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Studying healthy nutrition through
postprandial glycemic responses



Postprandial (post-meal) glucose response
as a measure of healthy nutrition

Directly affects fat storage, Associated with
weight gain and hunger disease
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Bonora et al., Diabetologia 2001; Cavalot et al., Diabetes Care 2011; Wang et al., Diabete
Temelkova-Kurktschiev et al., Diabetes Care 2000; O'Keefe et al., Am J Cardiol 2007




Glucose responses provide an immediate high-resolution
feedback to every meal

Risk factor for many diseases Risk factor for many diseases
Indirect measure of intervention Direct measurement of meal effect
Periodic Immediate
Low-resolution High-resolution

Few data points per participant Multiple data point per participant
on short time-scales




Maintaining normal blood glucose levels
is lcey tol fighting metabolic disease...

What’s the best way te doithis?



The Personalized Nutrition Project:
Cohort statistics
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Zeevi et al., Cell 2015



Collection of glycemic, nutritional, clinical and
microbiome data on a large healthy cohort

Initiation

: : Continuous glucose monitoring
Gut mlcro1tzlso$§ @' Using a subcutaneous sensor (iPro2)
r p »
Metagenomics 130K hours, 1.56M glucose measurements
Dlary (food, sleep, physical activity)
Blood tests i&‘ Using smartphone-adjusted website
5,435 days, 46,898 meals, 9.8M Calories, 2,532 exercises

Questionnaires
Food frequency
Lifestyle

Medical

Anthropometrics @

Zeevi et al., Cell 2015




Real-time food logging

Selection between
different events,
including sleep
and exercise

Weight entered
for each food
component

www.personalnutrition.org

Thu, June 12 17:41

Test Food Daily
Routine

Snack
Midnight snack

Biscuits filled with milk

1 Unit (12.5 gram)

Exercise Measures Stress
Even

v

Meal components
are searched
against a database
(6401 food
components)




Benefits of real-time logging

Consumption matched in real-time to actual products, brands, etc.
Serving sizes considered in real-time

”Live” database

Real-time compliance monitoring

Generally improved compliance




Collection of glycemic, nutritional, clinical and
microbiome data on a large healthy cohort

Recruitment

Continuous glucose monitoring

Gut microbiome @ Using a subcutaneous sensor (iPro2)
16S rRNA J »

Metagenomics 130K hours, 1.56M glucose measurements

Dlary (food, sleep, physical activity)
Blood tests 3&6 Using smartphone-adjusted website

5,435 days, 46,898 meals, 9.8M Calories, 2,532 exercises

Questionnaires

O=— .
Food frﬁt_xfue:lriy o= @ Standardized meals (50g available carbohydrates)
ifestyle — 1 1 L 1 1 1 L
H D — L] 1 | 1 ] 1 1
Medical Glucose Day1 Day2 Day3 Day4 Day5 Day6 Day7

CCeendn

Bread Bread Bread & Bread & Glucose Glucose Fructose
butter  butter

Anthropometrics

Zeevi et al., Cell 2015 -



Why would anyone go through this?



What will | learn?

* My response to food
* Know my microbiome

* In the future: Plan a better diet

......




Full accessibility to collected data

Hour-by-hour view and event log for Tuesday, 05/02/2013
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Participant analysis: nutrition, activity & blood tests

My Food Intake

2 7 8 9 My Activities mawry ave My Blood Tests
AVG. DAILY CALORIES @ / HbA1C: it °

75 0

Cholesterol: E‘ . . i
. —— ——
SLEEP WALK HDL Cholesterol: 7" ®
. ALT/GPT: i
CARBS 270g / - | o
98g¢r 3.1 14 ‘
PROTEIN 89gr AST/GOT: ‘ °
SLEEP QUALITY EXERCISE See All @)




Participant analysis: Overview of microbiota composition

My Bacteria

© BackToMyRe

I'm above 25% of the population

Bacteroides uniformis

@ Bacteroidetes 57%
@ Firmicutes 42%
@ other 1%




Participant analysis: Glucose spiking foods

[l 25% - 75% of population

My Blood Glucose

My Measured Glucose

e
G o
Bread [
L
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e

I'm above 58% of the population

141




Participants engagement and retention

Better data
Easier trial management

Minimal recruitment effort

®  Finished recruitment of 900 individuals with a wait-list of 3,000




What iis the variability across peoplein
thel response’ to the'same food?



Different people have widely different post-meal
responses to the same standardized meal

Population Responses to Four Individual Responses
Standardized Meals to Bread
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Significant personalized response which increases with
food complexity

Null hypothesis rejected: significant
interpersonal variability
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Variability increases with food
complexity
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Results replicated and validated by subsequent studies

% Open. 5

Original Investigation | Diabetes and Endocrinology

Assessment of a Personalized Approach to Predicting Postprandial
Glycemic Responses to Food Among Individuals Without Diabetes

Helena Mendes-Soares, PhD; Tali Raveh-Sadka, PhD; Shahar Azulay, BSc; Kim Edens, MSc; Yatir Ben-Shlomo, BSc; Yossi Cohen, MSc; Tal Ofek, PhD;
Davidi Bachrach, BSc, MBA; Josh Stevens, BSc; Dorin Colibaseanu, MD; Lihi Segal, LLB, MBA; Purna Kashyap, MBBS; Heidi Nelson, MD

See corresponding editorial on page 955.

Estimating the reliability of glycemic index values and potential sources
of methodological and biological variability'™

Nirupa R Matthan,** Lynne M Ausman,* Huicui Meng,* Hocine Tighiouart,” and Alice H Lichtenstein®

“Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA; and *Tufts Clinical and Translational Science Institute, Tufts

Medical Center, Boston, MA




General recommendations in nutrition are suboptimal

A healthy eating pattern includes:

%Z /M..eat some food

from each group...every day!

Fruits Vegetables Protein

) m N

Dairy Grains
£
W s

A healthy eating pattern limits:

e =
N S—
Saturated Added Sodium

fatsand sugars
trans fats

us.
/N ADDITION TO THE BASIC 7...
EAT ANY OTHER FOODS You WANT

Source: USDA



Canl wel predict the personal post:-prandial
glucose response to any complex meal?



Prediction scheme

/% Personal features Meal features
%, [6sayIMCIn]B Q A - - Meal .
% . g o= Time, nutrients, Meal response predictor
e = prev. exercise | €SPONSES P P
| Boosted decision trees
2
|8 | | [| Train predictor

5
Main Al
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Cross-validation

799 - - -
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800 " Meal response prediction
3 SLS i x4000
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Accurate predictions of personalized glucose responses

State of the art Our prediction Prediction validation
800 participants 100 participants

Carbohydrate-only Main cohort prediction Validation cohort
prediction (cross-validation) prediction

Measured PPGR
(IAUC; mg/dlI*h)

Predicted PPGR Predicted PPGR

Meal carbohydrates (g) (IAUC; mg/dI*h) (IAUC; mg/dI*h)

Zeevi et al., Cell 2015 _




Replication and validation by subsequent studies

Test dataset R

sy [Ocohor ]
0.671
0.596
IL cohort MW US cohort
IL cohort 0 643
MW US
cohort 0605
frveenseeensnnd  [MWUScohort ]

Mendes-Soares et al., JAMA Netw. Open. 2019, AJ_




Can glucose! response: predictions improve
post-prandialiglucose responses?



Constructing personally tailored diets that
achieve normal post-prandial glucose responses

12 subjects, mostly prediabetics

Profiled for one week

Self-selected isocaloric meals, categorized as good / bad

Good and bad diets assigned double-blindedly, one week each

Gut microbiome -

Profiling tests -
Continuous glucose




A ‘good’ meal for one person can be

a ‘bad’ meal for another

Participants

Pizza .

Hummus| [
Potatoes
Chicken liver
Schnitzel

Zeevi et al., Cell 2015
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Food classified
as ‘good’

Food classified
as ‘bad’




Personally tailored diets reduce
the post-prandial glucose response

Participant E7 — Bad’ diet week
- ‘Good’ diet week
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Zeevi et al., Cell 2015



Personally tailored diets improve post-meal responses
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Isi thils usetul for long=term interventions?



Challenges with translation to interventions

Scores a meal rather than provide insights

®  Really not what people expect

®  Not straight forward to devise interventions
®  Accounting for preferences is challenging

H

Maintaining caloric target is external to prediction framework

Strong assumptions on causality

®  Probably easier to make than for “long-term” outcomes

Requires extensive variables

®  Real potential of using the gut microbiome




Long term, algorithm based intervention

Per person meals distribution

l ~2000 meals I
{

l Compute Caloric
Target (per person)

T 2 » 4o % €@ n
Average predicted response (mg/dL) R

Score meals

Select meals + Real-time app-based
to menu feedback




Long term "algorithm-diet” achieves greater glycemic
normalization

s PPT
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Ben-Yacov et al., Diabetes Care 2021




Rich data-sets facilitates multiple data-
driven investigatiomns



Predicting caffeine levels from diet data

|@)|Diet

Caffeine predictor

2 Logged diet FFQ
0% 9 - Caffeine Boosted Decision trees  [-
-~ 1 oy
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1 - IR
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3 [ j | I ” 02 | > N V) (N Y
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Bar et al., Nature 2020




Our predictive models explain over 10%
of the variance for 543 metabolites
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Metabolites associated with sourdough consumption
increase after sourdough (but not white bread) intervention

Top 5% negatively

driven metabolites

xxxxxxx

nnnnnn

betaine

cytosi ne\

}_ Top 5% positively

driven metabolites

Whole-wheat
bread




Metabolites associated with sourdough consumption
increase after sourdough (but not white bread) intervention

20 participants
(Korem et aI 2017

58 '
20 0O
) 5
1 week
® 0600000 0 0 0 _ !
White ‘ !
bread o 83 —i— -
55 — Z
Metabolomics '
01 051 2 10 100

Fold change in metabolite after bread consumption

Korem et al., Cell Metabolism 2017 -



Measure personal Predict personal
features for 800 people glycemic responses
¥t
Microbiome .é) —\ # ' 4 '
— L1 1 1
Blood tests
Questionnaires , [g:
~ Personalized Nutrition
Anthropometrics | % / Predictor
Food diary @ i i i i

Design personalized diet
to lower glycemic responses

Summary

High interpersonal variability in post-meal
glucose response to identical meals

Personal and microbiome features enables
accurate glucose response prediction

Personalized dietary interventions
successfully lower post-meal glucose




Summary

* Importance of real-time logging

Measure personal Predict personal
features for 800 people glycemic responses
¥t

Microbiome ( o

= ¥ | « Benefits of participant engagement and

@ data-sharing

{
e
s

Blood tests

Questionnaires

Anthropometrics (o) —" | T*" "awand esrtion : :
@) * The challenges of using this approach for

©)

Food diary

oy o+
2NN long-term dietary interventions

Design personalized diet
to lower glycemic responses
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