

Introductory Comments

Nicholas J. Schork, Ph.D.

TGen, Phoenix AZ and The City of Hope National Medical Center, Duarte, CA; UCSD and Scripps Research, La Jolla, CA; St. Johns Health Center, Santa Monica, CA

- 1. Are Factors Mitigating Disease Generally Age and Context-Dependent?
- 2. Going From 'Bench to Bedside to Streetside' Requires Integration
- 3. Surrogate Endpoints, Biological Aging, and Interventions: How and When?

Nutritional Recommendations Should be Age and Context Dependent

AGE CATEGO	RY	All A	Ages	0	-14		15-24		25-34		35-44		45-54	ı	55	-64	6	5-74		75+				
CAUSE OF DE		Rank	#	Rank	#	Rai	nk #	Ra	ınk i	# F	tank	# R	ank	#	Rank	#	Rank	#	Ra	nk #	<i>‡</i>			
CONCENITAL		20	0,572	1	4.746	+	204	-	450	-	26 404		24 74	1	20	1,257	16	600	+	002	_			
LOW BIRTH W		46	4,110	2	4,107	55		6	2 2		69 0		72 0			0	73	0	_	77 0				
BIRTH TRAUM		23 55	28,499 1,347	4	1,795	56		6	7 1,43 3 2	9	13 1,86 67 1		16 2,0 71 0	505	66	4,431 4	66	5,118 2		24 10,3 57 1	15			
ROAD TRAFFIC		19	41,944	5	1,171	1				8	3 6,17			515	18	6,275	27	4,117		34 3,73	4			
HOMICIDE		26	24,573	6	1,011	3	6,466		4 7,12	5	7 4,48	2	17 2,	541	32	1,753	44	742		0 453				
DROWNINGS		44	4,176	7	654	6		1	.8 557		25 509		38 50	8	50	552	52	437		2 413				
SUICIDE		16	45,977	8	601	4	-,		- 0,.0		2 7,3	_		249	14	7,160	25	4,716	-1-	31 4,42				
ENDOCRINE D		10	55,660	9	559	8			8 1,21	0	10 2,26	_		320	11	8,782	10	12,131		13 25,9				
INFLUENZA & I LEUKEMIA	PNEUMONIA	12 27	53,617 23,422	10 11	341 276	17		1 2	7 574 6 346		17 1,13 24 541	_	18 2,5 29 95	502	17 28	6,276	14	10,449 5,685		11 32,1 20 12,7				
STROKE		3	160,262	12	235	16		1			11 2,00	_		586	9	2,616 14,153	6	26,363		20 12,7 4 111,				
FIRES		53	2,951	13	185	20			0 158		38 234		45 30		47	640	47	674		18 654	323			
INFLAMMATO	RY/HEART	24	28,422	14	166	13	3 237	1	2 826		16 1,44	5		405	22	4,402	22	5,527		19 13,4	14			
DIARRHOEAL I		20	6 050	15	162		12		26		40 00		46 27	7	16	720	20	1 420		2 4 11	ᅮ		٦	
EPILEPSY	AGE CATEGO			All Ag	es #		-14	,	.5-24	Der	25-34 k #		35-44 k #	١.	45-54	-	55-0	64 #		55-74	De:	75+	-	
ASTHMA OTHER NEOPL	CAUSE OF DE	AIH	K	ank	_	Rank		Rank	_	Ran		Ran		_	Rank	#	Rank		Rank		Ran	_	-	
POISONINGS	POISONINGS SUICIDE			9 16	87,386 45,977	19 8	115 601	2	6,664 6,062	2	20,938 8,454	2	21,94 7,314			,078 249		15,030 7,160	29 25	3,891 4,716	46 31	727 4,421	+	
COVID-19	ROAD TRAFFIC	ACCIDENT		19	41,944	5	1,171	1	6,816	3	8,038	3	6,178			615		6,275	27	4,117	34	3,734	1	
MENINGITIS	COVID-19				350.827	20	103	7	501	5	2.254	1 4	6.079			964		42.090	2	76.277	2	206.559	ī	
KIDNEY DISEAS	CORONARY HE	ART DISEA	SE	1 3	382,803	26	24	21	86	10	997	5	5,133		1 18	,668	1 5	53,125	1	81,703	1	223,067	7	
DIABETES MEL	LIVEK DISEASE			14	51,5/5	3/	4	27	47	В	1,030	0	4,934		4 9,4	194	/	10,128	11	11,884	26	7,454	4	
FALLS	HOMICIDE			26	24.573	6	1.011	3	6.466	4	7.125	7	4.482		17 2.5			1.753	44	742	50	453	4	
LIVER CANCER	DIABETES MELI	ITUS		8 1	102,187	23	61	10	312	9	1,168	8	2,904		5 7,5	546	5 :	18,002	5	27,213	8	44,981	_	
	ENDOCRINE DI	CODDEDC		10	FF 660	9	559	8	422	8	1 210	10	2,763		12 4	220	11 6	0.702	10	12 121	12	71,104	₹	
	STROKE	OKDEKS			55,660 160,262	12	235	16	423 188	15	1,210	10 11	2,267			320 586		8,782 14,153	10	12,131 26,363	13	25,968 111,029	<u>-</u>	
	OTHER INJURIE	s		23	28,499	3	1,795	5	929	7	1,439	13	1,867			605	-	4,431	24	5,118	24	10,315	1	
	COLON-RECTUR	/ CANCERS		13	53,095	49	1	28	46	21		15	1,523			800		10,544	9	13,337	14	22,436	1	
	INFLAMMATOR	Y/HEART		24	28,422	14	166	13	237	12	826	16	1,445		21 2,4	405	22	4,402	22	5,527	19	13,414		
	INFLUENZA & P			12	53,617	10	341	17	184	17		17	1,135			502		6,276	14	10,449	11	32,156	_	
	KIDNEY DISEAS	E		11	54,306	22	71	23	72	27		18	896	-	- /	144		6,412	12	11,849	10		-	
	HIV/AIDS			41	5,115	44	2	26	53	19	468	19	770		25 1,:	165	34 :	1,542	43	833	55	282		
	LUNG CANCERS FALLS	AGE CAT	EGORY			All Ag	es	0-1	4	15	-24	25	-34		35-44		45-54		55-	64	65	-74	7	75+
	LEUKEMIA	CALISE O	E DEATH		Ra	nk	#	Rank	#	Rank	#	Rank	#	Rar	nk #	Ra	nk	# R:	ank	#	Rank	#	Rank	#
	DROWNINGS	CORONAR	RY HEART	DISEASE		1 3	382,803	26 2	24	21	86	10	997	5	5,133	3	1 18,	668	1	53,125	1	81,703	1	223,067
	CONGENITAL A	COVID-19			_		350,827	_	103	7	501	5	2,254	4	-,	_	3 16,	964	2	42,090	2	76,277	2	206,559
	MATERNAL CO	LUNG CAN					136,166	32 6		39	13		126	20		\rightarrow	0 5,0			26,664	3	45,572	7	57,971
	LYMPHOMAS	HING DIS				_	147 511	_	13	37	1/	40	47	31			5 20		_	18.011		37 832	5	88 275
	ASTHMA	DIABETES	IVIELLITUS	•			102,187		51	10	312	9	1,168	8			5 7,5		_	18,002	5	27,213	8	44,981
		HYPERTEN	NSION				119,985	34 5		22	78	13	795	9	,	_	7 7,1			16,447	7	21,561	6	71,184
		COLON-RE		NCERS	_		53,095	49 1	- 1	28	46	21	408	15		_	1 4,8	- 1		10,544	9	13,337	14	22,436
		ENDOCRI			_		55,660		559	8	423	8	1,210	10		\rightarrow	3 4,3			8,782	10	12,131	13	25,968
	l	LIVER DIS					51,575	37		27	47	6	1,630	6			4 9,4			16,128	11	11,884	26	7,454
	l	KIDNEY D			_		54,306		71	23	72		345	18		_	20 2,4			6,412	12	11,849	10	32,217
		INFLUENZ		MONIA			53,617		341	17	184	17	574	17			8 2,5			6,276	14	10,449	11	32,156
	l	LIVER CAN			_		28,227		33	30 25	38	35	97	35		_	2 1,4			6,806	15 17	9,988	25	9,520
		PROSTATE					34,319	28 1	19	25 58	63	29 64	200	53			1,3 14 326			4,420 2,944	18	9,026 8,083	17 15	18,756 21,319
		FALLS	LONGER				42,113	_	47	18	152		359	22		\rightarrow	1,2	- 1		3,140	20	5,925	12	30,583
		LEUKEMIA	4				23,422		276	12	261	26	346	24			9 956			2,616	21	5,685	20	12,741
	l	INFLAMM		EART			28,422	_	166	13	237	12	826	16		\rightarrow	21 2,4			4,402	22	5,527	19	13,414
		OTHER IN	JURIES			23	28,499	3 :	1,795	5	929	7	1,439	13	3 1,867	1	6 2,6	05	20	4,431	24	5,118	24	10,315
		SUICIDE					45,977		501	4	6,062	2	8,454	2		\rightarrow	6 7,2			7,160	25	4,716	31	4,421
															C 470									2 724
		ROAD TRA		IDENTS			41,944		1,171	1	6,816	3	8,038	3			9 5,6			6,275	27	4,117	34	3,734
		OVARY CA	NCER	IDENTS	3	33	13,438	38 4	1	38	14	36	96	36	5 285	2	26 1,0	65 :	26	2,837	28	4,014	29	5,123
			ANCER IGS	IDENTS	3	9		38 4	4 115					1 -	5 285 21,94	13		65 : 078	26 8					

Lingering Effects of Early Genetic Programs, Diets, Behaviors, and Exposures

ORIGINAL

www.jpeds.com • THE JOURNAL OF PEDIATRICS

ARTICI ES

Childhood Risk Factors and Adulthood Cardiovascular Disease: A Systematic Review

Lindsay R. Pool, PhD1, Liliana Aguayo, PhD1, Michal Brzezinski, PhD3, Amanda M. Perak, MD1,4,5, Matthew M. Davis, MD^{1,2,5,6,7}, Philip Greenland, MD¹, Lifang Hou, MD, PhD^{1,5}, Bradley S. Marino. MD^{2,4,5,7}. Linda Van Horn, PhD1, Lauren Wakschlag, PhD6,7, Darwin Labarthe, MD, PhD1,6, Donald Lloyd-Jones, MD1,6, and Norrina B. Allen, PhD1,6

Childhood Risk	# of		Subclini	cal CVD		Clinical CVD					
Factor	papers	Arterial Stiffness	cIMT	CAC	LV structure and function	CHD	Stroke	Heart failure	CVD Mixed Definition		
Increased Adiposity	61	3 papers: higher risk 5 papers: null	19 papers: higher risk 1 papers: null	1 paper: higher risk	11 papers: higher risk	9 papers: higher risk 2 papers: null	6 papers: higher risk 1 papers: null	2 papers: higher risk	10 papers: higher risk		
Low Birthweight	28	1 paper: higher risk 1 paper: null	no papers	no papers	1 paper: null	13 papers: higher risk	3 papers: higher risk 1 paper: null	no papers	8 papers: higher risk		
Pediatric Hypertension	29	9 papers: higher risk 1 paper: null	10 papers: higher risk 1 paper: null	2 papers: higher risk	7 papers: higher risk 1 paper: null	2 papers: higher risk	no papers	no papers	3 papers: higher risk		
Pediatric Hyperlipidemia	16	no papers	10 papers: higher risk	2 papers: higher risk	1 paper: higher risk	1 paper: higher risk	no papers	no papers	3 papers: higher risk		
High Glycemic Indicators	2	1 paper: null	1 paper: higher risk	no papers	no papers	no papers	1 paper: higher risk	no papers	no papers		
Tobacco Exposure	7	no papers	3 papers: higher risk	1 paper: higher risk	no papers	1 paper: higher risk	1 paper: higher risk	no papers	3 papers; higher risk		
Physical Activity	6	4 papers: lower risk	2 papers: lower risk	no papers	no papers	no papers	no papers	no papers	1 paper: null		
Dietary Quality	9	3 papers: lower risk 1 paper: null	3 papers: lower risk	no papers	no papers	1 paper: null	2 papers: lower risk	no papers	no papers		
Breastfeeding	6	1 paper: null	1 paper: lower risk 1 paper: null	no papers	no papers	1 paper: lower risk 1 paper: null	1 paper: null	no papers	1 paper: null		
Low Socioeconomic Status	13	no papers	2 papers: null	no papers	1 paper: higher risk	2 papers: higher risk	2 papers: higher risk	no papers	7 papers: higher risk		
Psychosocial Adversity	18	1 paper: higher risk 2 papers: null	4 papers: higher risk	1 paper: higher risk	no papers	3 papers: higher risk	1 paper: higher risk	1 paper: higher risk	5 papers: higher risk 1 paper: null		
Metabolic Syndrome	9	1 paper: higher risk	5 papers: higher risk	no papers	no papers	no papers	no papers	no papers	3 papers: higher risk		
Other Risk Factor Clustering	7	2 papers: higher risk	6 papers: higher risk	1 paper: higher risk	no papers	no papers	no papers	no papers	no papers		

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 19, 2022

Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events

D.R. Jacobs, Jr., J.G. Woo, A.R. Sinaiko, S.R. Daniels, J. Ikonen, M. Juonala, N. Kartiosuo, T. Lehtimäki, C.G. Magnussen, J.S.A. Viikari, N. Zhang, L.A. Bazzano, T.L. Burns, R.J. Prineas, J. Steinberger, E.M. Urbina, A.J. Venn, O.T. Raitakari, and T. Dwyer

BACKGROUND

Childhood cardiovascul ease, but links to clinic

In a prospective cohort Cardiovascular Cohort (i (at the ages of 3 to 19 ye after a mean follow-up cholesterol level, triglyce i3C-derived age- and sex calculated as the unweigh rable adult combined-ri jointly with the childho events and fatal or nonfa multiple imputation with

RESULTS

In the analysis of 319 fa ticipants (49.7% male an years), the hazard ratios 1.30 (95% confidence in total cholesterol level to The hazard ratio for a f z score was 2.71 (95% C 95% confidence interval to those in the analyses among 20,656 participal of 115 fatal cardiovascu (31.0±5.6 years of age at the adjusted hazard rati 3.54 (95% CI, 2.57 to 4.8 with respect to the char hood was 2.88 (95% CI, the analysis of 524 fatal

CONCLUSIONS

In this prospective colcombined-risk z score cardiovascular events

ıll names, academic deliations are listed in the Woo can be contacted at chmc org or at the Cincin-Hospital Medical Center e., MLC 5041, Cincinnati

o, and Sinaiko and Drs. , Prineas, Steinberger Raitakari, and Dwyer con v to this article

as published on April 4

022:386:1877-88. EJMoa2109191 assachusetts Medical Society

COHORTS

the United States, Australia and Finland. Since the 1970s the cohorts have collected data or

participants are entering their 50s and early 60s, this consortium represents a unique

1877

Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2012; all rights reserved. Advance Access publication 20 March 2012

International Journal of Epidemiology 2013;42:86-96 doi:10.1093/ije/dys004

COHORT PROFILE

Cohort Profile: The International Childhood Cardiovascular Cohort (i3C) Consortium

Terence Dwyer, 1* Cong Sun, 1† Costan G Magnussen, 2,3† Olli T Raitakari, 3,4 Nicholas J Schork, 5 Alison Venn,² Trudy L Burns,^{6,7} Markus Juonala,^{3,8} Julia Steinberger,⁹ Alan R Sinaiko,⁹ Ronald J Prineas, 10 Patricia H Davis, 11 Jessica G Woo, 12,13 John A Morrison, 12 Stephen R Daniels, 14 Wei Chen, 15 Sathanur R Srinivasan, 15 Jorma SA Viikari and Gerald S Berenson 1

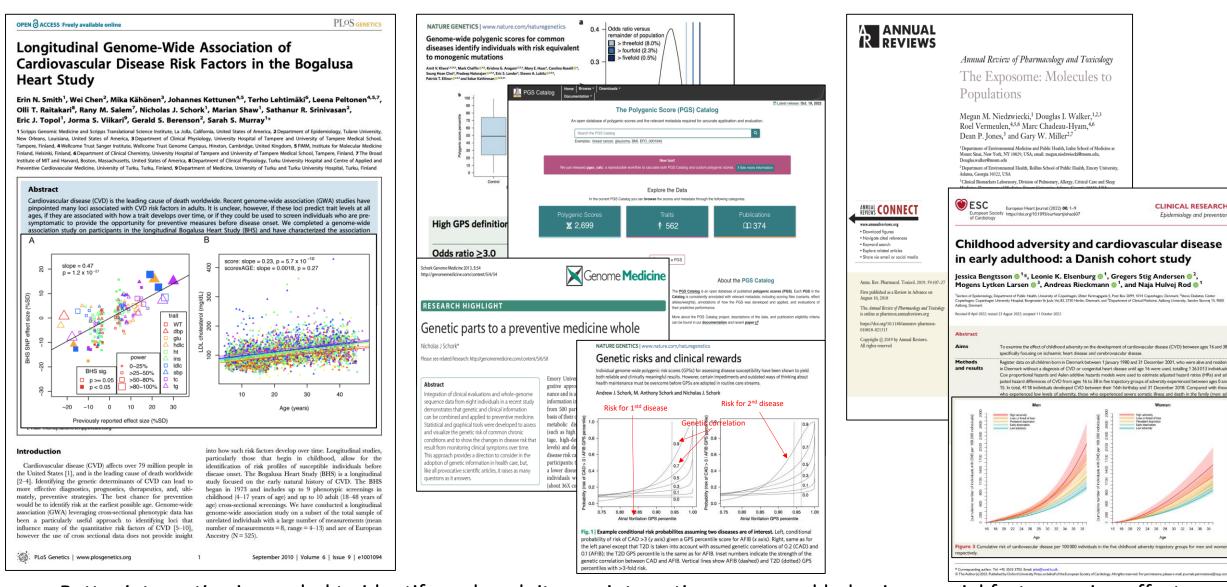
¹Environmental and Genetic Epidemiology Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia, ²Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia, ³Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland, ⁴Department of Clinical Physiology, Turku University Hospital, Turku, Finland, 5The Scripps Research Institute, La Jolla, CA, USA, 6Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA, ⁷Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA, 8Department of Medicine, University of Turku, Turku University Hospital, Turku, Finland, Department of Pediatrics, University of Minnesota Amplatz Children's Hospital, Minneapolis, MN, USA, Owake Forest University School of Medicine, Winston-Salem, NC, USA, 11Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA, 12 The Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA, 13 Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA, 14Department of Pediatrics, University of Colorado School of Medicine, The Children's Hospital, Denver, CO, USA and 15 Tulane Center for Cardiovascular Health, Department of Epidemiology, Tulane University, New Orleans, LA,

*Corresponding author. Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Melbourne 3052, Australia. E-mail: terry.dwyer@mcri.edu.au

These authors contributed equally to this work

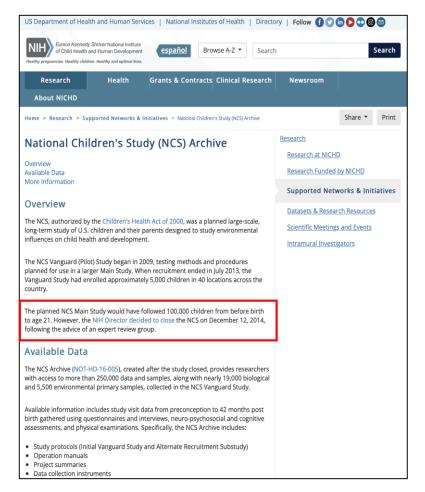
Table 1	Summary	of	the	i3C	Consortium	Studies	
---------	---------	----	-----	-----	------------	---------	--

			Baseline i	n childhood and ad	lolescence		Follow-up	in adulthoo	bd
Study	Country	Sampling frame	Sample with one major CVD risk factor (N) ^a	Sample with three major CVD risk factors (N)	Study years	Age (years)	Sample with three major CVD risk factors (N) ^b	Study years	Age (years
Muscatine Study ^c	USA	School based	11 377	11377	1970-81	5-18	2547	1982-91	20-39
							865	1992-2008	29-55
BHS ^{c,d}	USA	School based	12 164	12164	1973-94	4-17	1203	2001-02	23-43
							1052	2003-05	26-47
							914	2007-10	29-51
YFS	Finland	Random sample	3596	3596	1980	3-18	2283	2001	24-39
		from five centres					2204	2007	30-45
							Ongoing	2010	33-48
CDAH Study	Australia	School based	8498	1714	1985	7-15	2410	2004-06	26-36
Minneapolis	USA	School based	1207 (10 423	0	1978-89	6-9 to	679	1993-96	21-24
Children's Studies ^{c,d}			screened)			17-20	359	2007-11	35-38
Studies		School based	357 (12 043 screened)	357	1996	11-14	230	2004	19-24
Princeton LRC/PFS ^{c,d}	USA	School based	6775 (Visit 1)	1729 (Visit 2) ^e	1973-76	5-19	623°	1999-2004	30-48
							600 (ongoing)	2011-12	43-57
NGHS ^d	USA	Cincinnati, OH:	871	705-871	1987-96	9-19	653	1997-2002	20-24
		School based					~650	2002-07	24-28
		Richmond, CA: School based	879	823-871			-	-	-
		Washington, DC: Sample from HMO	629	550-629			-	-	-

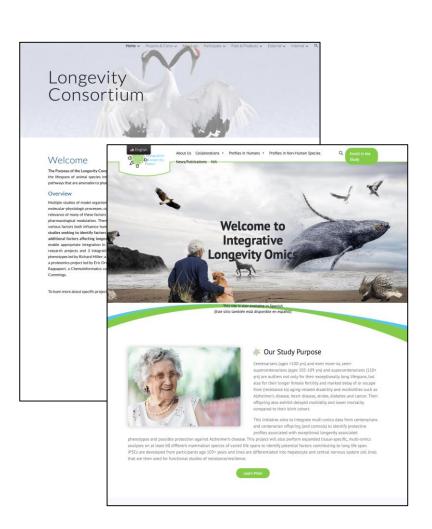

BHS: Bogalusa Heart Study: CDAH Study: Childhood Determinants of Adult Health Study: NGHS: National Heart, Lung, and Blood Institute Growth and Health Study FS: Young Finns Study: Princeton LRC/PFS: National Heart, Lung, and Blood Institute Princeton Lipid Research Cli

ample with measurement of at least one major CVD risk factor (blood pressure, lipids or adiposity measures including skinfold thickness or BMI

Sample with measurement of all three major CVD risk factors. Other generations and family data available

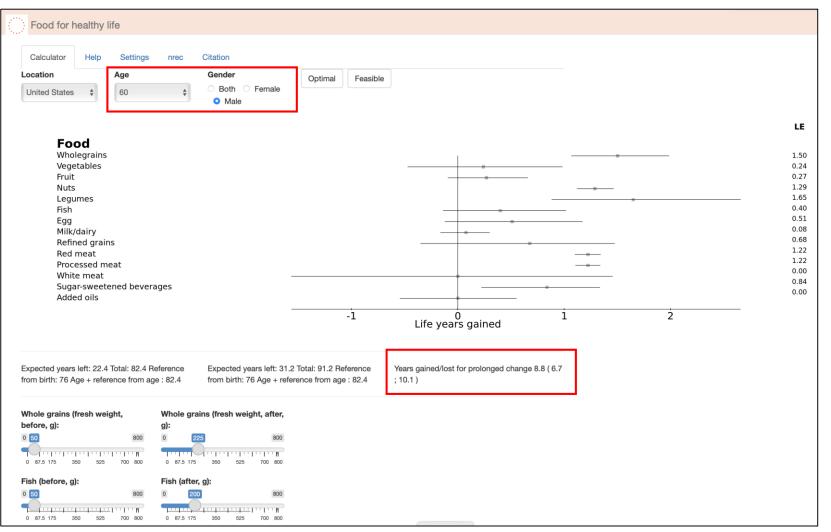

fan additional 575 participants aged 5–19 years were measured in the LRC family study (Visit 3) along with their siblings already counted in the 1729 above. Blood pressur was not measured at Visit 3. Of these 587 siblings, 221 were recontacted in the 1999-2004 follow-up.


The Need for Integration Across the Age, Genetic and Non-Genetic Spectrum



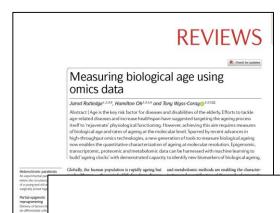
Better integration is needed to identify and exploit g x e interactions, nuanced behaviors, social factors, aging effects, and general context-specificity that could lead to interventions designed to optimize individual health and longevity

Are Large-Scale National Government Subsidized Longitudinal Studies Good?



Will such studies reveal greater heterogeneity and a need for the 'personalization' of nutritional and medical interventions?

Estimating Life Expectancy for Different Age Cohorts and Dietary Changes



PLOS MEDICINE

- How reliable are the data used? What about interactions with, e.g., SES, genetic predisposition, etc.?
- Could/should such estimates be personalized with many more factors considered based on more data?

Surrogate Endpoints for Long-term Outcomes and Longitudinal Trajectories

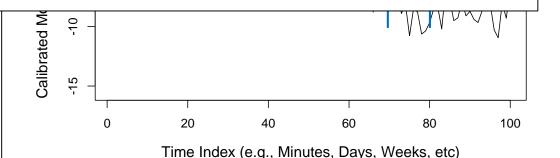
- Time lapse between change in the molecular milieu and change in the clinically-relevant phenotype?
- How long does it take before the system is sustainably healthy with continued use of intervention?

"You could die of age-related disease while waiting for your longevityenhancing diet or intervention (i.e., geroprotector) to pay dividends" - Schork et al. (AGMR; 2021)

Pry Sarlam Languiy-Secutive Languis-landin Sarlam Languiy-Secutive Languis-ter Languis-Sa growth hormone and two diabetes Sa growth hormone and two diabetes Languis-Langu

 $juve nate the men's thymus glands and une function. They also shaved 2.5 years \\ anti-ageing biotech company in Torrance, Cali- \\ They work beautifully in a mathematical sense \\ The work b$ Steve Horvath, an anti-ageing researcher at the not currently recognize epigenetic-cloc Biological age is an important concept. University of California, Los Angeles, to ask if scores as surrogate end points for clinical tr

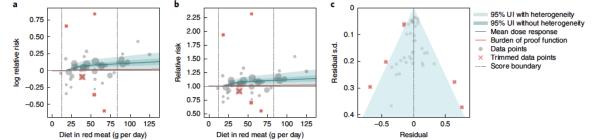
measuring biological age detects a signal But critics have questioned the purported lowers their chances of developing age-relate or measuring possigness age offsete's a signal pacify than their extends chronological from the pacific of the purported pacify than their extends chronological from the pacific of the purported pacify than their extends chronological from the pacific of the purported pacific p eded to assess whether the new manipula-result, it means there's a strong effect." He and etic clocks is a reversible process that is car the company are now running a randomized and placebo-controlled phase II replication a tag known as a methyl group to parts of the biological age on the basis of a read-out on a larger group of 85 people

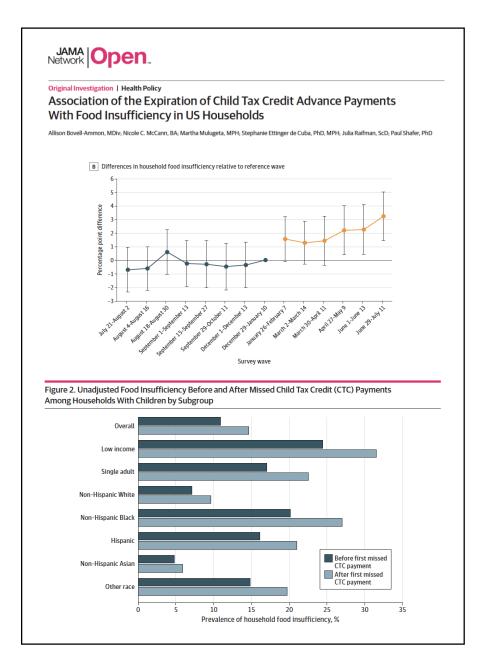

angled riger is at major hard took dup-tors and the second of the secon

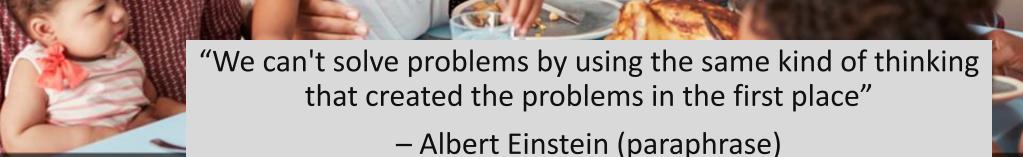
ontrolled phase II replication a tag known as a methyl group to parts of the pof 85 people.

The search for surrogate endpoints in oncology has yielded interesting and informative results but also a large number of disappointments. Among the successes, disease-free (DFS) or relapse-free (RFS) survival were shown to be good surro-eases for overall survival (OS) in the adjuvant treatment of

olon cancer,1 gastric cancer,2 melanoma,3 and HER2-positive breast cancer, while metastasis-free survival was shown to be the failures, pathological complete response (pCR) was no shown to be a good surrogate for event-free survival (EFS after neoadjuvant treatment of operable breast cancer, while in advanced disease tumor response and progression-free sur rival (PFS) failed to be considered acceptable surrogates for thus far using meta-analyses of individual patient data (IPD) All these studies used a so-called 2-level statistical at ach to assess surrogacy, which relies on the availabilit of IPD.13,14 This approach consists in assessing whether 1 the potential surrogate is associated with the final endpoin


(eg. OS) in individual patients and (2) the effect of trement on the surrogate can be used to reliably predict the effect of treatment on the final endpoint. Both questions are of interest: the former for natient management (since a good ogate is prognostic for the final endpoint) and the latt drug development (since use of the surrogate instead of the final endpoint can lead to gains of months or even years of development time). Condition (1), called "individual-level surrogacy" or "patient-level surrogacy," simply states that the surrogate is an independent prognostic factor for the final endpoint, and this can be tested in any series of pa-tients, whether or not from a randomized trial. Condition (2), called "trial-level surrogacy" or "treatment-level surro gacy," requires a meta-analysis of several randomized trial in which multiple estimates of treatment effects are avail able on both the surrogate and on the final endpoint. 15 Is all the examples cited, the condition of individual-level sur rogacy was fulfilled, but some potential surrogates failed to neet the condition of trial-level surrogacy. Here we explor the following conceptual difficulty: how can the surroga


Focused Clinical Trials and Broader Publicly-Subsidized Societal Interventions


Fig. 4 | Unprocessed red meat consumption and ischemic heart disease. a, Log relative risk function for unprocessed red meat consumption and ischemic heart disease. **b**, Relative risk function for unprocessed red meat consumption and ischemic heart disease. **c**, A modified funnel plot for unprocessed red meat consumption and ischemic heart disease showing the residuals (relative to 0) on the x axis and the estimated standard deviation (s.d.) that includes reported s.d. and between-study heterogeneity on the y axis.

Questions to Keep in Mind:

- 1. What do the current data say, if anything, about nutrition, health, and life course?
- 2. What are the limitations of current research strategies and how we can overcome them?
- 3. If we learn of something that might lead to sustained health, how can we prove its worth?
- 4. What kind of interventions would be practical from what we have learned or could learn?

NATIONAL Sciences
ACADEMIES Medicine

November 16, 2022 • 12:00 PM - 4:30 PM EST

How Nutrition and Health Change Over a Person's Life Course