

Using technology methods for dietary assessment among:

Women during pregnancy

Children

Age of Study Participant (SP)	Main Respondent
2 to 5 years	Proxy
6 to 11 years	SP, with Proxy Assistant

Source: National Health and Nutrition Examination Survey, Mobile Exam Center in-person dietary interviewers procedures manual.

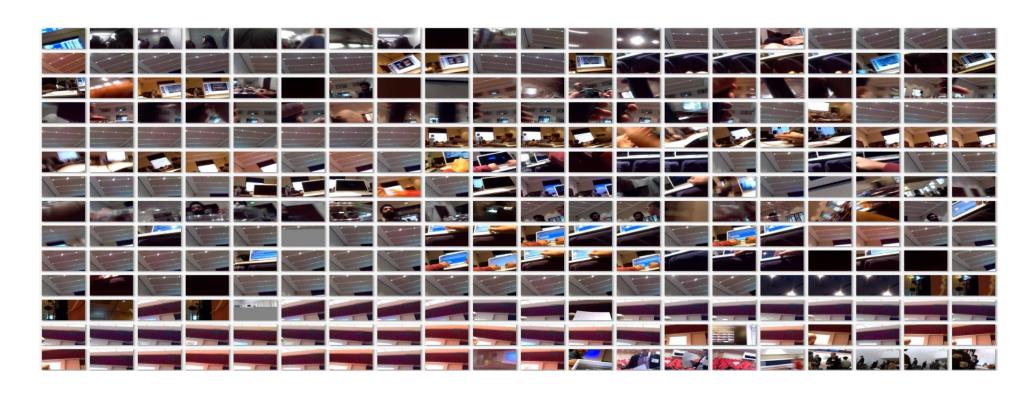
Different approaches to enhance dietary assessment with images

Passive

- Wearable camera/other devices
- Lots of images/data collected
- Users do not need to be "engaged"
- Need to detect eating events
- Images can be used for other things
- Privacy issues

Active

- Use mobile telephone
- Focused images
- Users are "engaged"
- Useful contextual information
- Better quality images


Passive Approach

- Passive Approach
 - ~ 1 image/5 sec → 400,000 images/day most not related to food

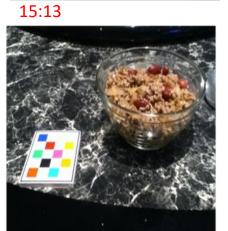
- Active approach
 - ~ 6-12 images/day

Passive Approach

Time elapsed 24 minutes

Active Approach Time elapsed 24 hours

Example of 1-day images captured with the mobile food record showing the eating occasions and time for a woman BMI = 32.8


Eating Occasions = 8

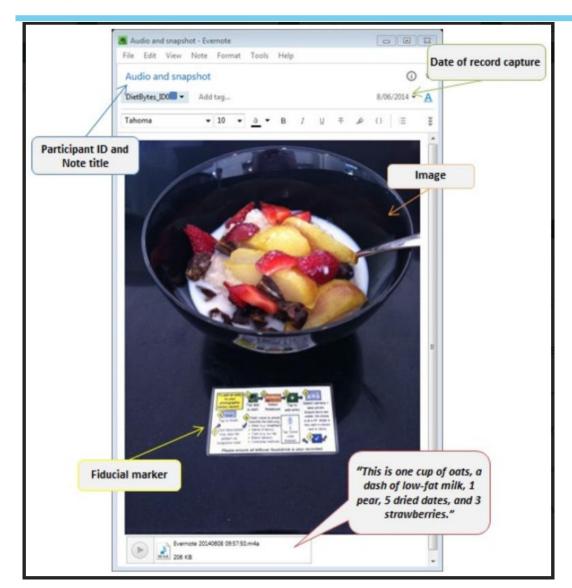
18:28 18:54

One Eating Occasion

Passive Active

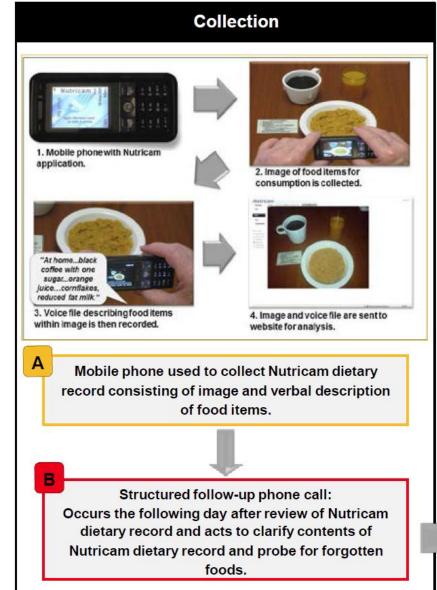
Color Fiducial Marker

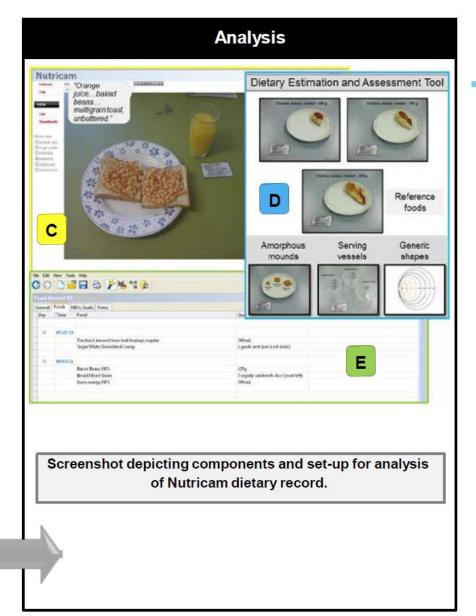
Reference Illumination



New Illumination #2 New Illumination #1 **Color Correction**

Compare a smartphone image-based dietary assessment to 24-h recalls among pregnant women




- Diet Bytes and Baby Bumps Study
- Audio and "snapshot" available for recording
- Fiducial Marker

Rollo ME et al Nutrients, 2015; Ashman AM et al JMIR mHealth and uHealth 2016.

infrastructure

Summary: Compare a smartphone image-based dietary assessment to 24-h recalls among pregnant women

- 25 women, median age 29 years
- Intakes from the image-based method were compared to intakes collected from three 24-h recalls, taken on random days; once per week, in the weeks following the image-based record.
- Significant correlations between the two methods were observed for energy, macronutrients, micronutrients and fiber (r = 0.58–0.84, all p < 0.05).
- Overall acceptable relative validity.

Another example of using images

- Twenty-three obese pregnant women used a smartphone app to capture images of food consumed (SmartIntake)
- The women also underwent dosing with doubly labeled water (DLW)
- Thus, energy intake estimated from the app could be compared with energy expenditure from DLW
- Energy intake from SmartIntake was 63.4% of energy from DLW
- Among this group, the SmartIntake appeared to under estimate energy intake compared to DLW.

Possible explanations

- Participation higher when participants used their own mobile phones to take food images.
- Reported energy intake was significantly higher compared to participants provided with an iPhone.
- Carrying and using an additional phone may increase burden and reduce compliance with recording.
- Consider exclusion of days when energy below 60% of total daily energy expenditure.

Thoughts forward

- Studies addressing dietary intakes of pregnant women appear to under use digital technology
- Self-administered web based questionnaires appear to be more widely used
 - e.g., Validation of a self-administered web-based 24-hour dietary recall among pregnant women (Savard et al BMC Pregnancy and Childbirth 2008)
 - e.g., Use of a web-based dietary assessment tool in early pregnancy (Mullaney et al Ir J Med Sci 2016)

Validation & Feasibility/Preschool Children

Overall Total Food in Grams	Estimated Weight, Mean ± SD	Actual Weight, Mean ± SD	Food Intake, Mean ± SD	Paired t test,
Metabolic Research Unit: Validation study	244.8 ± 28.9	255.4 ± 29.9		0.11
n=22 pre-school children for one eating occasion				
	Food Selected, Mean ± SD	Plate Waste, Mean ± SD	Food Intake, Mean ± SD	
Head Start (HS): Feasibility study	217.6 ± 48.1	69.8 ± 39.4	147.8 ± 56.8	
n=12 HS children for 3 lunch meals				
Home environment: Feasibility study	232.2 ± 44.5	78.2 ± 23.0	154.2 ± 39.0	
n=12 HS children for 3 home dinner meals				

Nicklas TA et al, J Nutr Educ Behav 2012

Assessing dinner meals eaten at home

- Captured before and after dinner meal images of preschoolers intakes using the Remote Food Photography Method (RFPM)
- 31 families in Head Start/preschool programs with children 3-5 years enrolled.
- Captured dinner meals over 1 week
- Parents trained in-person to use the RFPM (best practices for capturing images and labeling)

Before eating

After eating

How old is this participant?

3 years old!

Using the mobile food record (mFR)

20

Brief instructions for children:

- Researcher demonstrated mFR use
- Distributed mFR, Fiducial marker & wristband
- Children (3-10 y) asked to demonstrate taking a usable image pair

Before eating

After eating

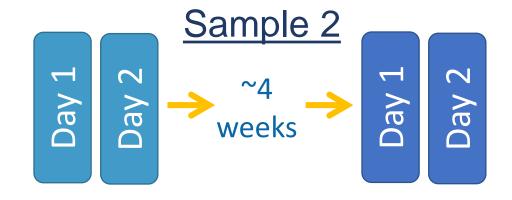
Images auto-loaded to the cloud

Before eating

After eating

How old is this participant?

5 years old!


Methods: unique to each sample

22

Sample 1

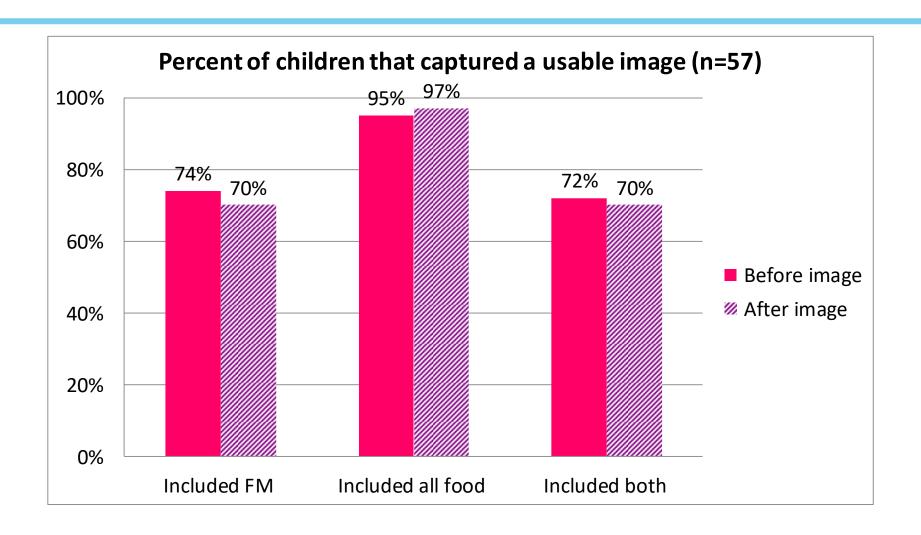
Children possessed mFR for 6 to 8 hours

- 1-4 opportunities to take image pairs:
 - Practice, AM snack, lunch, and PM snack
- Brief questionnaire:
 - 1. Usability of mFR
 - 2. Acceptability of mFR
 - 3. Carry the FM

 Carrying case and charger

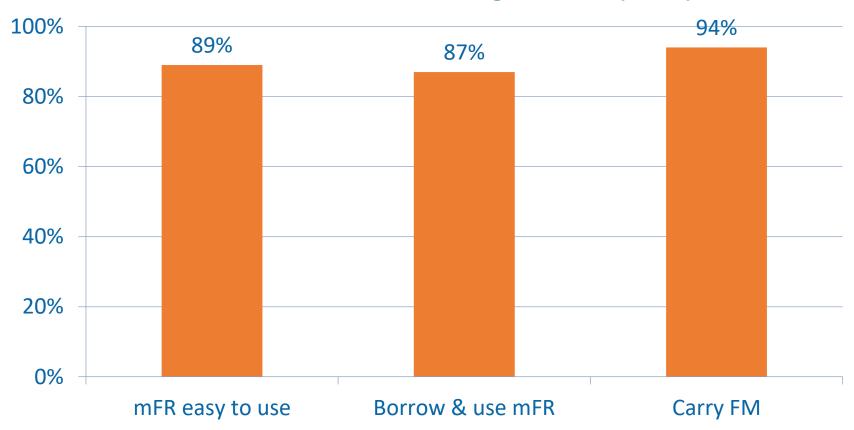
Before eating

After eating



How old is this participant?

9 years old!


Sample 1 Results: usable image

Sample 1 Results: Feedback

Children's feedback on using the mFR (n=62)

Sample 2 Results (n=63)

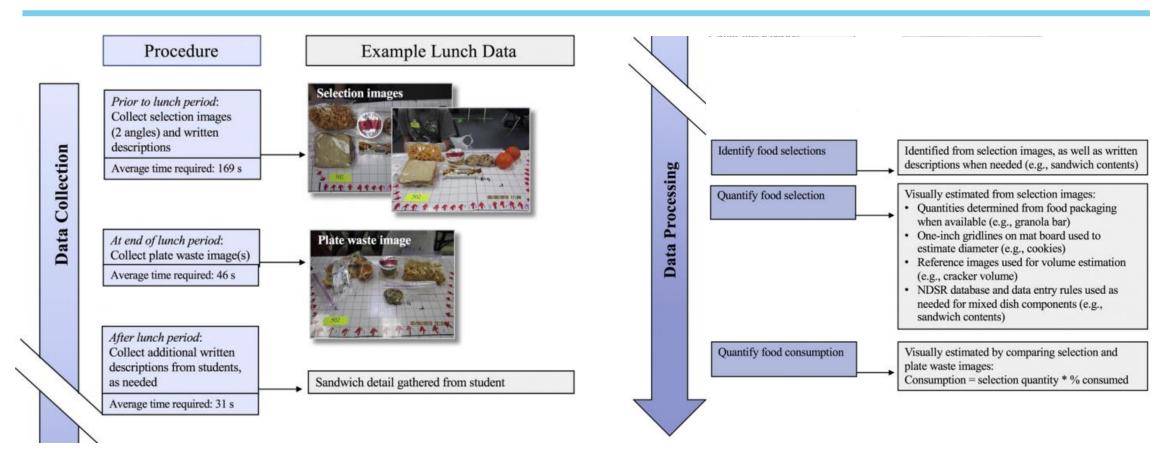
Number of children	Age	Length of time mFR used	Number of image pairs per day		
n (percent, %)	Mean (years)	(days)	Median (range)		
Time 1					
4 (6)	5.5	0	0		
8 (13)	7.7	1	1.00 (1.00-4.00)		
20 (32)	8.2	2	2.00 (1.00-4.00)		
20 (32)	8.2	3	2.42 (1.33-6.00)		
11 (17)	9.8	4+	2.67 (1.33-4.25)		
Time 2					
14 (22)	7.8	0	0		
5 (8)	7.8	1	1.00 (1.00-2.00)		
16 (25)	8.3	2	2.00 (1.00-5.00)		
18 (29)	8.3	3	1.83 (1.00-3.33)		
10 (16)	8.0	4+	1.75 (1.20-3.75)		

Aflague TF et al Nutrients 2015

Sample 1 Results: Return undamaged

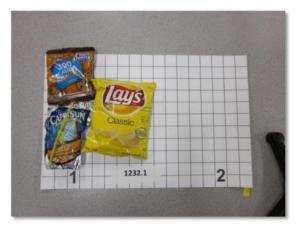
• All children (n=63) returned the mFR undamaged!

Chewing sensor & other sensors: passive



- Passive
- Continuous video feed (can be turned off)
- Multiple sensors for detecting chewing

Procedures for collection & processing


Procedures for collection & procedures

1A

1**B**

2A

Conclusion & Next Steps

31

- Given instructions, children 3-10 years old can use the Mobile Food Record to record their dietary intake
- Results do support the need to include parents to help with reminders that are tailored to the child's age.
- All of the methods shared today and in use by others appear to hold promise for child use.

