

Measuring the Impacts of FDA's Actions to Promote Judicious Antimicrobial Use in Veterinary Medicine

Presented to the National Academies' Committee on the Long-Term Medical and Economic Effects of Antimicrobial Resistance

November 9, 2020

Susan J. Bright-Ponte, DVM, MPH, DACVPM

susan.bright@fda.hhs.gov

Veterinary Medical Officer

Center for Veterinary Medicine

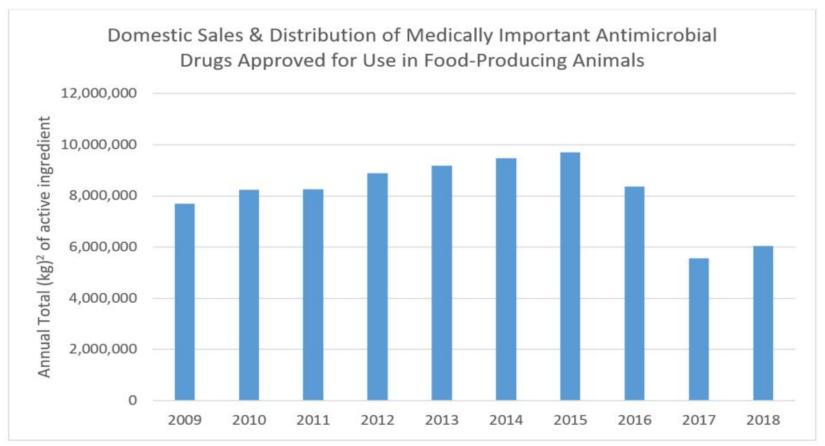
U.S. Food and Drug Administration

Topics

- Review changes implemented
 - FDA Guidance for Industry #209/213
- Data needed to assess impact of changes
 - On antimicrobial use practices/stewardship?
 - On antimicrobial resistance?
 - On animal health?

Guidance for Industry #209/213 Initiative

- Implementation plan initiated in 2013 to:
 - Eliminate production uses (growth promotion; improved feed efficiency) of medically important antimicrobials administered in feed/water of food-producing animals
 - Change marketing status from OTC to Rx (for water products) or Veterinary Feed Directive (VFD - for feed products) for medically important antimicrobials used in food-producing animals
- Implementation timeline:
 - By 10/1/2015 VFD Final Rule in effect
 - By 1/1/2017 -All feed and water uses of medically important antimicrobials in food-producing animals require veterinary oversight and can no longer be legally used for production purposes

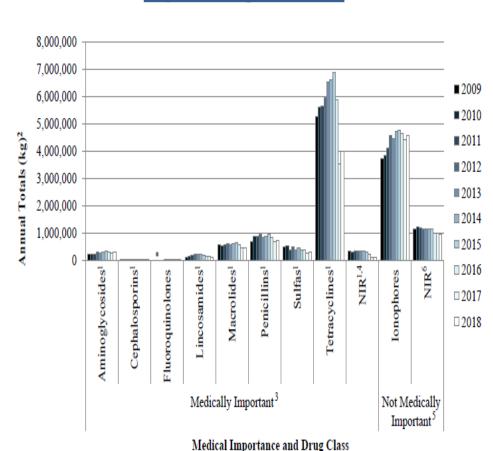

Impact of Changes

- Our primary goal: Support implementation of judicious antimicrobial use and stewardship practices in veterinary settings
- To assess impact and progress, a broad set of data should be considered
- Currently, we report annual antimicrobial sales data and antimicrobial resistance data (NARMS; Vet-LIRN)
 - Sales do not necessarily reflect actual antimicrobial use
 - Recently observed sales volume reductions do provide an indicator that ongoing efforts to support antimicrobial stewardship are having an impact

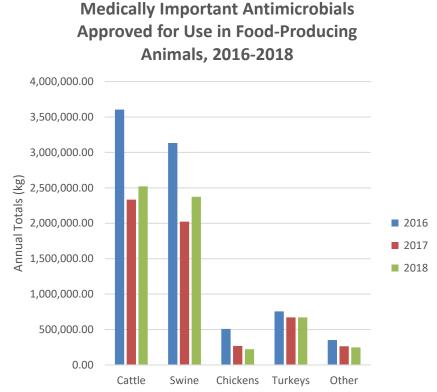
Antimicrobial Drug Sales

Domestic sales decreased:

- 33% between years 2016 and 2017
- 38% since 2015 (peak year of sales/distribution)
- 21% since the first year of reported sales in 2009


Domestic sales increased 9% between 2017 and 2018

Source: FDA, 2018 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals



Antimicrobial Drug Sales

By Drug Class

By Species (Estimated)

Species

Source: FDA, 2018 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals

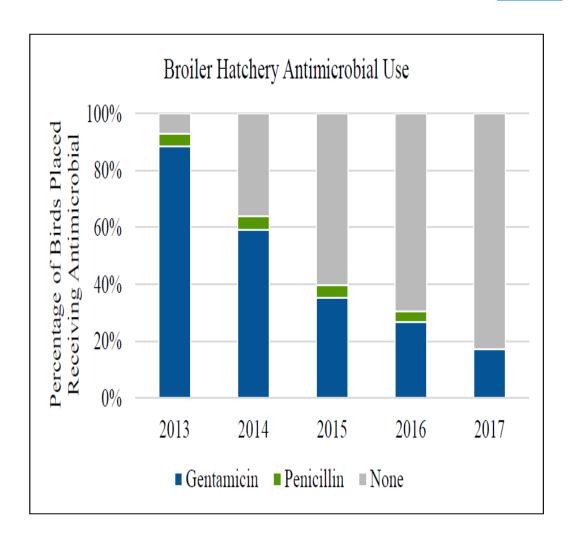
Antimicrobial Use

USDA APHIS

- National Animal Health Monitoring System (NAHMS) periodic surveys
- NAHMS Antimicrobial Use and Stewardship surveys for 2016 use on beef feedlots and swine operations

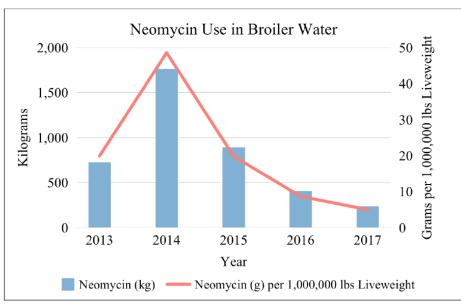
FDA CVM

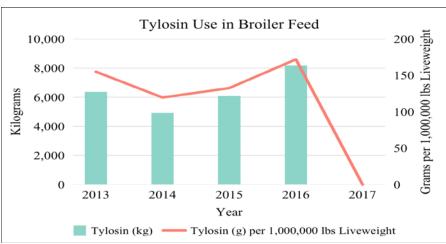
- Two cooperative agreements (awarded in 2016)
 - Characteristics of Antimicrobial Use in Beef Feedlots and Dairies (Kansas State University)
 - Antimicrobial Use Data Collection in U.S. Poultry and Swine Production (Mindwalk Consulting/University of Minnesota)
- Two cooperative agreements awarded in 2020 focus on companion animals (dogs and cats)

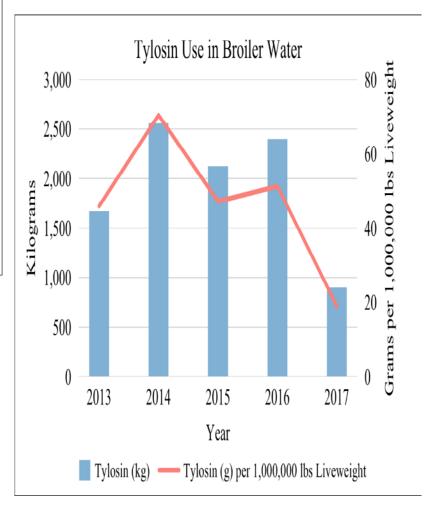


Broiler Hatchery Antimicrobial Use, 2013-2017

- Per 100,000 birds placed, broiler hatchery use of gentamicin decreased ~74% between 2013 and 2017
- Hatchery use of penicillin dropped to 0 in 2017
- The percentage of broiler chicks that received any antimicrobials in the hatchery decreased from ~93% to 17% between 2013 and 2017


Source: Singer RS and Porter LP https://mindwalkconsultinggroup.com/wp-content/uploads/2019/08/Poultry_On-Farm_Antimicrobial_Use_Report_201


3-2017.pdf

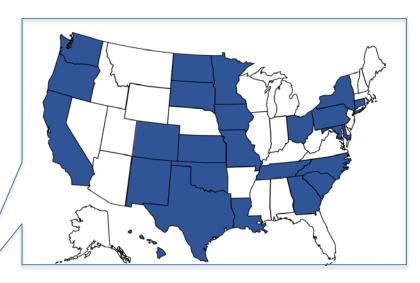


Examples

Source: Singer RS and Porter LP https://mindwalkconsultinggroup.com/wp-content/uploads/2019/08/Poultry_On-www.fda.gov
Farm_Antimicrobial_Use_Report_2013-2017.pdf

Antimicrobial Resistance Data

Nationwide surveillance of foodborne bacteria from human isolates


Random sampling of national food animal production at slaughter

Random stratified sampling

of
retail meat; seafood testing
being developed

FDA Monitoring of AMR in Retail Meats: 23 States in 2020

Sampling: 49 packages per month

- ✓ 10 retail chicken
- ✓ 10 ground turkey
- √ 10 ground beef
- ✓ 10 pork chops
- ✓ 3 salmon
- ✓ 3 shrimp
- ✓ 3 tilapia

Total = 13,524 meats in 2020

Microbiology

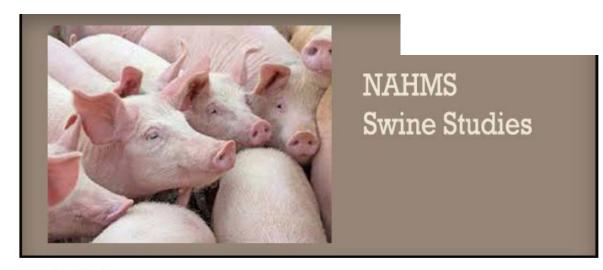
- ✓ Retail meat: Salmonella, Campylobacter, E. coli, Enterococcus
- ✓ Seafood: Vibrio, CRE, Aeromonas

Animal Health/Animal Populations

USDA

United States Department of Agriculture

> National Agricultural Statistics


Livestock Slaughter 2019 Summary

ISSN: 0499-0544

April 2020

Feedlot Health 2021 Study

Assessment Report

- Intent is to describe some of the available information on antimicrobial use and resistance, including:
 - AMU data captured from FDA cooperative agreements
 - USDA AMU survey data
 - Antimicrobial sales data and an appropriate method for applying a denominator to available data
 - Animal population/health data
 - NARMS resistance data
 - AMR in animal pathogens data
- Target for publication: Early 2021

Questions?

