The health and environmental aspects of dietary changes towards sustainable diets

Marco Springmann
Nuffield Department of Population Health
University of Oxford

Sustainable diets:

- Intended to address increasing health and environmental concerns related to food production and consumption;
- According to Food and Agriculture Organization of the United Nations (FAO): "Sustainable diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations. Sustainable diets are protective and respectful of biodiversity and ecosystems, culturally acceptable, accessible, economically fair and affordable; nutritionally adequate, safe and healthy; while optimizing natural and human resources."

Health impacts of food consumption:

- Imbalanced diets are responsible for the greatest health burden globally and in most regions (GBD 2015);
- Food insecurity: 2 billion people are overweight and obese, and another 2 billion have nutritional deficiencies, whilst about 800 million are still suffering from hunger due to poverty and poorly developed food systems (FAO, IFAD, UNICED, WFP, WHO, 2018);
- Dietary health and obesity rates could worsen with dietary transition towards more processed and high-value products (Alexandratos and Bruinsma, 2012; Springmann et al, 2016).

Environmental impacts of food production:

- Major driver of climate change (25% of GHG emissions, Vermeulen et al, 2012);
- Major driver of land-use change and biodiversity loss (40% of the Earth's surface, Ramankutty et al, 2008; Houghton et al, 2012);
- Major user of freshwater resources (70% of global freshwater withdrawals (WWAP, 2012);
- Major polluter of terrestrial and aquatic systems through fertilizer runoff (Vitousek et al, 1997) (→ dead zones in coastal oceans, Diaz and Rosenberg, 2008)

Current state of sustainable-diet research:

- Increasing number of systematic reviews (Aleksandrowicz et al, 2016; Nelson et al, 2016; Hallström et al, 2015; Joyce et al, 2014);
- Mostly national case studies with different reference diets, environmental footprints, and scenario designs → complicates comparisons between studies;
- Predominant focus on GHG emissions as environmental impact; few studies on land and water use;
- Health impacts often not explicitly analysed beyond adherence to national dietary guidelines or directional changes in nutrient levels (Payne et al, 2016).

This study:

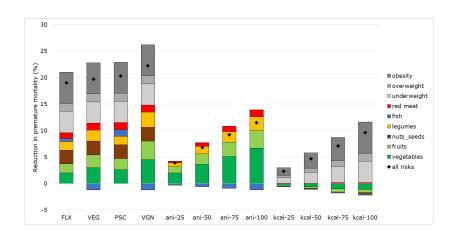
• Combined analysis of the health and environmental impacts of sustainable-diet strategies for 158 countries

Coupled modelling framework:

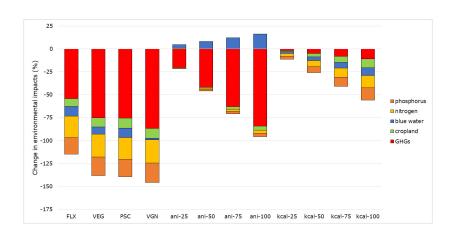
- Nutritional analysis: nutritional content of food groups for 24 nutrients based on GENuS dataset (Smith et al, 2016) and USDA (B5, B12); comparison to WHO recommendations;
- Mortality analysis: comparative risk assessment with 9 dietary and weight-related risk factors and 5 disease endpoints based on Oxford Global Health model (Springmann et al, 2016a,b);
- Environmental analysis: country-specific footprints for GHG emissions, cropland use, freshwater use, nitrogen application, phosphorus application (Springmann et al, forthcoming).
- Economic analysis: food expenditure based on country-specific estimates of food prices (IMPACT; Robinson et al, 2015).

Scenarios for 2030: Dietary-change strategies based on

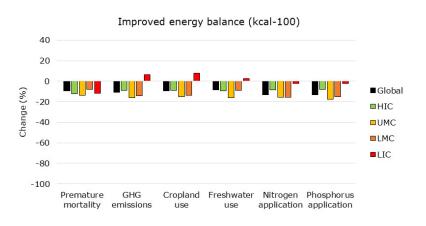
- Environmental objectives of reducing impacts of animal source foods:
 - Substitution of animal products with 2/3 legumes and 1/3 fruits&veg based on observational data of dietary patterns; range of ambition: 25-100%.

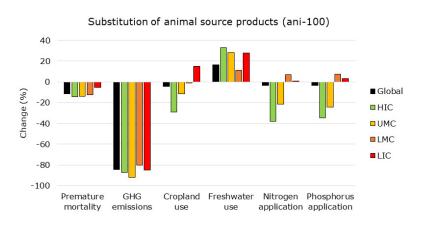

Scenarios for 2030: **Dietary-change strategies** based on

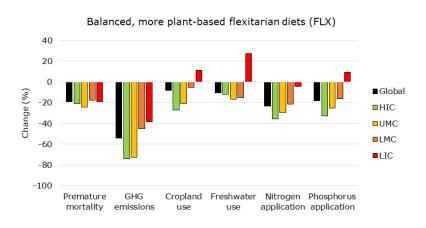
- Environmental objectives of reducing impacts of animal source foods:
 - Substitution of animal products with 2/3 legumes and 1/3 fruits&veg based on observational data of dietary patterns; range of ambition: 25-100%.
- Food-security objectives of addressing energy imbalances, including underweight, overweight, and obesity:
 - Simultaneous reduction of underweight, overweight and obesity; range of ambition: 25-100%.


Scenarios for 2030: **Dietary-change strategies** based on

- Environmental objectives of reducing impacts of animal source foods:
 - Substitution of animal products with 2/3 legumes and 1/3 fruits&veg based on observational data of dietary patterns; range of ambition: 25-100%.
- Food-security objectives of addressing energy imbalances, including underweight, overweight, and obesity:
 - Simultaneous reduction of underweight, overweight and obesity; range of ambition: 25-100%.
- Public-health objectives of adopting nutritionally balanced dietary patterns based on the current evidence on healthy eating:
 - Use of energy-balanced varieties of healthy dietary patterns developed for the EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems (flexitarian, pescatarian, vegetarian, vegan), regionalised by preserving national preferences for types of grains, fruits, and animal products


Results: mortality analysis


Results: environmental analysis


Results: regional analysis

Results: regional analysis

Results: regional analysis

Results: correlation analysis (Δ env per Δ health)

Region	Domain	Diet scenario												
Region	Domain	FLX	PSC	VEG	VGN	ani-25	ani-50	ani-75	ani-100	kcal-25	kcal-50	kcal-75	kcal-100	
	GHG emissions	2.85	3.71	3.82	3.91	5.19	6.15	6.83	7.31	0.89	1.08	1.13	1.14	
	Cropland	0.45	0.55	0.49	0.48	-0.11	0.17	0.30	0.38	0.37	0.81	0.95	1.00	
Global	Freshwater	0.57	0.50	0.40	0.08	-1.05	-1.20	-1.32	-1.40	0.85	0.88	0.88	0.87	
	Nitrogen	1.22	1.18	1.27	1.14	0.15	0.22	0.26	0.29	1.33	1.40	1.41	1.40	
	Phophorus	0.96	0.92	1.02	0.96	0.17	0.24	0.29	0.32	1.33	1.40	1.41	1.40	
	GHG emissions	3.51	3.69	3.84	3.84	4.18	5.13	5.83	6.06	0.78	0.76	0.77	0.74	
High-	Cropland	1.30	1.45	1.45	1.57	1.40	1.72	1.95	2.03	0.76	0.75	0.76	0.72	
income	Freshwater	0.58	0.51	0.35	-0.01	-1.57	-1.93	-2.19	-2.28	0.83	0.82	0.83	0.79	
countries	Nitrogen	1.70	1.85	1.93	1.97	1.82	2.23	2.54	2.64	0.75	0.73	0.74	0.71	
	Phophorus	1.57	1.68	1.74	1.85	1.67	2.05	2.33	2.42	0.67	0.66	0.67	0.64	
	GHG emissions	3.01	3.31	3.44	3.46	4.66	5.46	6.22	6.70	1.25	1.15	1.21	1.21	
Upper middle-	Cropland	0.87	1.01	0.95	0.91	0.59	0.69	0.79	0.85	1.17	1.07	1.13	1.13	
income	Freshwater	0.70	0.60	0.46	0.09	-1.43	-1.68	-1.91	-2.06	1.22	1.12	1.18	1.18	
countries	Nitrogen	1.22	1.33	1.39	1.36	1.09	1.28	1.46	1.57	1.20	1.11	1.16	1.17	
	Phophorus	1.04	1.13	1.20	1.27	1.24	1.45	1.65	1.78	1.34	1.24	1.30	1.30	
	GHG emissions	2.59	3.75	3.87	3.89	4.98	5.68	6.13	6.52	1.98	1.98	1.86	1.80	
Lower middle-	Cropland	0.32	0.37	0.39	0.33	0.08	0.09	0.10	0.11	1.92	1.92	1.80	1.75	
income	Freshwater	0.87	0.78	0.72	0.38	-0.69	-0.78	-0.85	-0.90	1.24	1.24	1.16	1.13	
countries	Nitrogen	1.23	1.08	1.21	0.97	-0.44	-0.50	-0.54	-0.57	2.19	2.19	2.06	2.00	
	Phophorus	0.93	0.80	0.94	0.77	-0.46	-0.53	-0.57	-0.60	2.14	2.14	2.01	1.95	
	GHG emissions	2.03	3.59	3.59	4.30	8.26	11.70	14.16	15.88	-1.98	-1.04	-0.72	-0.54	
Low-	Cropland	-0.58	-0.45	-0.69	-0.69	-6.63	-4.12	-3.30	-2.83	-3.46	-1.64	-1.00	-0.65	
income	Freshwater	-1.42	-1.49	-1.73	-2.18	-4.02	-4.33	-4.80	-5.16	-0.51	-0.32	-0.25	-0.21	
countries	Nitrogen	0.24	0.31	0.30	0.37	-1.76	-0.78	-0.39	-0.16	-0.83	-0.17	0.07	0.19	
	Phophorus	-0.49	-0.43	-0.41	-0.33	-2.12	-1.12	-0.76	-0.54	-0.91	-0.21	0.05	0.18	

Results: correlation analysis in 2050 (Δ env per Δ health)

Region	Domain						Diet sce	nario					
Region	Domain	FLX	PSC	VEG	VGN	ani-25	ani-50	ani-75	ani-100	kcal-25	kcal-50	kcal-75	kcal-100
	GHG emissions	3.00	3.85	3.93	4.01	5.18	6.20	6.97	7.49	1.10	1.46	1.58	1.62
	Cropland	0.74	0.80	0.86	0.79	-0.14	0.22	0.38	0.48	0.83	1.36	1.54	1.61
Global	Freshwater	0.94	0.77	0.88	0.50	-0.97	-1.06	-1.15	-1.22	1.44	1.49	1.51	1.50
	Nitrogen	1.37	1.46	1.35	1.36	0.23	0.38	0.46	0.51	1.68	1.81	1.85	1.85
	Phophorus	1.06	1.18	0.99	1.12	0.15	0.30	0.38	0.43	1.65	1.80	1.84	1.85
	GHG emissions	3.95	4.09	4.20	4.04	5.63	6.46	7.16	7.64	1.24	1.22	1.21	1.19
High-	Cropland	1.54	1.62	1.71	1.74	1.90	2.18	2.42	2.58	1.23	1.21	1.20	1.18
income	Freshwater	0.83	0.58	0.76	0.24	-1.80	-2.07	-2.29	-2.45	1.33	1.30	1.29	1.27
countries	Nitrogen	1.96	2.09	2.11	2.12	2.38	2.74	3.03	3.23	1.21	1.19	1.18	1.16
	Phophorus	1.81	1.89	1.91	1.98	2.19	2.51	2.78	2.97	1.14	1.12	1.11	1.09
Heren	GHG emissions	3.94	4.25	4.37	4.23	5.95	6.82	7.56	8.07	2.24	2.20	2.18	2.15
Upper middle-	Cropland	1.31	1.34	1.48	1.28	0.82	0.94	1.04	1.11	2.09	2.04	2.03	2.00
income	Freshwater	1.14	0.83	1.03	0.42	-1.61	-1.85	-2.05	-2.19	2.15	2.11	2.09	2.06
countries	Nitrogen	1.77	1.90	1.91	1.85	1.54	1.76	1.95	2.08	2.13	2.08	2.07	2.04
	Phophorus	1.42	1.54	1.48	1.58	1.38	1.58	1.75	1.87	2.31	2.27	2.25	2.22
	GHG emissions	2.46	3.65	3.71	3.90	5.29	6.07	6.73	7.18	2.06	2.01	2.00	1.97
Lower middle-	Cropland	0.62	0.73	0.71	0.70	0.32	0.36	0.40	0.43	2.10	2.06	2.04	2.01
income	Freshwater	1.15	1.02	1.10	0.76	-0.54	-0.62	-0.68	-0.73	1.66	1.62	1.61	1.59
countries	Nitrogen	1.27	1.34	1.17	1.18	-0.21	-0.24	-0.27	-0.29	2.20	2.16	2.14	2.11
	Phophorus	1.00	1.11	0.84	0.99	-0.23	-0.26	-0.29	-0.30	2.20	2.15	2.14	2.11
	GHG emissions	2.81	3.80	3.90	4.07	3.70	5.73	6.90	7.65	-2.85	-0.65	0.07	0.42
Low-	Cropland	0.05	0.01	0.20	-0.01	-3.69	-2.19	-1.68	-1.39	-4.03	-1.00	-0.01	0.47
income	Freshwater	-0.41	-0.62	-0.47	-0.91	-2.56	-2.46	-2.55	-2.63	-0.32	0.38	0.60	0.71
countries	Nitrogen	0.73	0.88	0.81	0.90	-1.26	-0.41	-0.08	0.12	-1.25	0.27	0.76	1.00
	Phophorus	-0.18	0.02	-0.14	0.07	-2.12	-1.03	-0.62	-0.38	-2.31	-0.23	0.44	0.77

Results: nutrient analysis (global)

Nutrients	rec	BMK	FLX	PSC	VEG	VGN	ani-25	ani-50	ani-75	ani-100	kcal-25	kcal-50	kcal-75	kcal-100
calories	2084	2146	2084	2084	2084	2084	2157	2157	2157	2157	2138	2120	2102	2084
protein	>52	68.4	70.6	72.5	65.0	64.7	67.9	66.6	65.3	64.1	68.5	67.8	67.2	66.5
carbohydrates	<391	324.4	273.8	278.1	288.7	303.7	341.1	356.1	371.1	386.1	323.9	321.8	319.6	317.5
fat		68.9	81.8	78.1	77.3	71.3	62.7	56.4	50.1	43.8	68.1	67.2	66.4	65.5
saturatedFA	<23	22.5	19.7	17.5	17.2	13.4	19.3	16.0	12.7	9.5	22.3	22.0	21.7	21.4
monounsatFA		26.7	31.4	28.1	27.7	26.1	23.7	20.7	17.7	14.6	26.4	26.1	25.7	25.4
polyunsatFA	>14	16.7	27.7	27.2	27.4	27.6	16.7	16.8	16.8	16.8	16.5	16.3	16.1	15.9
vitaminC	>42	86.9	148.3	162.5	170.9	195.7	124.1	146.8	169.5	192.3	100.3	99.3	98.2	97.2
vitaminA	>544	482.1	626.6	679.3	694.2	702.8	627.4	680.3	733.2	786.2	568.1	561.7	555.4	549.0
folate	>364	280.3	553.2	576.6	643.5	733.1	410.1	504.1	598.1	692.2	313.2	310.3	307.4	304.4
calcium	>520	555.7	621.0	660.4	629.8	489.2	546.3	517.5	488.7	459.9	571.3	567.5	563.7	559.9
iron	>17	16.4	18.8	19.3	19.5	21.1	18.1	19.3	20.5	21.6	16.9	16.8	16.7	16.6
zinc	>6.1	10.8	10.4	10.4	10.2	10.3	10.8	10.6	10.5	10.4	10.8	10.7	10.6	10.5
potassium	>3247	2506.1	3383.0	3555.0	3633.9	3952.4	2951.4	3282.7	3614.1	3945.4	2595.4	2570.8	2546.3	2521.7
fiber	>29	26.0	35.5	36.6	39.9	44.6	31.5	36.1	40.7	45.4	26.6	26.3	26.0	25.8
copper	>0.8	1.6	2.3	2.3	2.5	2.7	1.8	2.1	2.3	2.5	1.6	1.6	1.6	1.6
phosphorus	>757	1311.7	1379.0	1428.8	1366.4	1337.1	1333.6	1347.1	1360.7	1374.2	1310.1	1300.2	1290.3	1280.4
thiamin	>1.1	1.3	1.5	1.5	1.5	1.6	1.4	1.5	1.6	1.6	1.3	1.3	1.3	1.3
riboflavin	>1.1	0.9	0.9	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
niacin	>14	18.7	17.5	17.4	16.0	16.8	18.6	18.4	18.1	17.9	18.7	18.5	18.3	18.1
vitaminB6	>1.2	6.1	6.1	6.2	6.1	2.3	5.2	4.3	3.3	2.4	6.2	6.2	6.3	6.4
magnesium	>205	436.3	527.1	543.3	561.1	596.1	489.3	528.3	567.3	606.3	447.8	445.3	442.9	440.4
pantothenate	>4.7	5.7	5.4	5.4	5.3	4.9	6.4	6.1	5.8	5.5	6.7	6.7	6.7	6.6
vitaminB12	>2.2	3.0	2.4	3.7	0.8	0.0	2.8	1.8	0.9	0.0	3.7	3.6	3.6	3.6

Results: nutrient analysis (regional)

Region	Nutrient -	Diet scenarios												
		BMK	FLX	PSC	VEG	VGN	ani-25	ani-50	ani-75	ani-100	kcal-25	kcal-50	kcal-75 kc	al-100
	saturatedFA	65					36	7			62	59	56	52
	vitaminA	-3												
	folate	-30									-23	-24	-26	-27
	calcium					-13				-1				
HIC	iron	-26					-12	-0			-25	-26	-27	-28
HIC	potassium	-25					-4				-24	-26	-27	-28
	fiber	-14									-13	-15	-16	-18
	riboflavin					-2								
	pantothenate					-4				-1				
	vitaminB12				-52	-100			-38	-100				
	saturatedFA	14									11	9	6	3
	folate	-16									-11	-13	-16	-18
	calcium					-7				-7				
UMC	iron	-12					-1				-12	-14	-17	-19
	potassium	-7									-7	-9	-12	-14
	pantothenate					-7				-3				
	vitaminB12				-48	-100		-13	-57	-100				
	polyunsatFA													-1
	vitaminA	-15												
	folate	-20									-11	-12	-13	-14
	calcium	-5				-3	-4	-6	-8	-10	-2	-2	-3	-3
LMC	iron	-2										-1	-2	-3
	potassium	-23	-1				-11	-2			-21	-22	-23	-24
	fiber	-14									-13	-14	-15	-16
	riboflavin	-26	-26	-24	-26	-33	-26	-27	-28	-29	-26	-27	-27	-28
	vitaminB12				-69	-100	-10	-40	-70	-100				
	protein	-2								-1				
	polyunsatFA	-30					-29	-29	-30	-30	-27	-26	-25	-24
	vitaminA	-38					-23	-19	-15	-12	-25	-23	-22	-20
	folate	-32					-7				-16	-14	-12	-10
LIC	calcium	-33				-7	-29	-31	-32	-34	-25	-23	-21	-19
	potassium	-32					-19	-15	-11	-7	-21	-19	-18	-16
	fiber	-17					-3				-7	-5	-3	-0
	riboflavin	-41	-15	-14	-14	-19	-36	-37	-38	-39	-34	-33	-31	-30
	vitaminB12	-41	-32	-14	-82	-100			-36	-100				

Results: food expenditure

Food group						Diet so	enarios					
r oou group	FLX	PSC	VEG	VGN	ani-25	ani-50	ani-75	ani-100	kcal-25	kcal-50	kcal-75	kcal-100
Change in we	ekly food e.	xpenditure	(USD) per p	erson by fo	ood group:							
total	-0.97	0.43	-1.43	-0.31	0.63	1.11	1.60	2.08	-0.42	-0.98	-1.55	-2.11
staples	-0.91	-0.91	-0.91	-0.91	0.01	0.01	0.01	0.01	-0.06	-0.14	-0.22	-0.29
legumes	0.36	0.36	0.52	0.73	0.18	0.35	0.52	0.69	0.01	0.00	-0.01	-0.01
nuts	0.11	0.11	0.11	0.11	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01
fruits&veg	2.16	3.16	3.84	5.98	1.96	3.82	5.68	7.54	-0.15	-0.41	-0.66	-0.91
veg oils	0.12	0.12	0.12	0.12	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.02	-0.03
sugar	-0.17	-0.17	-0.17	-0.17	0.00	0.00	0.00	0.00	-0.01	-0.02	-0.02	-0.03
meat&dairy	-3.08	-4.03	-4.03	-5.26	-1.30	-2.62	-3.94	-5.26	-0.16	-0.34	-0.51	-0.69
fish	0.45	1.80	-0.90	-0.90	-0.22	-0.45	-0.67	-0.90	-0.04	-0.07	-0.11	-0.14
Percentage of	hange (%)	by region:										
Global	-5.94	2.64	-8.75	-1.91	3.86	6.83	9.81	12.78	-2.58	-6.04	-9.5	-12.96
HIC	-26.01	-16.7	-30.95	-26.89	0.75	1.49	2.24	2.99	-2.22	-4.45	-6.67	-8.89
UMC	-15.34	-8.07	-17.73	-10.38	2.34	4.67	7.01	9.34	-3.95	-7.9	-11.85	-15.8
LMC	-5.18	3.46	-6.85	1.18	4.11	8.22	12.34	16.45	-4.09	-8.18	-12.27	-16.37
LIC	33.64	41.98	27.57	32.22	9.61	10.65	11.69	12.73	7.37	6.17	4.97	3.77

By region:

- Improving nutrient levels and reducing diet-related, premature mortality is possible in all regions.
- In HIC and MIC, healthy diets can lead to reductions in environmental impacts;
- In LIC, adoption of healthier diets can increase demand for environmental resources, in part due to inefficient production systems.

By region:

- Improving nutrient levels and reducing diet-related, premature mortality is possible in all regions.
- In HIC and MIC, healthy diets can lead to reductions in environmental impacts;
- In LIC, adoption of healthier diets can increase demand for environmental resources, in part due to inefficient production systems.
- ⇒ Synergistic perspective on sustainable diets should include regional considerations, technological and dietary aspects, international support mechanisms.

By environmental domain:

- Associations between health and environmental benefits strongest for GHG; moderate for cropland, nitrogen, and phosphorus; small for freshwater.
- Reducing GHG emissions important at global level for mitigating climate change, but changes in other domains relate predominantly to local environmental impacts.

By environmental domain:

- Associations between health and environmental benefits strongest for GHG; moderate for cropland, nitrogen, and phosphorus; small for freshwater.
- Reducing GHG emissions important at global level for mitigating climate change, but changes in other domains relate predominantly to local environmental impacts.
- ⇒ Need for context-specific strategies that balance environmental impacts between global and regional scales.

By scenario:

- Public-health strategy for adapting healthy diets performs better in reducing environmental pressures, potential nutrient deficiencies, and diet-related mortality as strategies motivated only by environmental and food-security concerns;
- Addresses shortcoming of other approaches (high regional variability; low nutritional and environmental effectiveness).

By scenario:

- Public-health strategy for adapting healthy diets performs better in reducing environmental pressures, potential nutrient deficiencies, and diet-related mortality as strategies motivated only by environmental and food-security concerns;
- Addresses shortcoming of other approaches (high regional variability; low nutritional and environmental effectiveness).
- ⇒ Addressing both dietary composition and energy intake as part of food-based dietary guidelines could be suitable strategy for achieving sustainable diets.

Comparison to current context:

 Many national dietary guidelines do not reflect current evidence on healthy eating: no or too lax limits for animal source foods, in particular for dairy (not supported by evidence base).

Comparison to current context:

- Many national dietary guidelines do not reflect current evidence on healthy eating: no or too lax limits for animal source foods, in particular for dairy (not supported by evidence base).
- ⇒ Updating national dietary guidelines to reflect the latest evidence on healthy eating important for improving health and environmental sustainability, and complement broader and more explicit criteria of sustainability.

Caveats

Aspects not addressed in analysis:

- Biodiversity impacts (related to land-use change)
- Economic aspects (and feedbacks on environmental footprints)
- Policy options that support diet scenarios:
 - Behavioural-change literature suggests cross-cutting approaches that focus on the whole food environment, combine multiple incentives, including fiscal ones, and offer support and positive re-enforcement for individuals have been successful in specific contexts (Mozaffarian et al, 2012, 2016).
- ⇒ Finding effective combinations of policies and approaches that account for local characteristics essential for successfully upscaling current initiatives and achieving reductions in health and environmental burden at the population level and globally.

Thank you for your attention

Comments and suggestions:

• marco.springmann@dph.ox.ac.uk

Co-authors:

- University of Oxford, UK: Marco Springmann, Peter Scarborough, Mike Rayner
- International Food Policy Research Institute, USA: Keith Wiebe, Daniel Mason-D'Croz (now at CSIRO, Australia)

Funding:

 Wellcome Trust, Our Planet Our Health (Livestock, Environment and People - LEAP); CGIAR Research Program on Policies, Institutions, and Markets (PIM); EAT Foundation as part of the EAT-Lancet Commission on Healthy Diets from Sustainable Food systems.