NASEM Standing Committee on Evidence Synthesis, and Communications in Diet and Chronic Disease Relationships

Meeting 3, Day 1: Emerging Experimental Approaches in Health Precision Research (08/31/2021)

The Big Question: What types of studies, and study results, should compel a scientist (or agency) to adopt or advocate for a nutritional intervention?

The Default Answer: A traditional phase III-like comparative randomized clinical trial

The 'traditional phase III-like RCT' straw man:

- Randomization is used to enable causal claims to be made about the intervention and response
- Inclusion and exclusion criteria are used to avoid confounding and outlier effects
- Relatively few arms if more than just, e.g., a single active intervention and placebo arm
- Focus is on population-level efficacy (e.g., group differences between, e.g., active and placebo arms; use of interpretable, though not unproblematic, population metrics like the number needed to treat (NNT) to characterize utility, etc.)
- Relatively few measures taken on each individual to maximize the number of individuals studied

Limitations of the traditional phase III-like comparative randomized clinical trial:

- Randomization does not guarantee balanced covariate profiles for any one trial (block randomization can mitigate imbalance to a certain extent)
- Inclusion and exclusion criteria **limits generalization** of the effects of the intervention to a relevant population
- Traditional trials focus on efficacy and **not effectiveness** (i.e., 'real world' deployment utility)
- Limited number and range of measurements on any individual and length of intervention period restrict individual response evaluation (e.g., event rates)
- The 'average' effect difference between trial arms is not always a good metric for assessing utility
- Many more criticisms, including those specific to nutrition research, to be discussed during the meeting (e.g., assessment background exposure, differences among individuals in background exposure, lack of adherence measures, multiple biologically active forms of some bioactive compounds)

1. Introduction

Randomized controlled trials (RCTs) are widely encouraged as the ideal methodology for causal inference. This has long been true in medicine (e.g. for the price (2017), exclusive to the process of the cent paper by frieders (2017). exclusive to the process of the cent paper by frieders (2017), exclusive to the process of the process

We argue that any special status for RCTs is unwarranted. Which method is most likely to yield a good cuasia inference depends on what we are trying to discover as well as on what is already known. When little pitor knowledge is awailable, no method is likely to yield well-supported conclusions. This paper is not a criticism of RCTs in and of themselves, nor does it propose any hierarchy of evidence, nor attempt to identify good and bad studies. Instead, we will argue that, depending on what we want to discover, why we want to discover it, and what we already know, there will often be superior routes of investigation and, for a great many questions where RCTs can help, a great deal of other work—empirical, theoretical, and conceptual—needs to be done to

* Corresponding author. 127 Julis Romo Rabinowitz Building, Princeton University, Princeton, NJ 08544, USA E-mail address: deston@princeton.edu (A. Deston).

Received 3 October 2017; Received in revised form 4 December 2017; Accepted 6 December 2017 Available online 25 December 2017

dominated by other methods. Earlier critiques in medicine include

and Concato (2013)). It is also increasingly true in other health sciences

and across the social sciences, including psychology, economics, edu-

cation, political science, and sociology. Among both researchers and the general public, RCTs are perceived to yield causal inferences and esti-

mates of average treatment effects (ATEs) that are more reliable and

taken to be largely exempt from the myriad problems that characterize

observational studies, to require minimal substantive assumptions, little

Available column 25 December 2017
O277-9536/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

We need more traditional RCTs!

journal homepage: www.elsevier.com/locate/socscimed Challenging the hegemony of randomized controlled trials: A commentary on Deaton and Cartwright Judea Pearl University of California, Los Angeles Computer Science Department, Los Angeles, CA 90095-1596, USA Alternatives include propensity score-based comparisons in observational studies; Mendelian Randomization studies; etc. Social Science & Medicine 210 (2018) 71-73 Contents lists available at ScienceDirect Social Science & Medicine journal homepage: www.elsevier.com/locate/socscimed Randomized clinical trials and personalized medicine: A commentary on deaton and cartwright Nicholas J. Schorka,b,c,d,* The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States b The City of Hope/TGen IMPACT Center, Duarte, CA, United States The J. Craig Venter Institute, La Jolla, CA, United States

^d The University of California, San Diego, La Jolla, CA, United States Better designs that may include randomization

(e.g., adaptive, aggregated N-of-1, bucket and

umbrella trials, etc.)

Contents lists available at ScienceDirect

Social Science & Medicine

NASEM Meeting: 08/31/2021