

Systems Biology & Visible Machine Learning

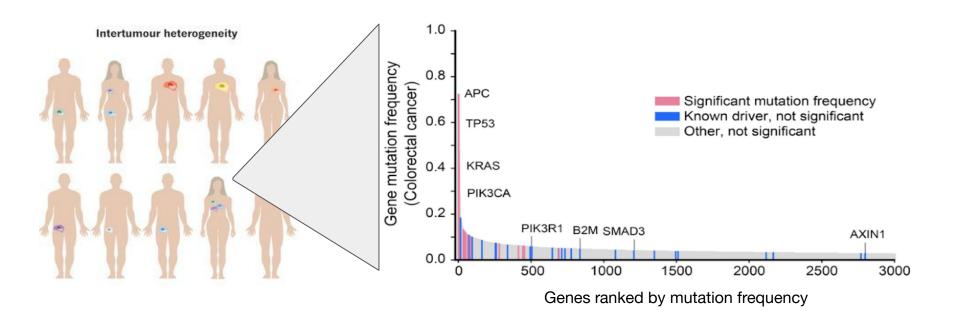
Trey Ideker, PhD
Professor of Genetics
Department of Medicine
University of California San Diego

The National Academies
Standing Committee on Evidence Synthesis and
Communications in Diet and Chronic Disease Relationships

Declaration of Interests: Data4Cure (coFounder, SAB) Ideaya (SAB)

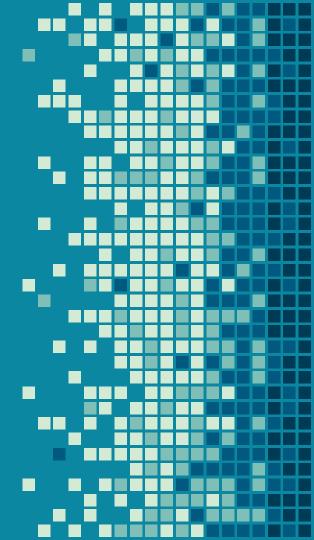
"Siri, my patient's cells have genetic mutations in PTEN and DAAM1, what phenotypes should I expect?"

So why don't we have this technology? Every genome is distinct, with many driving variants & mutations rare



Separately, the fields of genomics & artificial intelligence are rapidly maturing, but they have not yet fully integrated.

Enormous opportunities (and pitfalls) lie in decoding the effects of genes on health & complex genetic diseases like diabetes & cancer

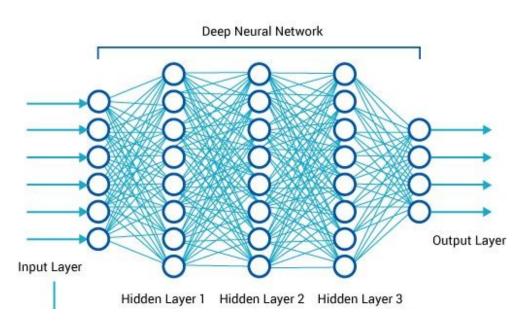


(Deep) Machine Learning is All the Rage for Learning to Translate Inputs to Outputs

- Game playing (Chess, Go, Jeopardy)
- Speech recognition & text processing
- Image recognition & computer vision
- Robotics & self-driving vehicles

. .

- Biomedical imaging
- Chemoinformatics & drug discovery
- Proteomics and protein folding
- Gene expression & transcriptional binding
- What about genotype to phenotype?
 (e.g. effect of diet on BMI & diabetes, chronic diseases like cancer)



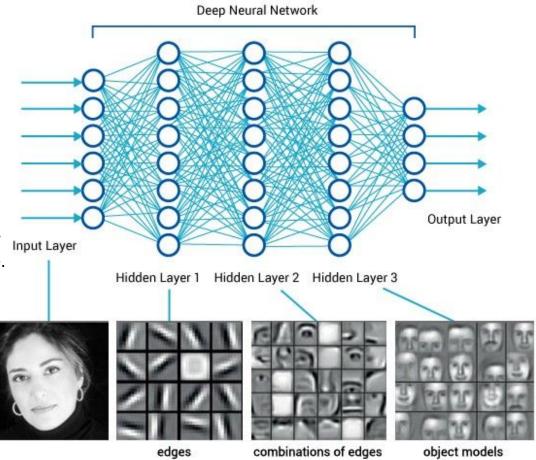
<u>Input:</u> Profiles of individuals (here faces, but also molecular profiles of genetic variants and other 'omic changes)

<u>Output</u>: Type of individual (here identity, but also health/disease status, disease subtype, response to therapy)

<u>Hidden Layers</u>: Between input and output are "hidden" layers of artificial neurons (potentially many), each having a numerical activation state.

Weights: Neuron values are sent *via* weighted connections to neurons in the next layer

Progressive layers capture increasingly abstract understanding of the input



Vast diversity in machine learning problems

Learning Problems

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Hybrid Learning Problems

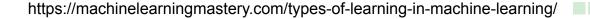
- Semi-Supervised Learning
- Self-Supervised Learning
- Multi-Instance Learning

Statistical Inference

- Inductive Learning
- Deductive Inference
- Transductive Learning

Learning Techniques

- Multi-Task Learning
- Active Learning
- Online Learning
- Transfer Learning
- Ensemble Learning

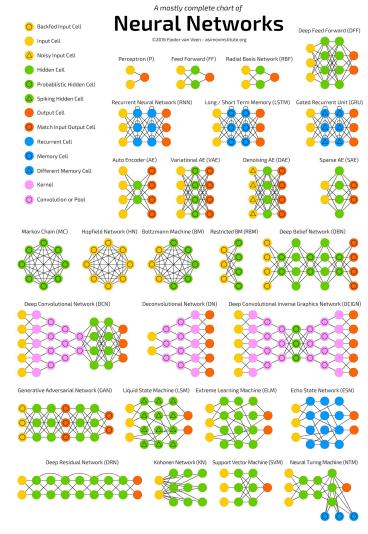


... and evolving approaches

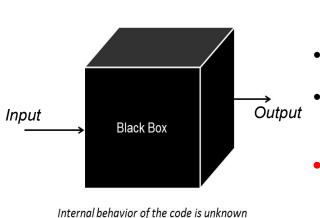
- Classic linear regression
- Ridge regression, LASSO, Elastic net
- Random forest
- Support Vector Machine
- K-nearest-neighbor
- Neural network

Conventional
Convolutional
Generative adversarial network
Long short-term memory
Recurrent

Many, many others



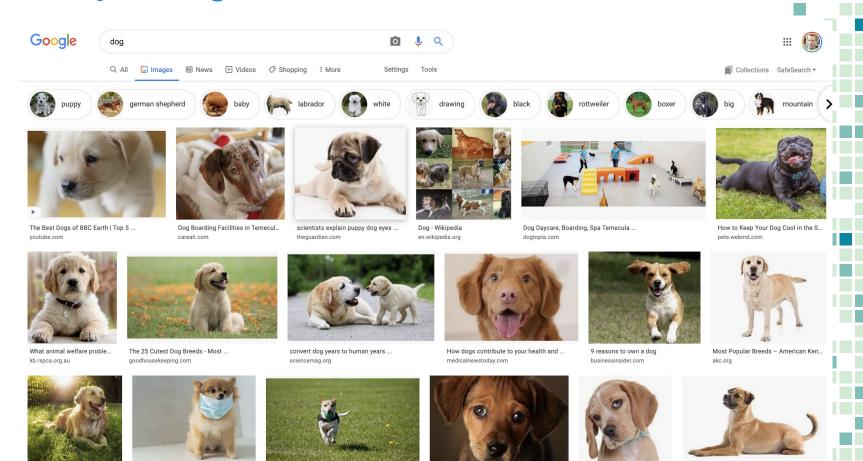
Challenge 1: What's wrong with "black box" learning?



- Modern 'black box" machine learning methods model the input/output function of a system
- They do not model its internal structure or function
 - This aspect makes models difficult to interpret and also harder to validate and generalize
- In contrast, high-stakes applications, including those in biomedicine, seek to understand internal mechanisms and reasons for prediction

Cynthia Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. *Nature Machine Intelligence* 1, 206–215(2019)

Example: Dogs on the Internet



But does the machine really understand what is a dog?

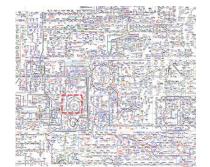
Ribeiro et al. "Why Should I Trust You?" Explaining the Predictions of Any Classifier, arXiv:1602.04938v3 9 Aug 2016 http://becominghuman.ai/its-magic-i-owe-vou-no-explanation-explainableai-43e798273a08

2. Big Data: Not as big as you think they are.

- Enormous datasets are available for learning to play Go, drive cars, etc. and more data can always be generated as needed
- Much smaller amounts of data exist in biomedicine, and it is much harder to acquire more data (10⁶ pt genomes currently, maxes out at 10⁹)
- Genomic patterns may require far more training data using current learning paradigms, i.e., the amount of biomedical data needed are probably far in excess of what will ever be available.

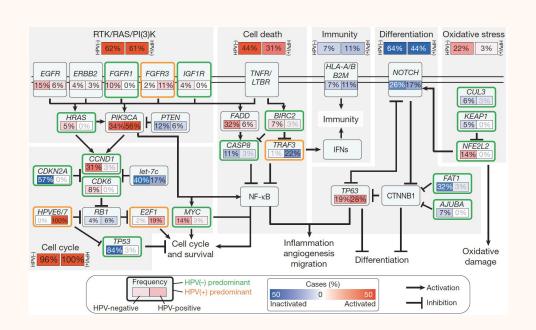
3. Biological complexity exceeds that of playing Go or driving cars

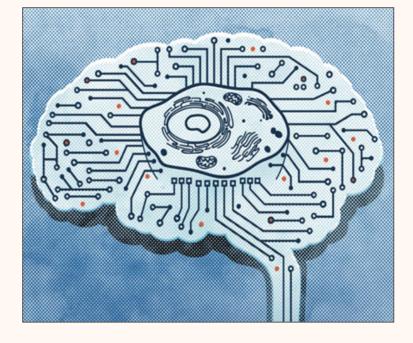
- Machine learning has become very powerful at simulating human tasks in specific domains
- Examples: game playing (Chess, Go), image and speech recognition, driving
- These tasks are governed by a small set of rules



- Biomedical research is mostly about discovering things humans don't yet know or do
- In these cases, we don't know most of the rules

Combining two key approaches for biological machine learning

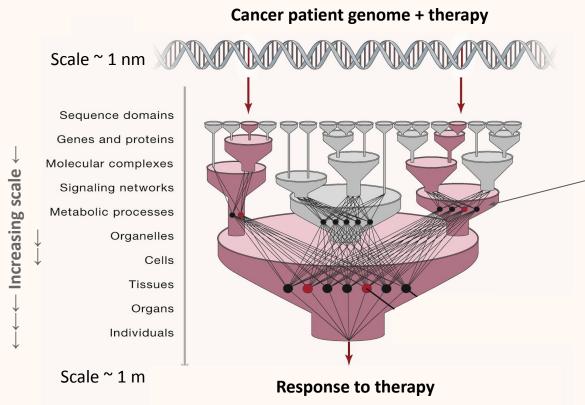




Convergence of molecular events in hierarchical pathway

2. Pattern recognition via deep learning

An Al to translate cancer genomes to therapies, based on the key principle of *genetic convergence*



Kuenzi, Park et al. Cancer Cell (2020)

Ma et al. Nature Methods (2018)

Ma et al. Nature Cancer (2021)

Artificial neurons

"Complexity frequently takes the form of hierarchy – the complex system being composed of subsystems that, in turn, have their own subsystems, and so on."

Herbert Simon. The Architecture of Complexity *Proc Amer Phil Soc* 106:6 467-482 (1962)

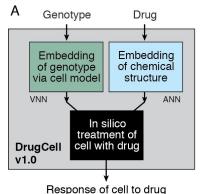
Building deep learning models of cancer cells and their genotype/drug interactions

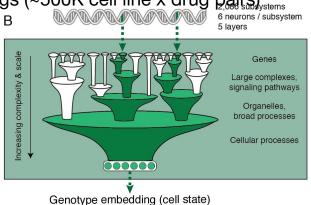
Key application: matching pts to drugs

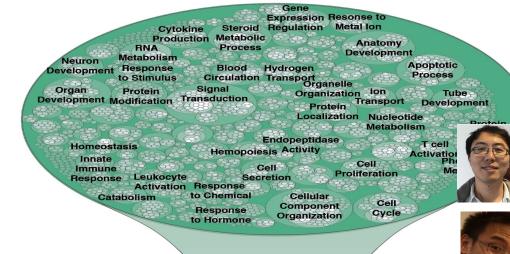
Kuenzi, Park et al. Cancer Cell (2020) Ma, Yu et al. Nature Methods (2018) Ma et al. Nature Cancer (2021)

Training data: CTRP & GDSC

1,235 genotypes by 684 drugs (~500K cell line x drug pairs), ystems







Chemical

Morgan fingerprint

Neurons

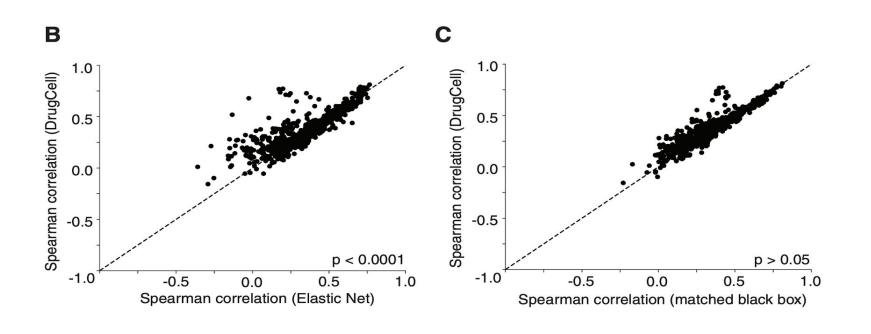
100

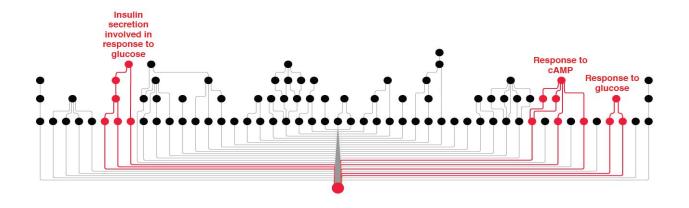
Drug structure embedding

Jianzhu Ma Mike Yu Jisoo Park

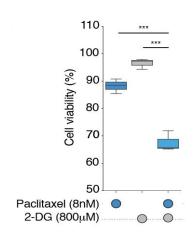
Jisoo Park Brent Kuenzi

Predictions of drug response are comparable or slightly better than linear models or black box neural networks

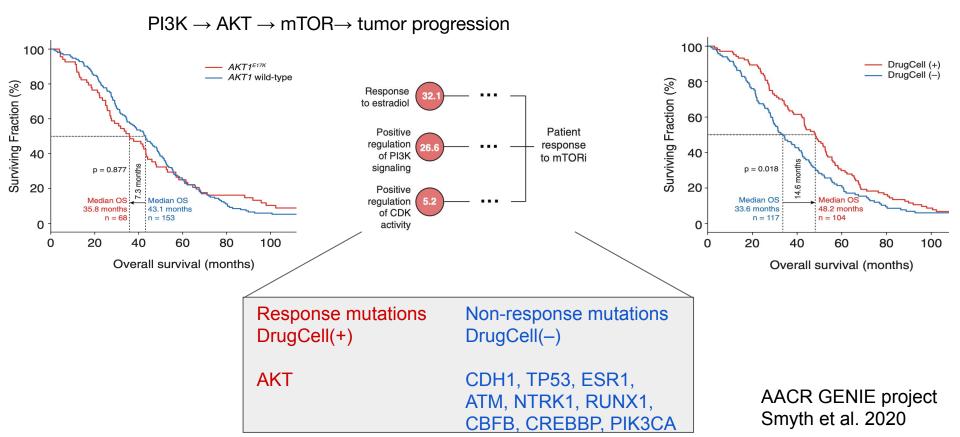




Glycolysis mediates response to paclitaxel, suggesting a combination treatment (glucose mimetics, 2-DG)



Application to clinical trial data for ER+ metastatic breast cancer: Fulvestrant (ER antagonist) +/– Everolimus (mTOR inhibitor)



THE END

Funding

National Institutes of Health - NIDA, NCI, NIMH, NHGRI, NIEHS Industry - Pfizer, Merck, Ideaya Private - Luddy Fdn, Roddenberry Fdn

Resources

Networks: NDEx, PCNet

Network visualization: Cytoscape

Hierarchies: **DDOT Toolkit**