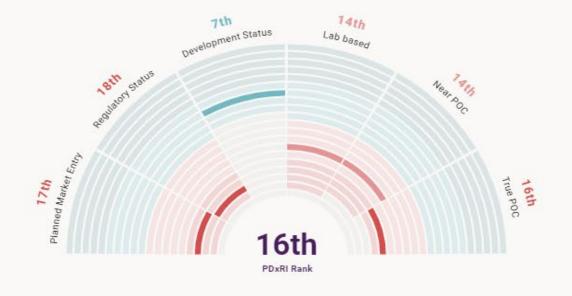
SNAPSHOT OF THE STATE OF DIAGNOSTICS FOR WHO R & D PATHOGENS

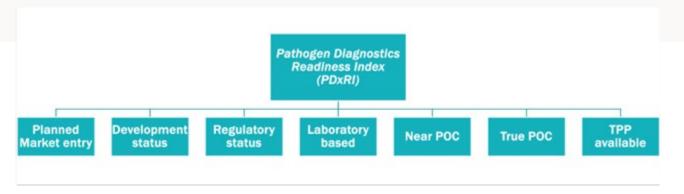
Pathogen name Select to explore	DX Index	↓F
Sars-CoV-2	100	
Dengue Virus	70,28	100
nfluenza A	56,58	
Influenza B	56,55	
Mpox Virus	47,11	
Vibrio Cholerae	31,26	
Yellow Fever Virus	24,99	
Rubella Virus	23,77	
Ebola Virus	21,44	
Salmonella Typhi	21,22	
Neisseria Meningitidis	19,27	
Measles Morbillivirus	14,47	
Salmonella Spp.	11,27	
Chikungunya Virus	9,38	
Zika Virus	8,49	
Crimean Congo Hemorr	7,33	
Lassa Virus	6,52	
Marburg Virus	6,19	
Salmonella Paratyphi	5,57	
Middle East Respiratory	0,99	
Salmonella Enterica	0,88	

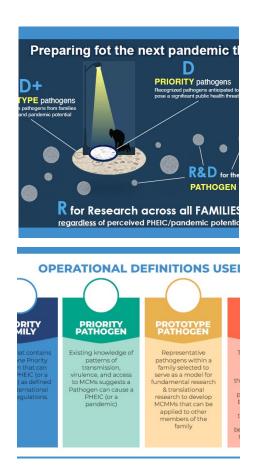
• PARAMETERS MEASURED

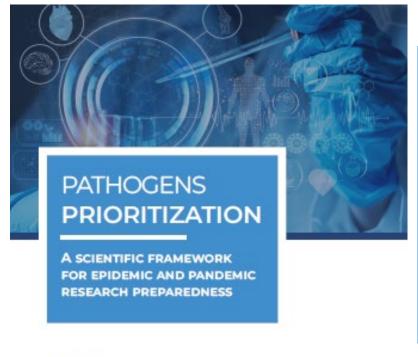
	Definition
Planned market entry	Is the test commercially available?
Development status	Is the test under development?
Regulatory status	Is the test approved by any international medical device regulatory Forum (IMDRF) agency?
Laboratory-based	Is there a test available for a Reference laboratory?
Near POC	Is the test available for near Point of Care setting?
True POC	Is the test available for True Point of Care setting (e.g., RDT for PHC?
*TPP available *TPP development is a WHO responsibility	Is there a diagnostic target product profile available?

PDxRI and indicator ranks for Lassa Virus

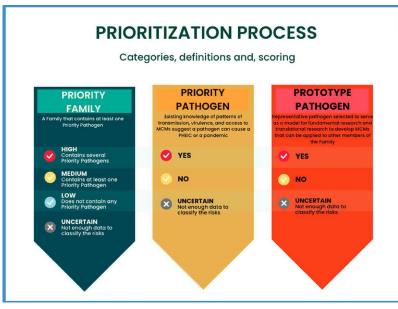

3 < Ł


Lassa Virus is ranked 16 out of 20. It scores highest in Lab based and lowest in True POC.





Include Sars-CoV-2



EMERGENCIES

FAMILOVIRIDAE

ANELLOVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

HEPADNAVIRIDAE

ORTHOMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

PARMYXOVIRIDAE

Spinareoviridae

PICOBIRNAVIRIDAE

Salmonella enterica non typicoidal servoyar is spinareoviridae

Salmonella enterica non typicoidal servoyar is spinareoviridae

POLYURIDAE

Salmonella enterica non typicoidal servoyar is spinareoviridae

PICOBIRNAVIRIDAE

PICOBIRNAVIRIDAE

Salmonella enterica non typicoidal servoyar is spinareoviridae

PICOBIRNAVIRIDAE

Salmonella enterica non typicoidal servoyar is spinareoviridae

PICOBIRNAVIRIDAE

RETROVENDAE

Salmonella enterica non typicoidal servoyar is spinareoviridae

Salmonella enterica non typicoidal servoyar is spinareoviridae

WHO R and D Approach 2024: Start with the Viral families

TUNE 2024

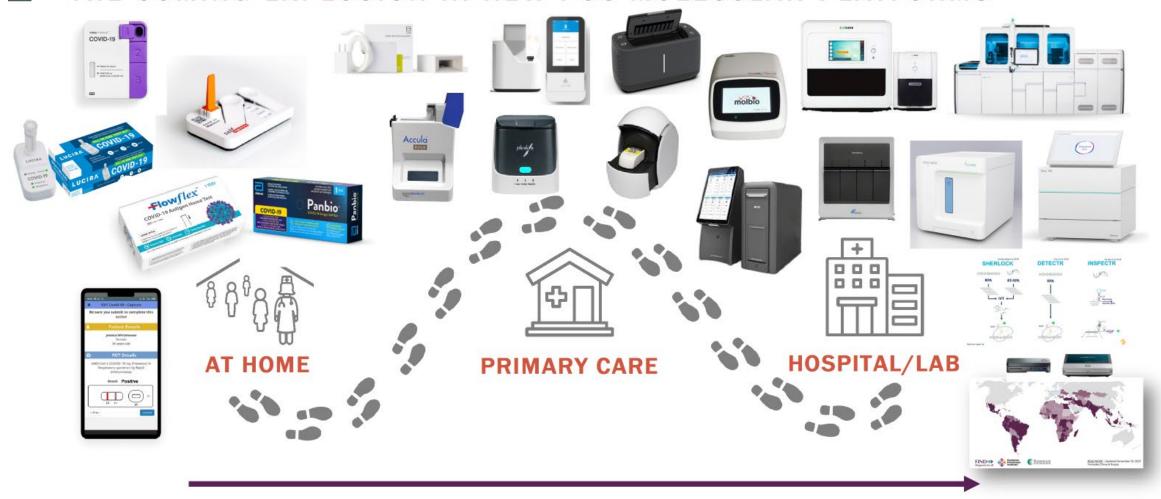
DISRUPTING THE TRADITIONAL TRADE-OFF BETWEEN PERFORMANCE AND ACCESSIBILITY

Improved access

Improved performance

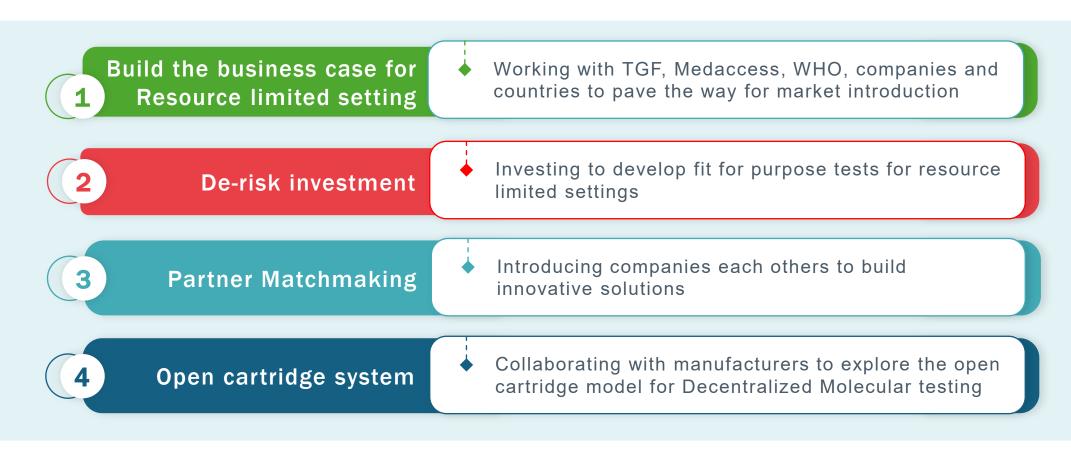
Today, new innovations
mean high-quality testing
is getting closer and
closer to the point-of-care
where people can most
readily access it

THE DIAGNOSTIC PREPAREDNESS ROADMAP TO ENABLE THE 100 DAYS MISSION


Accelerate product Research & Strengthen surveillance and Establish warm base for Streamline evidence generation Development and regulatory approval community-based testing manufacturing and reliable pull infrastructure mechanism Develop novel diagnostic Integrated global Strengthen global disease Support development of platforms biobanking network surveillance 10 regional manufacturing hubs Build prototype diagnostic Establish global clinical Normalize point-of-care Institute reliable pull 5 library for 10 pathogens trial and product evaluation testing programmes mechanism network Establish clinical reference Formalize pathway to Support digital connectivity and diagnostic network standards 6 enable collaborative optimization product registration

Advocacy for evidence-based policy, equitable access and universal health coverage

THE COMING DELUGE


THE COMING EXPLOSION IN NEW POC MOLECULAR PLATFORMS

Connected diagnostics and interoperable systems for data management, data aggregation and data sharing for surveillance

 TO ACCELERATE DEVELOPMENT AND ACCESS OF INNOVATIVE MOLPOC FOR RESOURCE LIMITED SETTINGS

Priority actions

Regulatory Innovation is necessary for access!

Health Policy OPEN 5 (2023) 100099

Contents lists available at ScienceDirect

Health Policy OPEN

journal homepage: www.elsevier.com/locate/hpopen

Proposal for a national diagnostics action plan for the United States

Gigi Kwik Gronvall ^{a,c,*}, Sujeet B. Rao ^d, Susan Van Meter ^b, Adam Borden ^b, Tom Inglesby ^{a,c}

- ^a Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, United States
- ^b American Clinical Laboratory Association, United States
- ^c Johns Hopkins Center for Health Security, United States
- ^d Independed scholar

ARTICLE INFO

Keywords: Pandemic preparedness Diagnostic testing COVID-19 response Mpox Laboratory testing

ABSTRACT

Providing a definitive diagnostic test in a disease emergency is critical to limit pathogen spread, develop and deploy medical countermeasures, and mitigate the social and economic harms of a serious epidemic. While major accomplishments have accelerated test development, expanded laboratory testing capacity, and established widespread point-of-care testing, the United States does not have a plan to rapidly respond, to develop, manufacture, deploy, and sustain diagnostic testing at a national scale. To address this gap, we are proposing a National Diagnostics Action Plan that describes the steps that are urgently needed to prepare for future infectious disease emergencies, as well as the actions we must take at the first signs of such' events. These recommendations require substantial collaboration between the US government (USG) and the private sector to solve a series of challenges now, as well as to prepare for the massive and rapid scale-up of laboratory and point-of-care test development and testing capacity in future emergencies. The recommendations include establishing pre-event contracts; ensuring rapid access to clinical samples; creating a permanent public-private testing coordinating body to allow for rapid information sharing and improved cooperation among the USG, test developers, and clinical laboratories; and accelerating testing rollout at the beginning of an event—and thus, the effective public health management of a disease crisis.

Manufacturers' considerations for in vitro diagnostic medical devices

in a public health emergency

Aspects à prendre en compte par les fabricants de dispositifs médicaux de diagnostic in vitro en situation d'urgence de santé publique

ISO/TS 16766

First edition 2024-11

Key Messages

Access to diagnostics is an equity issue; the global diagnostic gaps are significant

Surveillance cannot be effective without access to diagnostics

Regulatory bottlenecks have become exacerbated post-COVID-19 and can potentially stifle the introduction of innovative solutions

Modelling has demonstrated the potential impact of introducing diagnostics in early detection and control (flattening the curve)

More integrated diagnostic approaches are needed: including collaboration between human, animal and wildlife

Access to biostocks, biobanks are critical for development of new diagnostics; global considerations need to be addressed

THANK YOU FOR LISTENING

Acknowledgement: I am grateful to colleagues who allowed me to share their slides; also references available on request via emmanuel.agogo@finddx.org or e.agogo@outlook.com