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PREDICT within the current nutrition landscape – big data and novel technologies 
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The PREDICT programme measures the integrated response and interrelated 

multi-directional pathways
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FFQ, Lifestyle &

Medical

Anthropometry

DEXA, waist/hip &
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Blood pressure 
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Metabolic challenge 

Other test meals

Aims

Use genetic, metabolomic, metagenomic and meal-context information to predict individuals’ postprandial responses to food.

Validation Cohort

n=100

Main Cohort

n=1,002

Home Phase (Days 2-14)

Dietary 
Assessment

Standardised
meals

Blood 
Spot tests

Digital
devices

Stool
samples

Study app; weighed records; in-study support

Nutritionally varied test breakfasts and lunches

TAG, C-peptide assays 

Continuous glucose, physical activity and sleep monitoring

Microbiome profiling

Clinic 
Day 2 3 4 5 6 7 9 10 13 1411 128

Baseline Clinic Visit (Day 1)

Jun 2018 – May 2019 IRAS 236407      IRB 2018P002078      NCT03479866



2,022,000
CGM glucose 
readings

The scale of the PREDICT 1 study data

32,000
Muffins consumed

28,000
TAG readings

132,000
Meals logged

750,000
Metabolomic measures

75 billion
Metagenomic reads



Significant variability between healthy individuals

Baseline 6h rise

CV 50% 103%

Triacylglycerol Glucose

Baseline 2h iAUC

CV 10% 68%

Clinic day data, n = 1,002



What are the multiple determinants and how do they impact outcomes?

Meal context
Time of day, Meal 

sequence, Exercise, Sleep
Microbiome 

Glycaemic control

Inflammation

Endothelial dysfunction

Meal composition

Genetics

Microbiome

Age & Sex

Blood pressure

Serum measures

Anthropometry

Habitual diet

Metabolomics

Hunger & energy intake

Exposure Outcome

What

we eat 

Who

we are

How

we eat 

Serum measures

Anthropometry

Glycaemic control



The determinants differ for different outcomes

Glucose Triglycerides 



How can this translate to a real life setting/ dietary advice?

Machine learning 

model correlates

77% 
to measured 

glucose responses

Machine Learning model 
uses test results to predict 
responses to new meals

Individual takes test

Pearson R = 0.77; p = 0
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Diet-health-microbiome signature; Personalized gut ‘boosters’
and ‘suppressors’

E. lenta

C. leptum

F. plautii

C. bolteae

Escherichia coli

R. lactatiformans

Collinsella intestinalis 

Blautia hydrogenotrophica

Clostridium sp. CAG:58

C. symbiosum

C. bolteae CAG 59

A. colihominis

C. innocuum

C. spiroforme

R. gnavus

“Good” 

bugs

“Bad” 

bugs

E. eligens

B. animalis

F. prausnitzii

H. parainfluenzae

Oscillibacter sp. 57 20 

Oscillibacter sp. PC13

Firmicutes bacterium CAG:95 

Firmicutes bacterium CAG:170

Roseburia sp. CAG:182 

Clostridium sp. CAG:167

Romboutsia ilealis

Veillonella atypica

V. infantium

V. dispar

P. copri

https://www.nature.com/articles/s41591-020-01183-8
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The future for the ZOE PREDICT programme



Thank you
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