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Today’s Talk: Innovations in Urban Food Systems

A. Background & Interdisciplinary Framework

B. The New “Urban” Lever & Baseline
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« Transboundary modeling of urban food systems
« Measuring sustainability outcomes, and their trade-

offs (Example of Environmental Outcomes)

D. Innovations in food actions
« Science + Policy Engagement in Minneapolis, MN
 Designing interventions: focus on multi-objective
spatial planning of urban farms
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Interdisciplinary Social-Ecological-Infrastructural 4rban

Systems (SEIUS) Framework
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Wide Interest in Local Food

Many international cities in the Milan Urban Food Pact

One of the objectives to increase urban agriculture

Many US Cities have developed Food Action Plans

Di\r/]ers_e objectives: health, nutrition, economy, environment, equity/food justice, social
cohesion

Localization and local agriculture presumed to provide many benefits
But quantification of localization itself is varied across studies

Foodshed studies vs Local Capacity studies

Little standardization = many case studies, ad hoc, varied
Direct vs embodied food demand (Fresh tomatoes vs Tomato Sauce)
Household or household+industry

Various boundaries considered local (city boundary or upto around 100 miles around
an urban area)

No comprehensive assessment of current localization capacity across large

numbers of US MSASs



Defining Current Local Capacity

e Current local capacity of agricultural production in an
urban boundary to meet household demand in that
boundary

Current Local Production

Current Local Capacity (CLC) = (Eq. 1)

Current Local Demand

e Sensitivity to assumptions:
« Household food demand (direct/’fresh” vs direct+embodied)

e Food production:
o strictly within the Metro Area
e upto 100 miles around



Direct (Fresh) versus Direct + Embodied

Approximations of per capita direct food

intake of select agri

foods (CEX vs. NHANES)

Approximations of total (direct + embodied + loss') US consumption of select

agrifoods per capita (bottom-up NHANES vs. FAD vs. USDA)

Consumer
Expenditure Survey
(for benchmarking

. purposes)), Mational Health And MHANES direct-plus- S Apparent USDA-derived apparent
QU'Ck. . adjusted to account Mutrition Examination embodied food intake data, Consumption from the per capita consumption of
Description for SNAP/WIC and Survey (NHANES), [ translated to raw commodity USDA ERS Food select agrifoods from
of data spending using filtered for direct intake weights, with losses® Availability Dataset (for production and net
source CE:PCE ratio® only included benchmarking purposes) imports data’

Consumer US apparent per capita
Expenditures per Food items eaten by Agrifood-equivalent demand US apparent agrifood consumption (US
capita, converted to individuals, estimated exerted by an individual in consumption (production | agrifood production plus
mass’, and from surveys (bottom- the US (direct-plus- + net imports and stock net imports)’, estimated
Summary adjusted for up): Focus on direct embodied), incorporating changes) as reported by from aggregated county
of method nonprofit spending. | intake of four agrifoods. | losses across the supply chain FAD production
Dairy (in
raw milk- . . ) -
) milk onlyl{"  (fluid milk only) 615 Ibs. 613 Ibs.” 623 Ibs.”
Eggs 16.4 |bs. 16 —20.9 Ibs.” 35 Ibs. 33 Ibs. 33 Ibs.
Fruits n/a n/a 346 Ibs. 244 |bs. 250 Ibs.’
Apples n/a 15—15.5 Ibs.’ 61 Ibs. 44 |bs. 34 Ibs.’
Vegetables n/a n/a 403 Ibs. 391 Ibs. 439 |bs.’
Tomatoes n/a 11-22 lbs.’ 73 lbs. 87 Ibs. 90 Ibs.”




Visualizing Current Local Capacity:
Four Key Food Items across 377 US MSAS

Fruits at the M5A Level

Current Local Capacity of

Current Local Capacity of
Vegetables at the MSA Level
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Nixon & Ramaswami, Environ. Sci. Technol., 2018



How Does Current Local Capacity Change When

Agriculture Around Urban Areas is Considered

Percent of self-sufficient metropolitan

dareas

increasing geographic definition of local food production
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Key Conclusions

» 21% of US Metro Areas already have capacity today to be fully (100%)
1§elfdr_etllant)|n Dairy and Eggs (including direct and embodied in other
ood items

 These numbers are about 16% and 11% for Fruits & Veggies

. 1I:f V¥ﬁ only consider fresh demand, the current local capacity increases
urther

* |f we consider agriculture around urban areas, the local capacity
Increases further

* So key message = If we seek to enhance local supply and self
reliance, production per se is not so much a limitation, but rather the
way supply chains are aligned today

» Clarifying WHY we seek locally sourced food will clarify where and
which agri food items must be’locally produced or sourced
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Transboundary Footprinting: Community-wide Water, Energy

& GHG footprints of Food-Energy-Water (FEW) Supply to
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Exploring the Food-Energy-Water Nexus
from an Urban Systems Perspective

. . » 20% lacking sufficient calories
Del hl 1 Indla « 25% lacking water from treated source
Population: 16 million  10% lacking clean cooking fuel (LPG)




Spatially disaggregated water withdrawal footprint to support the

demand of FEW In Delhi

(B) ANNUAL WATER WITHDRAWAL BY WATER BODY
TO SUPPLY DELHI'S DIRECT WATER
USE BY WATER BODY

(A) TRANS-BOUNDARY WATER WITHDRAWAL
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Coupled water- energy/GHG footprints of FEW provisions to

Delhi
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GHG and Consumptive Water Loss Footprint

of Specific Food Items Supplied to Delhi
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- Application to inf(')'rrﬁ policy
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CHANGE OF FOOD’s SYSTEM-WIDE ENVIRONMENTAL IMPACTS
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Key Findings:

City Food Actions Trade-offs & Co-Benefits

* City action can rival trans-boundary action

* No single action can match in all three environmental impacts

* Impacts of food waste management large, very promising

* Vertical farming applied to all currently viable crops does
not have large aggregate water impact

* Due to water dominance of non-VFT viable crops (grains, and animal product)

* Increased resource requirements of increased diet equity are
relatively small and can be off-set by efficiency

* Large in-boundary resource impact on water scarce cities

* Resource and GHG benefits of urban ag likely
small/uncertain. Other benefits like heat island impacts
may be more important.

Boyer & Ramaswami, ES&T, 2017



City Food Actions Trade-offs & Co-Benefits

Example Results Delhi, India
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COMPARING US & INDIA

CHANGE OF FOOD’s SYSTEM-WIDE ENVIRONMENTAL IMPACTS
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Bringing it all together for food action
planning in Minneapolis (next 18 months)

Launch of food action
planning April, 2019




Minneapolis Food Action Plan

Overall Goal Statement

The City of Minneapolis is developing a roadmap
toward a more equitable, climate resilient, just and
sustainable local food system and local food
economy.

The goal of the Minneapolis Food Action Plan
(MFAP) is to develop a 2030 roadmap for
Minneapolis food systems action, building on
previous efforts and plans, aligning with Milan Urban
Food Policy Pact and incorporating data and
community input.



Spatial Design of Urban Farms:
It IS not just about food

Multi
Objective
Spatial Design
of Urban
Farms

Ramaswami et al., 2019




Many Ongoing Research Questions

« Spatial location of urban farms to
maximize multiple benefits

 Size/Scale of urban farms — household,
community or larger commercial farms
« How do they impact nutrition, well-
being, community development, heat
Island, flood mitigation..etc?

* Innovations: joint solar PV & Urban Farms |

) ) Photo: Univ. of Massachusetts
 Exploring the business case for urban

farms is also more than “just food”.

 Prioritizing among various levers: multi-
objective local farms; diets & behavioral
Interventions; food waste management
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