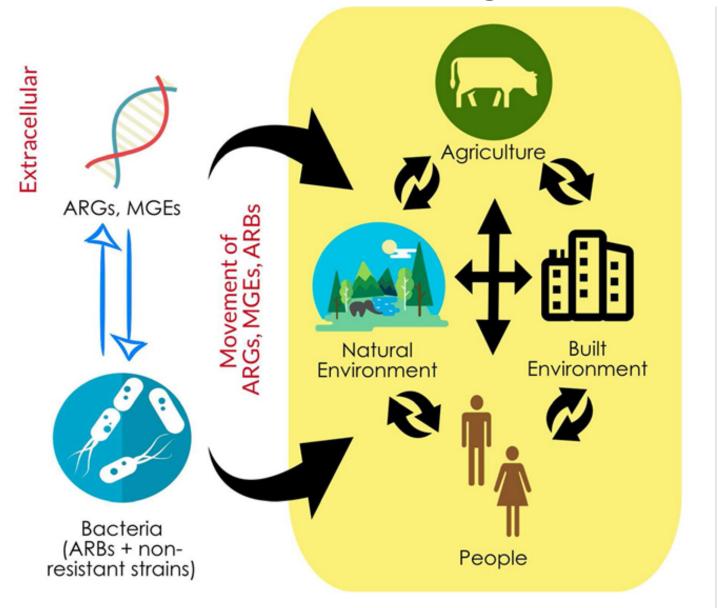


National Scale Monitoring of Antimicrobial Resistance in Surface Water

Jay L. Garland, Ph.D. Research Scientist US EPA Office of Research & Development Garland.jay@epa.gov


National Academy of Sciences Committee on the Long Term Medical and Economic Impacts of Antimicrobial Resistance

Overview

- New research area emphasis within EPA Office of Research & Development / Office of Water
- Touch on several EPA-specific research areas
 - -Measurements in the water cycle
 - Municipal wastewater systems
 - Recreational water
 - Modeling and mitigating environmental exposure risks
- Interagency effort on surface water in support of National Antimicrobial Resistance Monitoring System

The Challenge

Vikesland et al. 2017. EST

Initiatives for Addressing Antibiotic Resistance in the Environment: Current Situation and Challenges https://wellcome.org/sites/default/files/antimicrobial-resistance-environment-report.pd (2018)

Assessing & Improving Sanitation & Wastewater Treatment

Improve global sanitation by identifying efficient, affordable waste processing

Evaluate need for on-site pretreatment from high strength facilities (e.g., hospitals)

Evaluate the effectiveness of existing wastewater treatment process & identify factors resulting in inefficiencies or failures

United States Environmental Protection Agency

AMR Environmental Risk Measurements

Wastewater

- Influence of hospital wastewater on AMR in municipal sewer networks (ongoing sampling, on hold)
 - ESBL E. coli and VRE loading and isolates for genetic study
 - ARGs including high-throughput PCR panel development
- Linkages to current SARS-CoV-2 monitoring

Recreational Water

- -Gulf Coast Beach Study
 - Leverage existing planned sampling campaign (on hold)
 - ESBL E. coli and MRSA occurrence and genetic profiling
 - Inform exposure studies and public health risk assessments
 - Determine relationships with potential water quality predictors

Environmental Risk Modeling

Water Research Foundation White Paper Collaboration

-"A human health risk modeling framework for environmental sources of AMR: Toward quantitative risk predictions"

Framework Applications

- Water Reuse MRSA risk during showering with reclaimed graywater
 - Broadens exposure pathway to opportunistic skin pathogens common in source water
 - Considers stain virulence and additional disease burden of drugresistant infections
 - Incorporates horizontal gene exchange during treatment
- Recreational Water ESBL E. coli in wastewater-impacted surface waters
 - Breadth of gene transfer data for modeling additional risks of ARG dissemination
 - Synergy with WHO Tricycle and planned measurement studies
 - Potential for source apportionment and control point evaluations

National-Scale Surface Water Efforts

Initiatives for Addressing Antibiotic Resistance in the Environment: Current Situation and Challenges

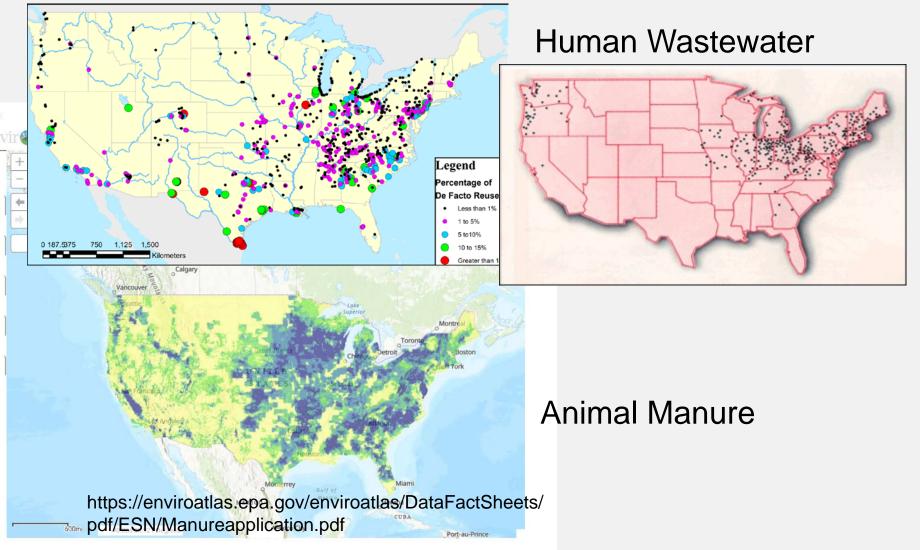
<u>https://wellcome.org/sites/default/files/antimicrobial-resistance-environment-report.pd</u> (2018)

- Environmental waters one of the areas in the report
 - Geospatial distribution of resistance to inform risk
 - Sources & selective pressures for amplification/transmission
 - Define & standardize sampling/analysis methods

"Following the NARMS Review Subcommittee recommendations to incorporate the three major domains of the One Health model (humans, animals, environment), an important theme of this strategic plan is the expansion of testing to examine resistance in animal pathogens and the environment. For environmental monitoring, what constitutes the best sampling points will be refined over time. Surface waters as confluence points of ecosystems differentially affected by built environments is a starting point."

NARMS Strategic Plan 2020-2025

United States Environmental Protection Agency

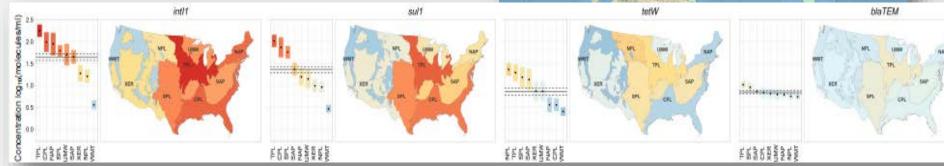

Surface Water AMR Monitoring (SWAM) Objectives

- A pilot environmental effort within a One Health focused NARMS
- Develop a national-scale, quantitative assessment of AMR within surface water:
 - A. Standardized measure (and library of samples) to monitor trends as part of NARMS
 - B. Input to models of AMR risks for various end uses of water (recreational, drinking, agricultural, water reuse).
 - C. Help quantify drivers of occurrence and selective pressures for potential amplification
 - D. Identify critical control points and assess current and new mitigation strategies

Why Water?

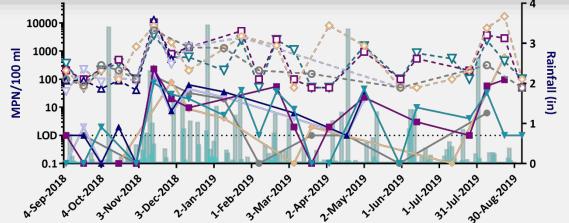
Rice J. and P. Westerhoff. 2015. Spatial and temporal variation in de facto Wastewater reuse in drinking water systems across the USA ES&T 49, 982

Multiple Inputs to Watersheds

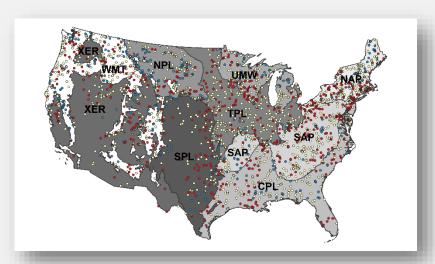


Designing the Study

Go Big and Slow?

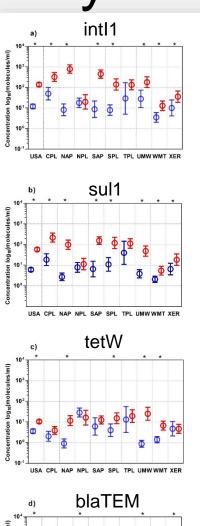

EPA National Rivers and Streams Assessment 5 year, probabilistic survey of aquatic resource

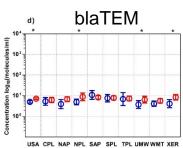
Or Small and Fast?

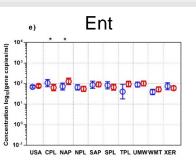


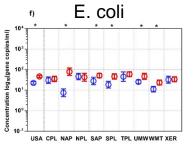
CDC Preliminary Surface Water Study in Chattahoochee River

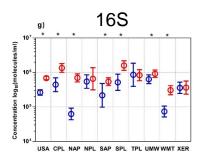
Baseline Analysis

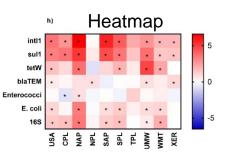



ECO9 Regions Shown; blue is reference; yellow is intermediate; red is impacted


Filter criteria


Total P (μg/L)
Total N (μg/L)
CI– (μeq/L)
SO4²⁻ (μeq/L)
ANC (μeq/L) , DOC
(mg/L)
Turbidity (NTU)
Riparian Disturbance
Index


% fine substrate



Analytical Targets

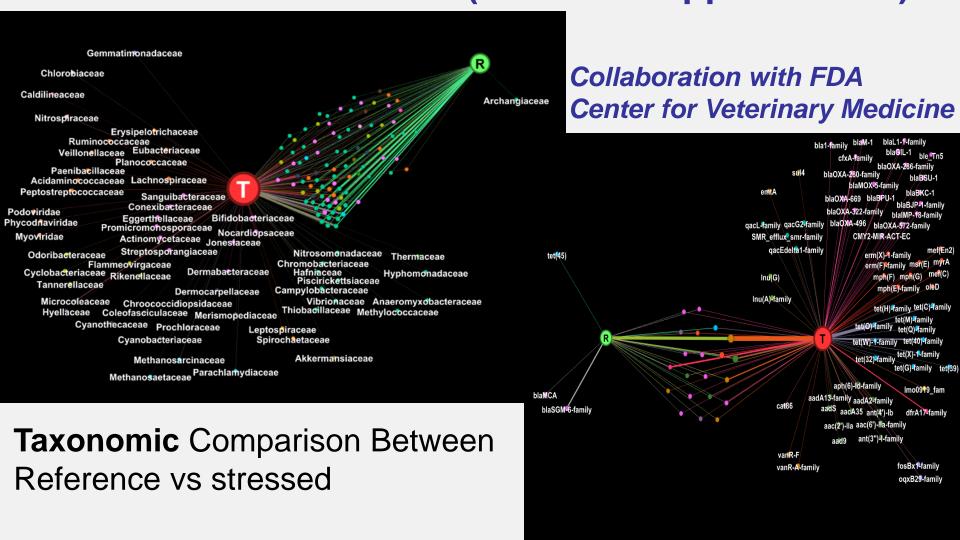
There is a need for rigorous QA/QC in data collection, as well as agreement in the community regarding standardized methods and reporting. Until priority monitoring targets are agreed on, analysis of a suite of culture-based and molecular based indicators is logical

Pruden et al. 2018 Environmental science and engineering framework for combating antimicrobial resistance

Culture

Enterococci, E.coli: links to existing water method Salmonella: links to NARMS, food cycle

Targeted Gene


Quantitative measure Defined panel, including fecal source trackers

Metagenomics

Deeper view Link resistance genes to hosts?

Pilot Metagenomics Effort within NRSA (Northern Appalachians)

Timeline **Targeted Workgroups** (4th Qtr FY20) **Virtual Summit** Develop Sampling Network (1st Qtr FY21) & Key Methods (FY20-21) **Pilot Study**) (FY22-25) **Data Collection** Planning & Assessment

Final Assessment of Surface Water Surveillance in NARMS (End of FY2025)

Summary

Developing information on AMR measurements and risk modeling to inform EPA Office of Water

Actively engaged in an interagency effort to both determine the value of, and standard approach to, environmental monitoring within a One Health, national scale effort

Jay Garland, Senior Scientist
Office of Research and Development
U.S. Environmental Protection Agency
Garland.Jay@epa.gov