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PREDICT within the current nutrition landscape — big data and novel technologies
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PREDICT

Largest ongoing program to measure
Individual responses to food in nutritional science
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The PREDICT programme measures the integrated response and interrelated
multi-directional pathways
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PREDICT 1

Aims
Use genetic, metabolomic, metagenomic and meal-context information to predict individuals’ postprandial responses to food.
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Study app; weighed records; in-study support

Nutritionally varied test breakfasts and lunches
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Continuous glucose, physical activity and sleep monitoring
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PREDICT 1

The scale of the PREDICT 1 study data
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ARTICLES

PREDICT 1
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Human postprandial responses to food and

Significant variability between healthy individuals potential for precision nutrition
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PREDICT 1

What are the multiple determinants and how do they impact outcomes?
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PREDICT 1

The determinants differ for different outcomes

Glucose

z o Triglycerides cEs
2 £EES S 508 o
. g oY S TG 3
S 2ux ] < » >
E: J;%‘,g & %9- of <
% ¢ . 2 6.8

/¢
< %%,

5 s
(09
e px\"‘\
P Seryy, p
lim
Co Me m p,ds
'hpos,-ﬁo:/ Urkerg
Determinants of Determinants of .
ipi g i Microbiome
A% 14 12 10 8 6 4 2 0 posfprcndial Smeal":“Jkl’zrl;plds r 2422 201816 14 1210 86 4 2 0 _IE:StIpZ::I(:’I:SI
Glucose a4
set neic®
? G s
0,
/of'e Od S,\-
Ssul‘
)
N
o
& ° %
&
%,
o)
¥ b % IS - 2 9,
53 =5 A %o >
“35 s % <
@ ®



PREDICT 1

How can this translate to a real life setting/ dietary advice?

Individual takes test

Machine Learning model
uses test results to predict
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PREDICT 1

Diet-health-microbiome signature; Personalized gut ‘boosters’
and ‘suppressors’
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https://www.nature.com/articles/s41591-020-01183-8

The future for the ZOE PREDICT programme
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