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Genetic reference populations
the BXDs

Metabolic phenotypes in male & female BXDs

Intensive metabolic phenotypes for chow and high
fat-fed BXDs

Lifespan in BXDs
Lifespan in ITP controls
NASH and CKD in the CC founders and F2 cross

Healthspan and mito stress in the HDPs



Mouse Genetic Reference Populations (GRPs)

GRPs - a holistic approach to map genes

C57BL/6J DBA/2J

Founder
Lines

- 5 million sequence variants, similar to human populations
- 4’700 genes with protein coding variants

- 2’000 with predicted high-impact variants

- >6’000 clinical phenotypes

- multi-omics molecular phenotypes in >35 tissues

www.genenetwork.org
www.system-genetics.org
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Phenotypes

BXD Phenome - Clinical & Molecular

Clinical phenotypes
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The BXD phenome has > 500 million datapoints

www.systems-genetics.org

Li et al, Cell Systems, 2018, 6, 90-102



Body weight (week 8-29) - examples

BXD68 BXD44

BXD44-type
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Adipose Weight [grams]
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Heritability & environment

Heritability is the percentage of observed trait variation that can be attributed to genetic factors
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Lifespan variation maps to Mrps5

Forward genetic strategy

Two-fold difference in lifespan
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Mapping of longevity
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Gene expression

The MRP family and longevity

Integration of protein synthesis and mitochondrial metabolism
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..and also in humans MRPs are aging genes
Peters et al, Nature Comm, 2015, 6.8570
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Mito-nuclear communication
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Mito-nuclear communication

Mito-nuclear protein imbalance — perturbed coordination of 2 genomes
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Mito-nuclear communication

Mito-nuclear protein imbalance — perturbed coordination of 2 genomes




Pharmacological enhancing the
mitochondrial stress response (MSR)

Mitochondrial stress

Mito inhibition — 4 Mito activation
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NR reduces aggregates and improves
memory in an AD mouse model
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NAD boosting activates the MSR and reduces
aggregates in aged mouse muscle
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Genetic reference populations
Intervention Testing Program

Metabolic phenotypes in male & female BXDs

Intensive metabolic phenotypes for chow and high
fat-fed BXDs

Lifespan in BXDs
NASH and CKD in the CC founders and F2 cross
Lifespan in ITP controls

Healthspan and mito stress in the HDPs



The ITP study - the elusive search for
bona fide aging genes
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Females have higher median survival and
males have higher early mortality

Survival probability
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Weight gain early in life shortens
lifespan in male mice
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Higher perceived body weight at 10 yrs
associates with shorter parental lifespan

Conceptual model of

: DT Confounders  High cholesterol diet
Mendelian Randomization (MR)

a

Instruments » Exposure ¥» Outcome
(Genetic variants) (BMI, early body weight) (Parental longevity, BMI)

LDLR variant LDL cholesterol Coronary artery disease

Exposure: BODY10 [relative to average] | __;8123+0636
Outcome: Longevity [years] n instruments = 308
Exposure: BODY10 [relative to average] | ; 3.626 £ 0.046
Outcome: BMI [kg/m2] ' n instruments = 325
Exposure: BMI [kg/m2] ] ~0.8840.07 Mendelian randomisation
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Bou Sleiman et al, Science, 2022, abo3191



Different male & female longevity genetics
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Genetic reference populations
Hybrid Diversity Panel (HDP)

Metabolic phenotypes in male & female BXDs

Intensive metabolic phenotypes for chow and high
fat-fed BXDs

Lifespan in BXDs
NASH and CKD in the CC founders and F2 cross

Lifespan in ITP controls

Healthspan and mito stress in the HDPs



Healthspan, not lifespan, matters —
can we measure it?

Most studies are focused on longevity or lifespan, yet what is arguably more important is how long
health is maintained. This is referred to as healthspan, the period of life that is disease-free.

Studies in animal models and ultimately in humans will need to assess how the health degrades in a
longitudinal manner during aging and define the healthspan trajectory.

We need precise healthspan metrics, defined both in animal models and humans, that will allow us
to search for underlying causes of its decline.

Finding common molecular denominators of aging differences is critical. Lifespan and health
are under genetic control that varies both within and between species. Once defined we can then

intervene rationally.

High healthspan

Average healthspan

Health Status

. Age
1 1 1

\4 Y \4

Longitudinal study design with frequent sampling and phenotyping in genetically diverse subjects is required to understand healthspan



The Healthspan Diversity Project (HDP) —
collect healthspan metrics & define healthspan trajectories

Age Tissue collection pipeline
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Mouse phenotypes (adult & old)| |Available human clinical data
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Longitudinal study — young, adult, old

Started in 2018-> Q1 2023; >6500
mice; 23 tissues; >150,000 samples
biobanked

Clinical and molecular phenotypes
(basal and challenged)

Mice are monitored 24/7 — clinical,
molecular, and genetic

Design is complimentary to the UK
Biobank, enabling seamless transitior
from mouse to man

Data and sample management
infrastructure established

|deal to generate digital twins



DVC — monitoring mice 24/7 throughout life
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DVC reveals strain-specific changes in activity
throughout life

CCO078/TauUncJ

CCO078/TauUncJ — examples
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Calculation of the sample entropy (aka as the Regularity Disruption Index — RDI) indicates
age-linked sleep fragmentation only in the CC078, but not in the SKIVE, strain



The logistics of a longitudinal study
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Conclusions

« GRPs provide flexible gene and pathway discovery platforms, allowing the
dissection of complex traits and GXE interactions that are impossible in
humans

« Experiments in GRPs can be seamlessly integrated with human studies
creating a virtuous cycle fueling target discovery
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Genetic (Mrps-5 LOF) or pharmacological (tetracyclines, NAD* boosters) activation of the
MSR reduces proteotoxic stress and increases health- and lifespan;

Elevated body weight at young age, but not adult BMI, determines lifespan;

Processes (e.g. mitohormesis, proteostasis, energy homeostasis, inflammation,..) rather
than individual genes determine health- and lifespan;

These processes can be targeted to interfere with age-related diseases,as illustrated by
efficacy in infection/inflammation, Alzheimer’s disease, IBM and sarcopenia

Human

/ Validation \

Human Mouse
Observation Experiments

\‘/ Nadeau & Auwerx, Nat. Rev. Drug Disc., 2019
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