

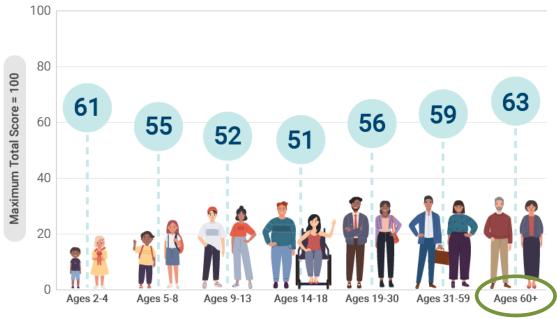
Age-Related Changes in Dietary Intakes and Nutrient Needs

Sarah L Booth, PhD

November 20, 2024

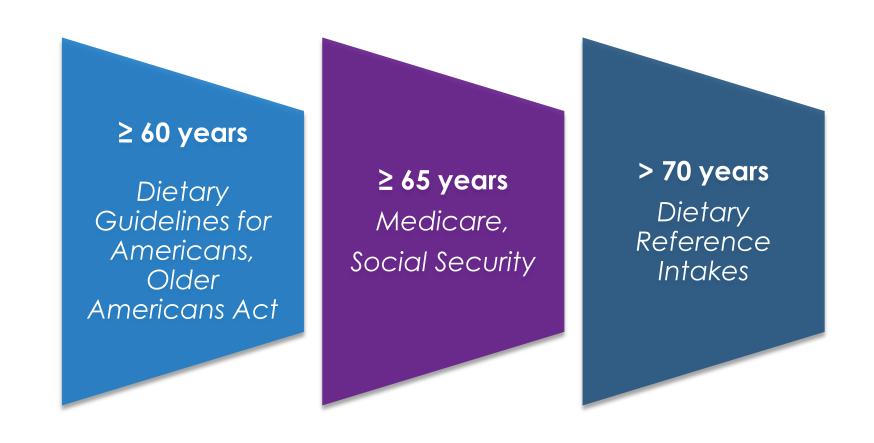
Disclosures

- Research Funding:
 - USDA/ARS, NIH/NIA, NIH/NIAMS, NIH/NIGMS
- President, American Society of Nutrition, 2024-2025
- Chair, HHS/USDA 2025 Dietary Guidelines for Americans Advisory Committee
- Panel Member, ILSI Europe Vitamin K2 Task Force
- Editorial Board, Annual Review of Nutrition



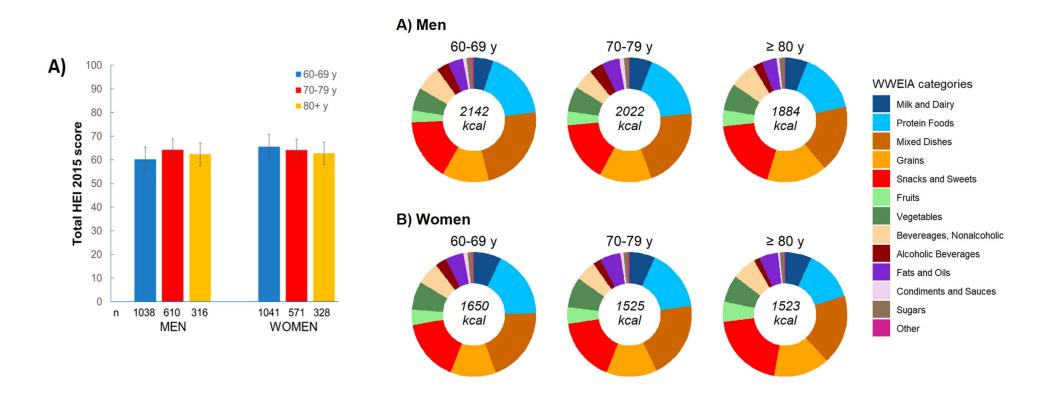
Age-Related Changes in Dietary Intakes

Adherence to the Dietary Guidelines for Americans across Life-stages.

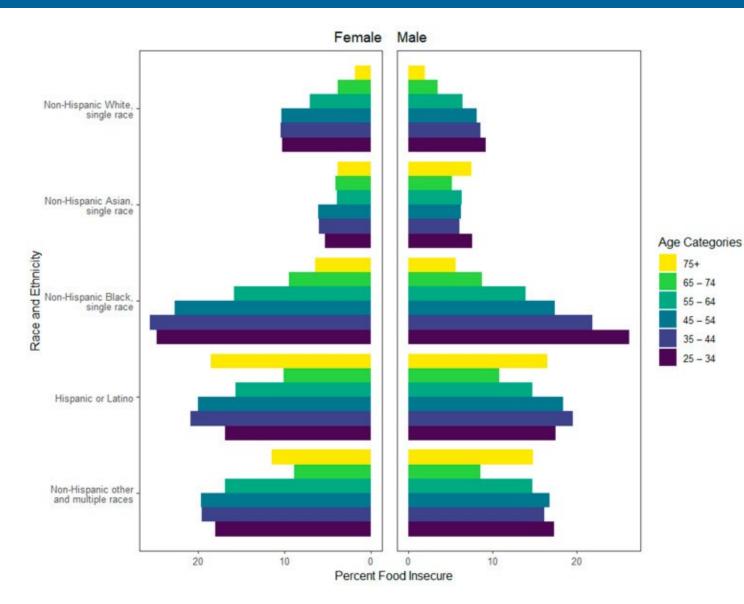


NOTE: HEI-2015 total scores are out of 100 possible points. A score of 100 indicates that recommendations on average were met or exceeded A higher total score indicates a higher quality diet.

Data Source: Analysis of What We Eat in America, NHANES 2015-2016, ages 2 and older, day 1 dietary intake data, weighted.


How does diet change throughout older adulthood?

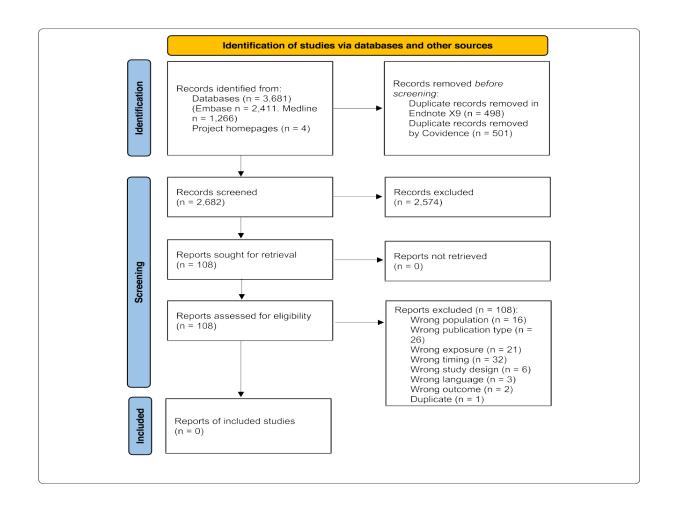
How to define older adults?


Overall diet quality is similar, but diet of 80+ year-olds differed from 60-69-year-olds in some components.

National Health and Nutrition Examination Survey 2015–March, 2020

doi: 10.1016/j.tnutr.2023.12.014

Food Insecurity Varies by Age, Sex, and Race/Ethnicity.



Household Pulse Survey 23 April 2020, through 8 May 2023

The United States Department of Agriculture defines food insecurity as the lack of consistent access to enough food for an active, healthy life.

doi: 10.3390/ijerph21081078

There are No Dietary Pattern Studies in Centenarians.

"Centenarians are used as a model of healthy ageing and longevity. Diet is a factor known to affect mortality in middle aged adults and elderly No studies have investigated dietary patterns in late adult life in relation to survival to 100 + years of age."

doi.org/10.1186/s13690-022-00914-2

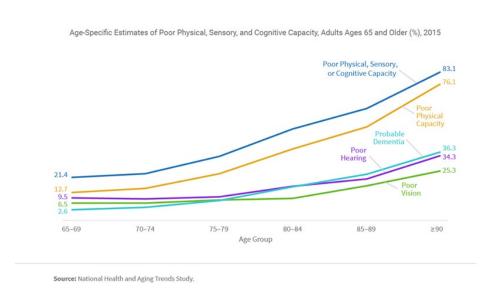
Fig. 1 PRISMA flow diagram detailing the flow of records through the review process in the systematic review of cohort and case—control studies on dietary patterns and survival to 100 + years

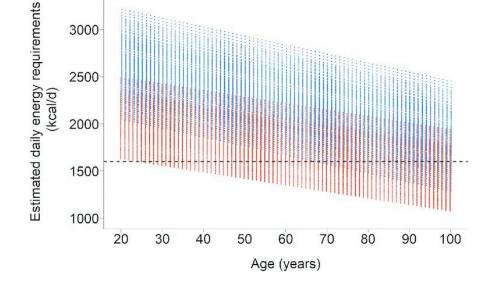
Opportunities

- Dietary intake data are available in > 750,000 individuals from ~32 prospective federally-funded US cohorts.
- Add dietary assessment to ongoing cohorts which currently lack it.

Obstacles

- Reliance on recall ability.
- Cultural adaption of FFQs.
- Currently, follow-up dietary assessments are available primarily on non-Hispanic whites.

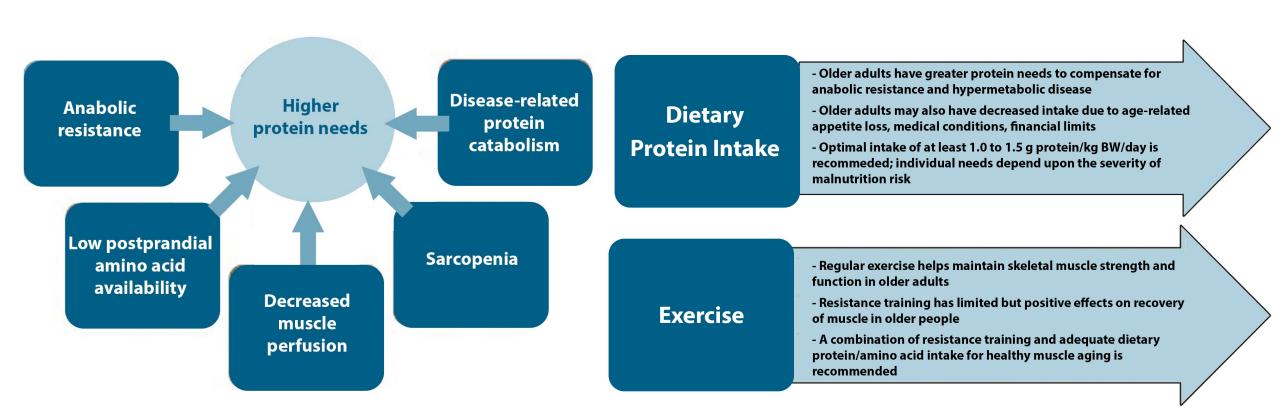

Age-Related Changes in Nutrient Needs


Are 60-year-olds & 80-year-olds the same?

The likelihood of having a disability increases with age.

Energy requirements decrease with age.

Sex • Women • Men


https://www.prb.org/resources/eight-demographic-trends-transforming-americas-older-population/

doi: 10.1093/advances/nmab032

Estimated Energy Requirements Decline with Age.

MALES									
_		Median	Median						Difference
Age in	Age range	ht. in cm	_		EER (2023	Median ht.	Median wt.	•	(2023 vs.
years	represented	(2023)	(2023)	EER Equation for Age/Sex/PA Level	data)	in cm (2005)	in kg (2005)		2005)
2		87.9		-716.45 – (1.00 × age) + (17.82 × height) + (15.06 × weight) + 20	1,058			-,	
3		99.2		-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 20	1,078			-	
4		105.4		-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 15	1,188				
5		112.4	20.5	-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 15	1,318	109	18.4	1,246	
6		118.0		-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 15	1,421	115	20.7	1,358	
7		126.1		-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 15	1,578			,	
8		131.8		-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 15	1,700			-	
9		136.4	31.8	-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 25	1,803	134	28.6	1,730	
10		141.1	38.7	-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 25	1,959	139	31.9	1,842	
11		148.3	44.6	-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 25	2,134	144	35.9	1,963	
12		153.9	46.4	-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 25	2,234	149	40.5	2,093	
13		163.6	55.4	-447.51 + (3.68 × age) + (13.01 × height) + (13.15 × weight) + 25	2,482	156	45.6	2,255	
14		170	59.9	-447.51 + (3.68 * age) + (13.01 * height) + (13.15 *weight) + 20	2,623	164	51	2,428	
15		172.7	66.1	-447.51 + (3.68 * age) + (13.01 * height) + (13.15 *weight) + 20	2,744	170	56.3	2,580	
16		172.6	66.8	-447.51 + (3.68 * age) + (13.01 * height) + (13.15 *weight) + 20	2,755	174	60.9	2,696	
17		174.9	72.1	-447.51 + (3.68 * age) + (13.01 * height) + (13.15 *weight) + 20	2,859	175	64.6	2,761	
18		175.5	71.0	-447.51 + (3.68 * age) + (13.01 * height) + (13.15 *weight) + 20	2,856	176	67.2	2,812	
19		176.1	77.7	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,788	175.9	69	2,838	-51
25	20-29	176.0	81.3	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,773	176	69	2,599	173
35	30-39	176.7	89.7	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,787	176	69	2,491	. 296
45	40-49	176.5	90.5	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,689	176	69	2,383	306
55	50-59	175.3	89.6	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,560	176	69	2,274	286
65	60-69	174.3	89.5	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,444	176	69	2,166	278
75	70-79	173.1	85.3	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,269	176	69	2,058	211
85	80+	170.3	79.6	753.07 – (10.83 × age) + (6.50 × height) + (14.10 × weight)	2,062	176	69	1,949	112

Protein Requirements May Increase with Age.

doi.org/10.1016/j.clnu.2014.04.007

Global Diet and Serum 25(OH)D Recommendations

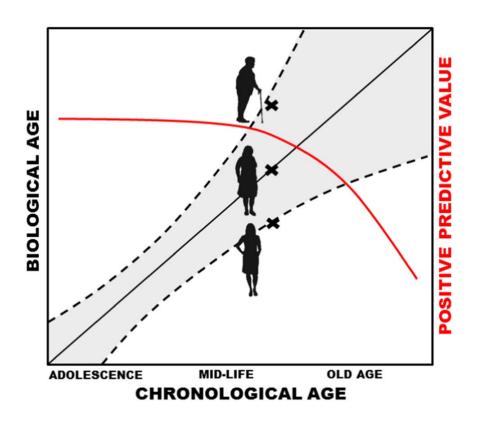
80

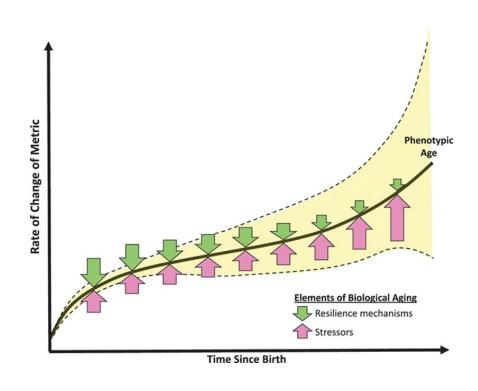
100

20

20

40

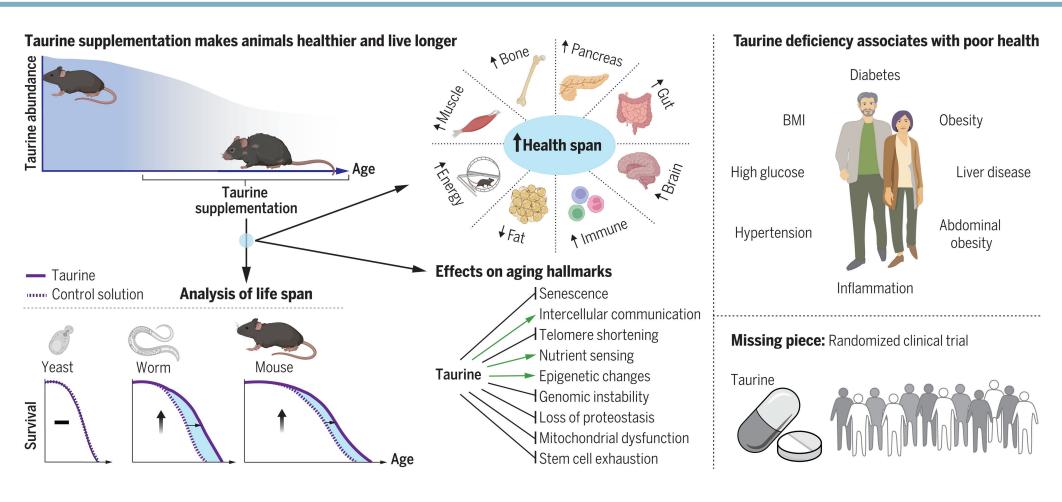

25-Hydroxyvitamin D (ng/mL)


SCAN: Scientific Advisory Committee on Nutrition (United Kingdom), WHO: World Health Organization

doi:10.1007/s11914-024-00893-z

^{*}Except as noted below

Older Adults are a Heterogeneous Group.



doi: 10.1016/j.ebiom.2017.03.046

doi: 10.1161/CIRCRESAHA.118.312816

Taurine Supplementation Linked with Healthy Aging.

Doi:10.1126/science.abn9257

Lower Folate Intake in Later Life Linked to Healthy Aging.

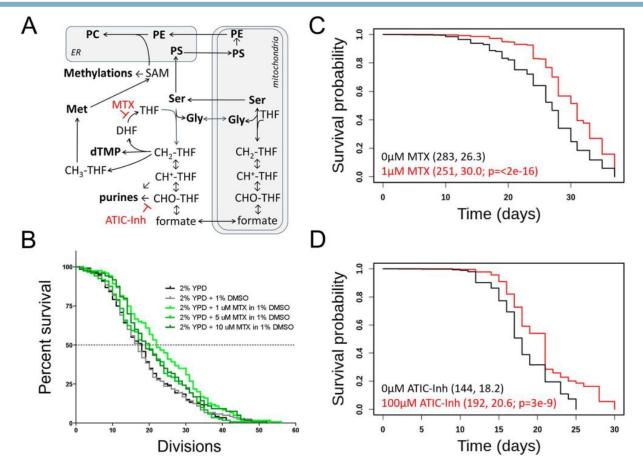
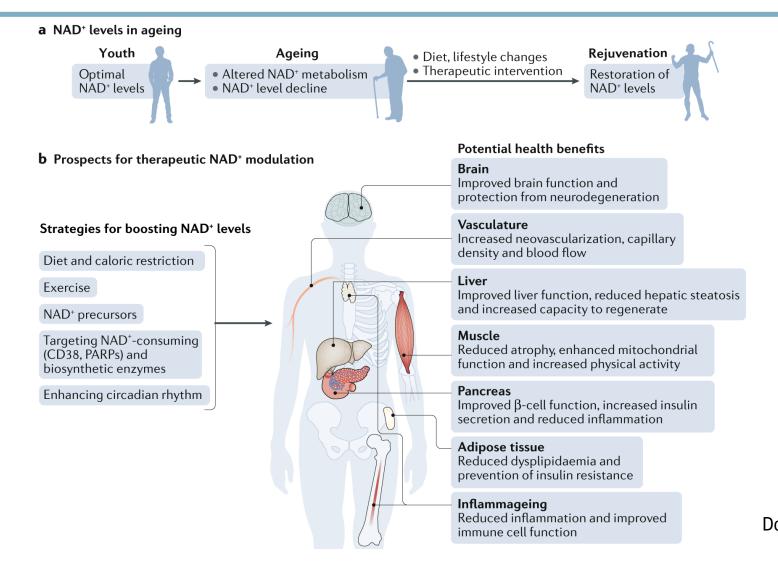



Figure 1. Inhibitors of 1C metabolism extend the lifespan of yeast and worms.

doi.org/10.26508/lsa.202402868

Restored NAD⁺ Levels and Their Impact on Healthy Aging.

Doi:10.1038.s41580-020.00313.x

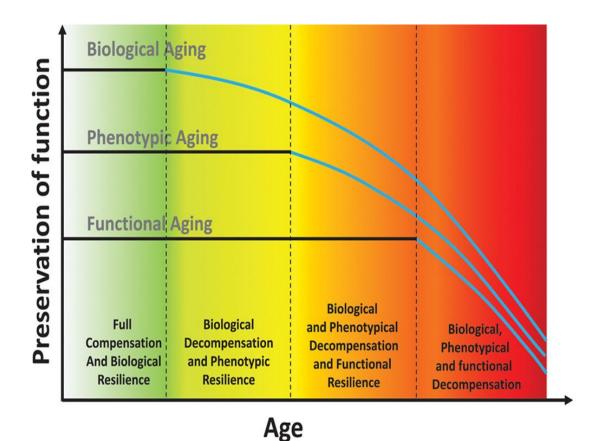
Aging is Broader Than Chronic Disease Risk.

The Metrics of Aging

Functional Aging (impact on daily life)

- Cognitive Function
- Physical Function
- Mood
- Mental Health

Phenotypic Aging (phenotypes that change)


- Body Composition
- Energetics
- o Homeostatic Mechanisms
- o Brain health

Biological Aging (root mechanisms)

- o Molecular Damage
- o Defective Repair
- Energy Exhaustion
- o Signal/Noise Reduction

doi: 10.1161/CIRCRESAHA.118.312816

How does diet impact biological, phenotypical and/or functional aging?

Do dietary requirements change in older adulthood?

How important are diet changes throughout older adulthood?

Are these the questions to address?

THANK YOU

JEAN MAYER
USDA
HUMAN
NUTRITION
RESEARCH
CENTER ON
AGING

HNRCA

