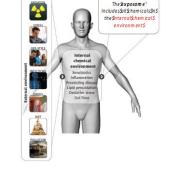
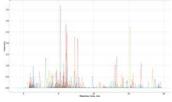


Emerging Biomarker
Approaches and
Technologies for Exposure
Assessment

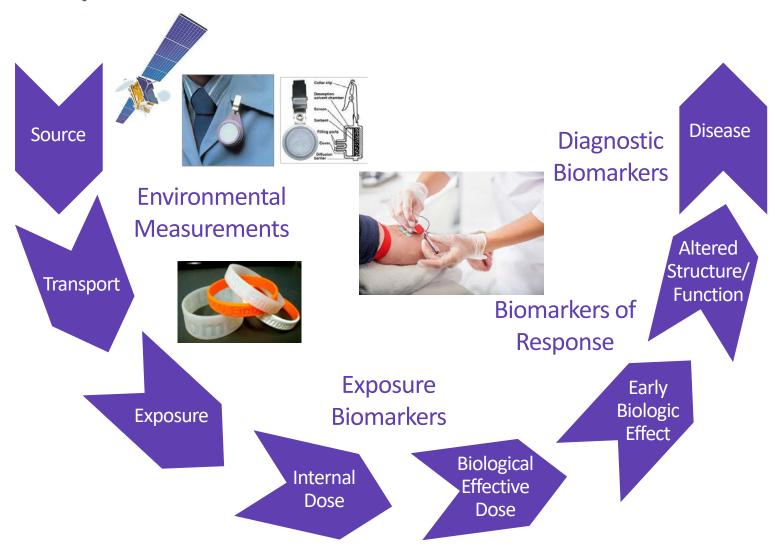
William E. Funk, Ph.D.

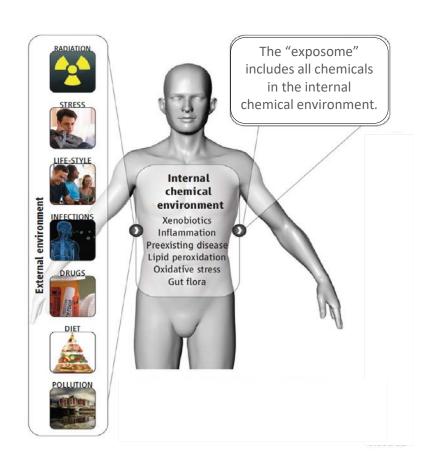

Department of Preventive Medicine


Northwestern University

Overview

- Daggicals: Daggicals:
- 1. Environmental measurements, biomarkers of exposure, and biomarkers of response
- 2. The exposome
- Untargeted versus targeted biomarker approaches
- 4. Field-friendly biospecimen collection




Disclosure: I have a financial interest in EnMed MicroAnalytics, Inc. which could potentially benefit from the outcomes of this research.

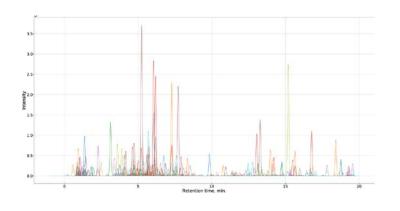
Exposure-Disease Continuum

The Exposome

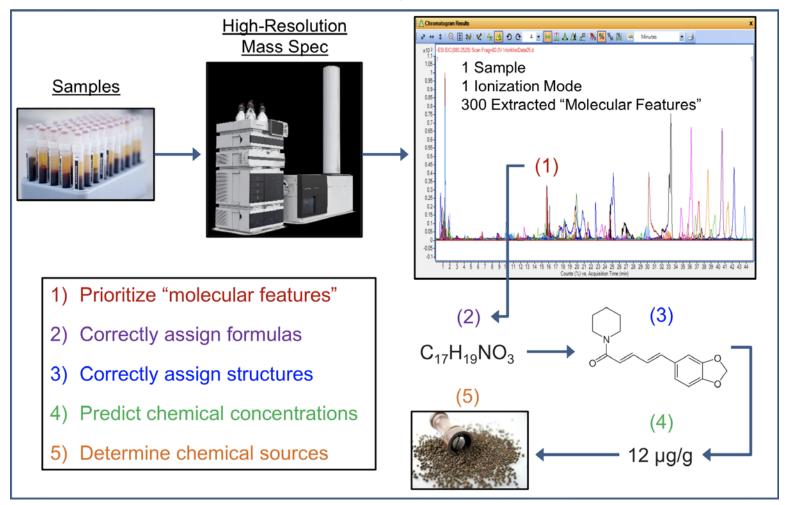
The Exposome:

A Powerful Approach for Evaluating Environmental Exposures and Their Influences on Human Disease

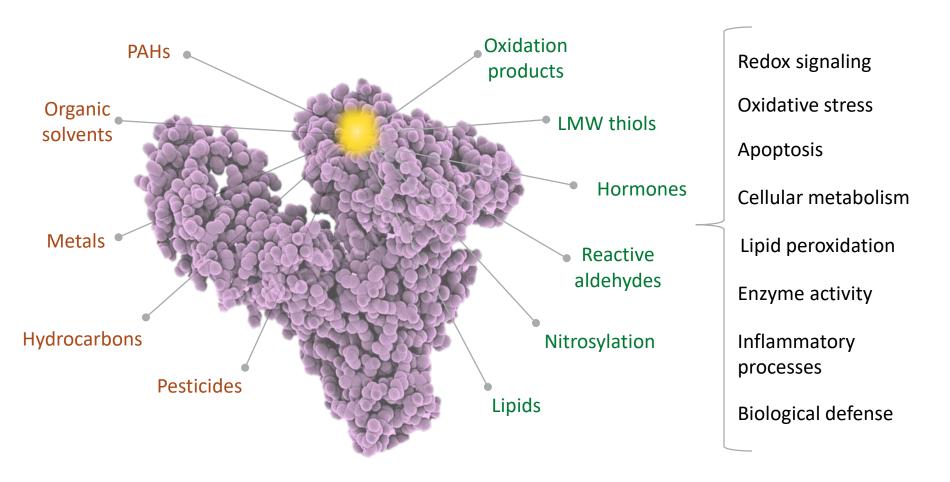
FEBRUARY 25-26, 2010 . WASHINGTON, DC



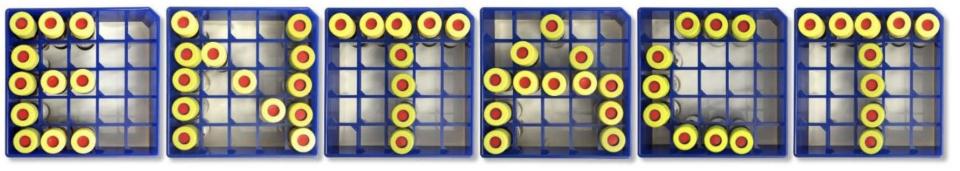
S.M. Rappaport & M.T. Smith, Science, 2010

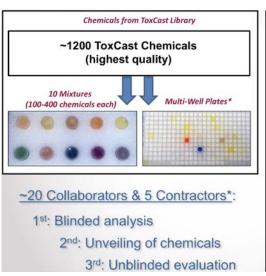


Untargeted Versus Targeted Biomarker Approaches



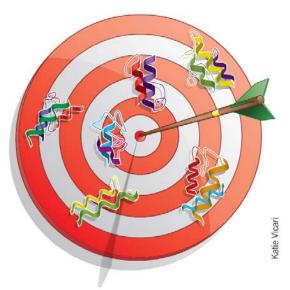
Untargeted Biomarker Analyses for Biomarker Discovery




HSA-Cys³⁴ Adductomics

EPA's Non-Targeted Analysis Collaboration Trial

	ToxCast Mixtures								Spikea Matrices				
	Mix1	Mix2	Mix3	Mix4	Mix5	Mix6	Mix7	Mix8	Mix9	Mix10	Dust	Serum	Band
Lab	95	95	95	95	185	185	365	365	95	365	365	95	185
A	93	114	116	106	182	201	360	374	73	330	236	92	124
В	337	372	303	365	321	363	466	505	510	463	25	222	313
С	135	130	125	154	188	195	284	295	100	153	27)	54	101
D	595	486	571	630	746	669	899	910	588	792	1009	614	NR
E	66	170	51	41	272	116	214	101	163	404	861	145	557
F	51	37	35	39	74	59	124	109	42	105	124	52	76
G	137	65	45	74	68	234	413	408	120	317	389	178	88
									· ·				


Blue = under reported; Green = near actual; Red = over reported

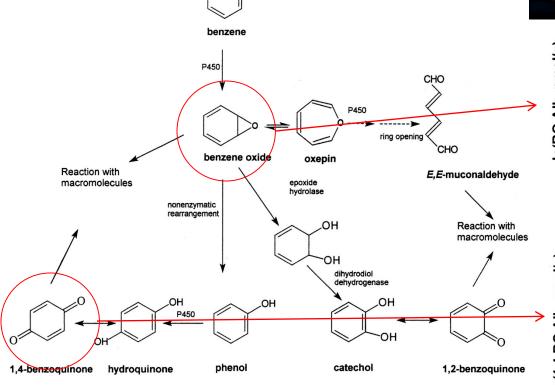
NATURE METHODS | VOL.10 NO.1 | JANUARY 2013 | 19

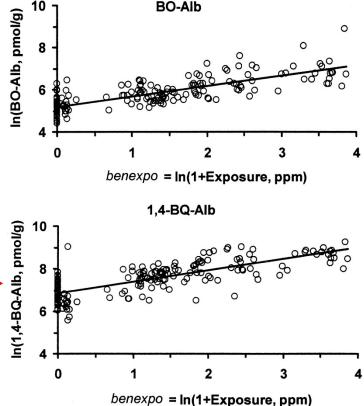
Targeted proteomics

Analysis of a preselected group of proteins delivers more precise, quantitative, sensitive data to more biologists. Vivien Marx reports.

Targeted proteomics detects proteins of interest with high sensitivity, quantitative accuracy and reproducibility.

"Targeted proteomics using mass spectrometry promises to deliver data to help address specific biological questions in a way that makes it fundamentally unlike discovery proteomics"


Targeted Biomarker Analyses for Biomarker Quantitation

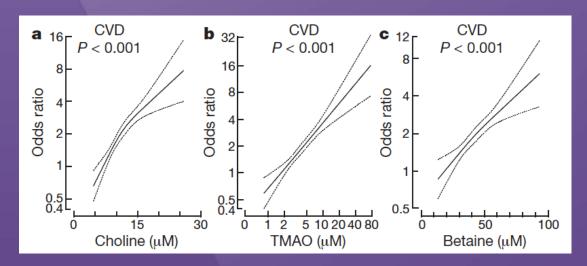


Benzene-Related **Adducts**

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Zeneng Wang^{1,2}, Elizabeth Klipfell^{1,2}, Brian J. Bennett³, Robert Koeth¹, Bruce S. Levison^{1,2}, Brandon DuGar¹, Ariel E. Feldstein^{1,2}, Earl B. Britt^{1,2}, Xiaoming Fu^{1,2}, Yoon–Mi Chung^{1,2}, Yuping Wu⁴, Phil Schauer⁵, Jonathan D. Smith^{1,6}, Hooman Allayee⁷, W. H. Wilson Tang^{1,2,6}, Joseph A. DiDonato^{1,2}, Aldons J. Lusis³ & Stanley L. Hazen^{1,2,6}

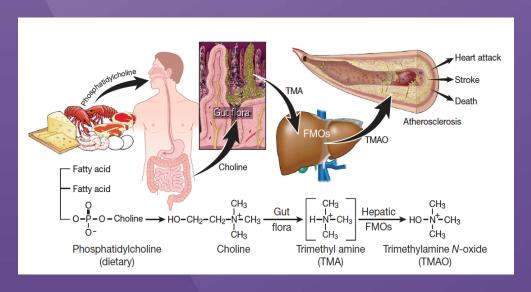
7 APRIL 2011 | VOL 472 | NATURE | 57


Untargeted: Biomarker Discovery

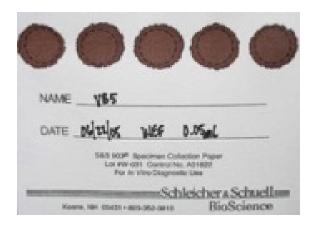
- From serum metabolomics, identified 18 unique features related to CVD
- Of these, 3 were highly correlated suggesting a common biochemical pathway
- Identified 3 metabolites of a dietary phospholipid

Targeted: Molecular Epidemiology

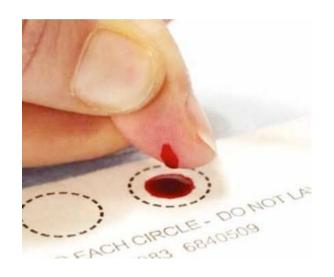
Northwestern Medicine®


- Identified a large independent cohort of 1,867 individuals
- Quantified TMAO, choline, and betaine in fasting serum

Exploring the Underlying Biology


Northwestern Medicine®

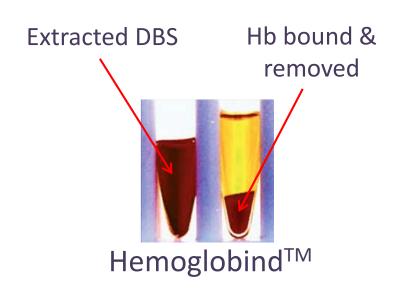
- Metabolism of dietary phosphatidylcholine is gut flora-mediated
- Suppression of intestinal microflora inhibited this process



Dried Blood Spot (DBS) Sampling

Advantages of DBS Sampling

- Collection does not require a phlebotomist
- Less invasive than venipuncture
- Specimens do not need to be processed in the field
- Easier to transport and store
- Cost



Challenges of DBS Sampling

- Minimum blood volume
- Some biomarkers may not be stable in DBS samples
- More complex biological matrix

Add Blood Here

Protein separator cards

(Prospective DBS Studies)

(Retrospective DBS Studies)

State of the Science in Dried Blood Spots

Jeffrey D. Freeman, ^{1*} Lori M. Rosman, ² Jeremy D. Ratcliff, ³ Paul T. Strickland, ⁴ David R. Graham, ⁵ and Ellen K. Silbergeld

CONTENT: A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Ana-

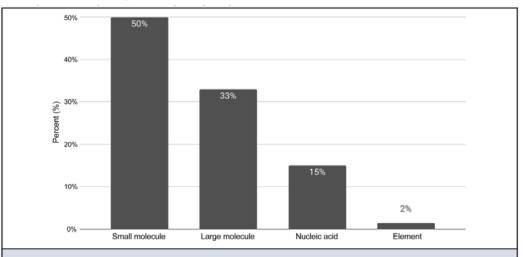
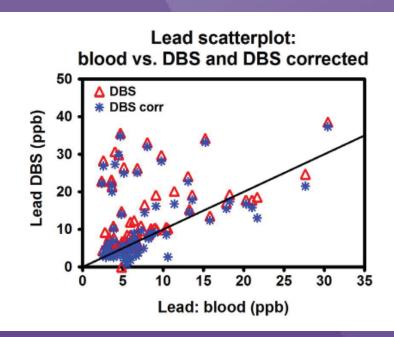
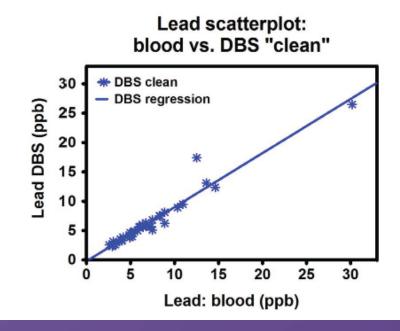


Fig. 1. Percentage of analyte classes assigned to unique analytes identified in the literature.

Exposure Biomarkers in DBS

Pollutant	Amount Required	Methodology	Selected References		
Nicotine	1x4.8 mm or 3x3.2 mm punches (Murphy 2013)	LCMS	Murphy 2013, Yang 2013		
	1x6.4 mm punch (Yang 2013)				
Benzene	1 DBS (50 uL)	GCMS	Funk 2008		
Organophosphate and carbamate	1 DBS punch (15 uL) (Hilborn 2004, Quandt 2010)	Cholinesterase Assay	Trudeau 2007, Quandt 2010		
Organochlorine pesticides	1 DBS (50 uL) (Batterman 2014)	GCMS	Batterman 2014		
DΠ	1 DBS (20 uL) (L'Homme 2015)		L'Homme 2016		
Chlorinated persistent organic pollutants	12.5 mm diameter spot, 50ul (Lehner,2018)	GC-ECD (Lehner, 2018)	Lehner,2018		
Organofluorine pesticide	LOD 0.1 ng/mL (Raju 2016)	LCMS	Raju 2016		
Polychlorinated biphenyls	1 DBS (50 uL) (Batterman 2014, Lu 2012)	GCMS	Batterman 2014		
,					
	1 DBS (20 uL) (L'Homme 2015)		L'Homme 2016		
Polybrominated diphenyl esters	1 DBS (50 uL) (Batterman 2014, Lu 2012)	GCMS	Batterman 2014		
Folybrollillated diphenyl esters		CCIVIS	L'Homme 2016		
	1 DBC /FO \ /Ma 2012h Chlashara 2012\ 16 man diamatan diamatan 100 0 02ma/l		Batterman 2014		
Danfler and Hud an arranged	1 DBS (50 uL) (Ma 2013b, Shlosberg 2012),16-mm diameter discs LOD 0.03ng/L PFOS, LOD 0.05 ng/L PFOA (Ghassabian 2018)	LCAS(AA-) LIDLC AAS(AAS(Charachian 2010)			
Perfluoroalkyl compounds	1 DBS (15 uL) (Provatas 2017)	LCMS(Ma), HPLC–MS/MS (Ghassabian 2018)	Ma 2013a, Shlosberg 2011/2012, Kato 2009		
Polyaromatic Hydrocarbons (PAHs)	50 uL DBS (Ma 2013a), 16-mm diameter discs, (Ghassabian 2018)	LCMS with ultraviolet–visible detection	Provatas 2017		
Bisphenol A	10x3.2 mm punches (Otero-Santos 2009)	LCMS(Ma), HPLC–MS/MS (Ghassabian 2018)	Ma 2013		
Perchlorate	LOD 0.01 ng/mL	GCMS	Otero-Santos 2009		
Domoic Acid	LOD 0.31 nM	cELISA	Maucher 2005		
Brevetoxins	LOD 0.006 ng/mL	Radioimmunoassay, c-ELISA	Woofter 2003, Maucher 2007, Fairey 2001		
Ciguatoxin	1 8.8 mm punch (Osteresch 2016)	Cytotoxicity Assay	Decharoui 2005		
Ochratoxin	1x6 mm or 1x8 mm punch (Riley 2015)	LCMS	Osteresch 2016, Cramer 2015		
Fumonisin	50 µl, using 12.7 mm diameter hole-puncher cutting out the whole spot,LOD 10	LCMS	Riley 2015		
Mycotoxins	pg/mL(Xue,2016)	Agilent 1100 HPLC-fluorescence detection system	Xue 2016		
Pb	1 DBS (20 uL) (Vacchina 2014)	ICPMS	Vacchina 2014, Funk 2013, Lehner 2013		
As	1 DBS (20 uL) (Vacchina 2014)	ICPMS	Vacchina 2014, Funk 2013, Lehner 2013		
Cd	1 DBS (20 uL) (Vacchina 2014)	ICPMS	Vacchina 2014, Funk 2013, Lehner 2013		
Hg	1/2 DBS (30 uL) (Funk 2013)	ICPMS	Funk 2013, Lehner 2013		
0			· · · · · · · · · · · · · · · · · · ·		

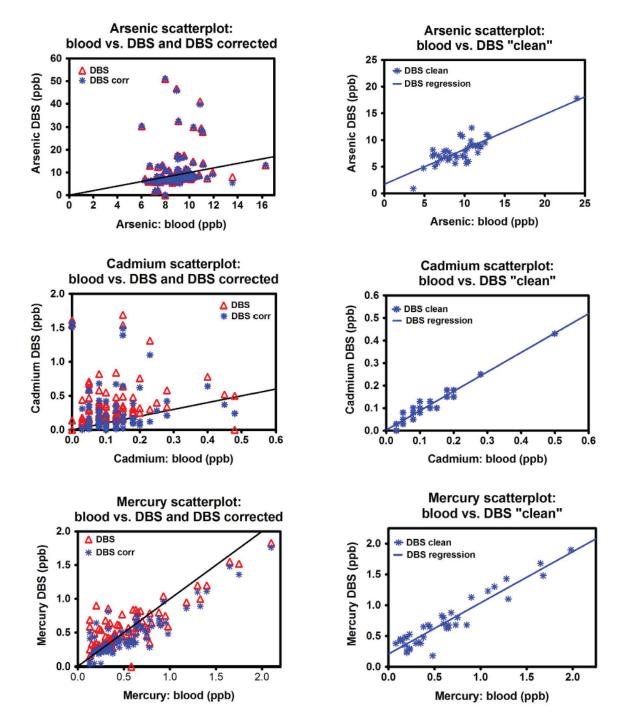


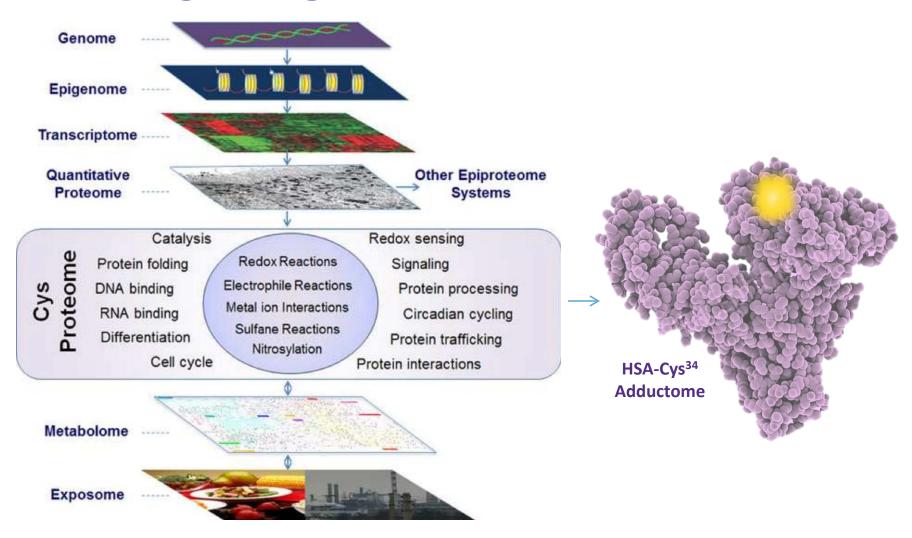

Research Article Open Access

Use of Dried Blood Spots for Estimating Children's Exposures to Heavy Metals in Epidemiological Research

William E Funk^{1*}, Joachim D Pleil², Dana J Sauter³, Thomas W McDade⁴ and Jane L Holl¹

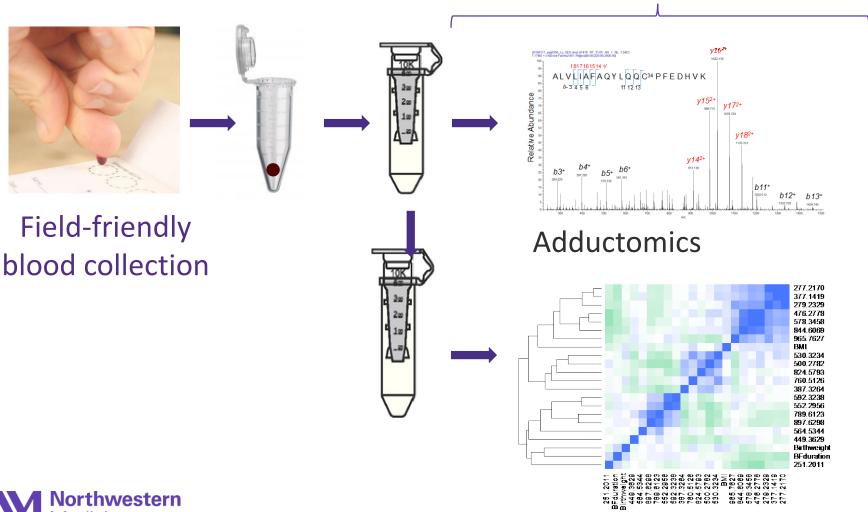
⁴Department of Anthropology and Institute for Policy Research, Northwestern University, Evanston, IL, USA




¹Department of Preventive Medicine, Northwestern University, Chicago, IL, USA

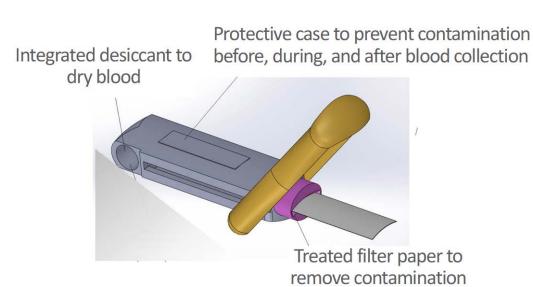
²United States Environmental Protection Agency, National Exposure Research Laboratory/ORD, Research Triangle Park, NC, USA

³Cabot Microelectronics, Aurora, IL USA


Integrating Omics data

Multiple Omics in DBS Samples

Untargeted & targeted analyses



Metabolomics

Specialized DBS Collection Devices

Toxic metal screening

Non-invasive blood collection

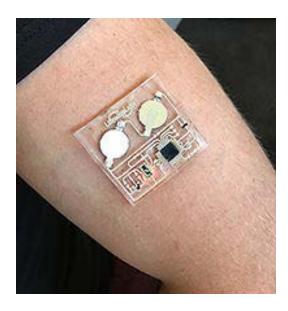


Photo curtesy of Lifeware Labs

Questions?