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Abstract: Artificial intelligence (Al) is a rapidly evolving area that offers unparalleled opportunities of progress and applica-
tions in many healthcare fields. In this review, we provide an overview of the main and latest applications of Al in nutrition
research and identify gaps to address to potentialize this emerging field. Al algorithms may help better understand and pre-
dict the complex and non-linear interactions between nutrition-related data and health outcomes, particularly when large
amounts of data need to be structured and integrated, such as in metabolomics. Al-based approaches, including image rec-
ognition, may also improve dietary assessment by maximizing efficiency and addressing systematic and random errors
associated with self-reported measurements of dietary intakes. Finally, Al applications can extract, structure and analyze
large amounts of data from social media platforms to better understand dietary behaviours and perceptions among the
population. In summary, Al-based approaches will likely improve and advance nutrition research as well as help explore
new applications. However, further research is needed to identify areas where AI does deliver added value compared with
traditional approaches, and other areas where Al is simply not likely to advance the field.

Novelty:

¢ Artificial intelligence offers unparalleled opportunities of progress and applications in nutrition.
¢ There remain gaps to address to potentialize this emerging field.

Key words: artificial intelligence, machine learning, algorithms, nutrition, prediction, dietary assessment, metabolomics,
social media.

Résumé : L'intelligence artificielle (« IA ») est un domaine qui évolue rapidement et qui offre des possibilités de progres inégalées
dans de nombreux domaines de la santé. Cette courte revue propose un apercu des principales applications de I'IA pour la re-
cherche en nutrition et identifie les lacunes dans ce domaine émergent. L'IA permet d’une part de mieux comprendre les interac-
tions complexes et non linéaires entre les données nutritionnelles et le risque de maladies, en particulier dans un contexte de
données massives, comme dans le domaine de la métabolomique. L'IA, incluant les approches basées sur la reconnaissance
d’images, promet également d’améliorer I’évaluation des apports alimentaires en maximisant l’efficacité et en atténuant les
erreurs systématiques et aléatoires associées aux questionnaires alimentaires auto-administrés. Enfin, I'IA permet de recueillir,
structurer et analyser de grandes quantités de données tirées des plateformes de médias sociaux afin de mieux comprendre les
comportements et les perceptions alimentaires au sein de diverses populations. En résumé, les approches basées sur I'[A sont
susceptibles d’améliorer et de faire progresser la recherche en nutrition. Cependant, davantage d’études sont nécessaires afin
d’identifier les domaines ou I'IA apporte une valeur ajoutée réelle par rapport aux approches traditionnelles et d’autres
domaines ou ce n’est pas le cas.

Les nouveautés :

¢ Lintelligence artificielle présente des occasions de progres inégalés en nutrition.
¢ Ilreste des lacunes a combler dans ce domaine émergent.

Mots-clés : intelligence artificielle, apprentissage automatique, algorithmes, nutrition, prédiction, évaluation alimentaire,
métabolomique, médias sociaux.

Introduction

Artificial intelligence (Al) is a rapidly evolving field that has
offered unparalleled opportunities of progress in many healthcare
fields, like precision medicine, radiology, genetics and molecular
medicine (Davenport and Kalakota 2019; Hamet and Tremblay
2017; Mintz and Brodie 2019). Al has the advantage of harnessing
voluminous datasets, such as Electronic Health Records, omics data

and longitudinal data from large cohorts (Goldstein et al. 2016;
Mehta and Devarakonda 2018; van der Ploeg et al. 2014; Wiens
and Shenoy 2018). Nutrition research is among the healthcare
fields that are increasingly benefiting from these new computa-
tional techniques, notably because of the important amount and
complexity of data generated in this field. Among others, Al-based
methods have enhanced health outcome prediction in the context of
various dietary exposures and have contributed to the improvement
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and development of dietary assessment tools (Morgenstern et al.
2021). Al-based methods are used in several “omics”-related nutrition
research as well as in processing and analyzing social media informa-
tion. This article provides a brief overview of such current and
future applications of Al in nutrition research and addresses
research gaps. The main Al techniques discussed in this review are
machine learning (ML), deep learning (DL) and natural language
processing (NLP).

Machine leaning

The field of ML, which is considered an important area of Al,
shares several similarities with traditional statistical methods.
However, while traditional statistical methods are generally
more focused on inference due to its probabilistic nature, ML is
more oriented towards prediction and classification by using
learning algorithms trained in large datasets (Bzdok et al. 2018).
Another difference between both approaches is that traditional
statistical models are developed based on a priori knowledge of
associations among a set of variables while ML algorithms
assume that the data are not generated by any particular mecha-
nism (Lavigne et al. 2019). ML can also deal in a much more effi-
cient way with very large and complex datasets than traditional
statistics. Popular ML techniques include supervised learning
and unsupervised learning.

Supervised learning algorithms are provided with the labeled
output results so they can learn from the data to find relation-
ships among variables and improve predictions (Alloghani 2020;
Lavigne et al. 2019). Predictive performances such as accuracy of
various algorithms can then be compared when new data points
are presented. Supervised learning algorithms require a lot of
data to adequately train and test the algorithms. Main applica-
tions of supervised learning are for prediction purposes, such as
regression or classification. Popular supervised learning algo-
rithms discussed in this review include decision trees (DT), ran-
dom forests (RF), support vector machines (SVM) and k-nearest
neighbour (KNN). DT make predictions by learning a set of deci-
sion rules based on the structure of the data (Song and Lu 2015).
Following a flow-like (or tree) structure, each node of a decision
tree represents an input variable, each branch represents a deci-
sion rule, and each leaf represents a prediction or classification
result (Song and Lu 2015). RF is a more sophisticated classification
algorithm that replicates (or bootstraps) samples of the data to
generate a multitude of decision trees and determines a predicted
class by averaging the estimated prediction of each tree (Zhang
and Ma 2012). SVM sort data into 2 or more classes of the out-
come of interest using multi-dimensional hyperplanes derived
from linear, polynomial, radial basis or sigmoid functions (Howley
and Madden 2005). KNN is an algorithm that assumes that close (or
neighbor) data points in a complex dataset share similar features
(Cunningham and Delany 2022). Therefore, a new data point is
classified according to the similarities of a predetermined num-
ber of closest points in the dataset.

In unsupervised learning, no labels are provided to the algo-
rithms. These algorithms rather search for natural or hidden pat-
terns and relations within the data (Alloghani 2020; Lavigne et al.
2019). Algorithms cannot formally be compared, as model per-
formance cannot be measured. Therefore, unsupervised learning
is mostly useful in exploratory analyses. Main applications of
unsupervised learning include clustering, feature extraction and
visualization. An example of unsupervised learning includes the
k-means clustering, which finds a fixed number (k) of clusters
that group similar data points together to identify underlying
patterns (Likas et al. 2003).

Deep learning
DL is a subsection of ML that processes several data types and
structures multiple times before achieving the output of interest.
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The main DL algorithms used are artificial neural networks with
multiple hidden layers (convolutional neural networks, recur-
rent neural networks, etc.), which aim to imitate the human
brain (Dongare et al. 2012). In other words, the extra depth, com-
pared with traditional ML algorithms, allows carrying out more
complex tasks. Broadly, an input dataset is fed to a first layer of
multiple algorithms. The outputs (prediction, classification) of
the first layer are then fed to a second layer of algorithms. This
can be repeated multiple times to reach a final output, such as
for example a predicted health status. Main applications of DL
algorithms include NLP, information retrieval and image recog-
nition (Deng 2014).

Natural language processing

NLP aims to achieve human-like language processing (Liddy
2001). It is applied among others for speech recognition, text
analysis and translation. More specifically, NLP can analyze writ-
ten or spoken texts to paraphrase, translate, answer questions or
identify context or meaning (Liddy 2001). It is particularly useful
to extract and structure information from social media, medical
files or articles from blogs, among others (Lavigne et al. 2019).

Diet-related health outcome prediction

ML is particularly powerful to analyze multi-dimensional data
and to uncover nonlinear relationships and interactions among
variables of interest, with the potential to achieve a more in-
depth, accurate and sophisticated prediction of diet-related health
outcomes (Morgenstern et al. 2021). For example, processing of
dietary patterns or nutrient and food intake data using RF, SVM
and KNN algorithms have been shown to predict malnutrition
among children under 5 as well as early risk factors of develop-
ing overweight/obesity later in life among prematurely born
children (Talukder and Ahammed 2020; Fu et al. 2020). In some
instances, ML algorithms have outperformed traditional predic-
tive and classification statistical models. For example, KNN and
RF algorithms outperformed traditional statistical models to
predict long-term cardiometabolic risk based on dietary patterns
(Panaretos et al. 2018). Similarly, “feeding” nutrition-related data
to RF algorithms improved cardiovascular mortality risk predic-
tion compared with standard Cox models (Rigdon and Basu 2019).
Another study compared logistic regression with ML algorithms,
including a neural network, DT, SVM and KNN, to predict the risk
of depression using United States and South Korean population-
based data (Oh et al. 2019). The neural network identified partici-
pants with depression with the highest accuracy among the ML
algorithms and performed significantly better than logistic regres-
sion in the South Korean dataset. A large proportion of ML applica-
tions in nutrition is oriented towards prediction purposes, because
ML alone cannot be used for inferential purposes (Herndn et al.
2019). However, ML can assist in better processing data by analyz-
ing a larger number of variables with more complex relation-
ships and do not require restrictive assumptions (Schuler and
Rose 2017). Studies have demonstrated that nonparametric methods,
such as ML algorithms, can be used along with doubly robust estima-
tion techniques such as targeted maximum likelihood estimation
(TMLE) for estimating causal effects (Schuler and Rose 2017; Naimi
and Balzer 2018). For example, TMLE paired with the Super Learner
ML algorithm has revealed protective associations between diets
high in fruits and vegetables and the risk of adverse pregnancy out-
comes that logistic regression models did not reveal (Bodnar et al.
2020). The Super Learner is an ML algorithm that uses cross-validation
to first estimate the performance of multiple preselected classifica-
tion or regression models and then uses the optimal weighted combi-
nation of these models to make a prediction (Naimi and Balzer 2018).
It must be noted that these studies concern more traditional and less
complex statistical models, i.e., simpler, linear models. Other, more
complex, statistical models, like cubic splines, may take in

w Published by Canadian Science Publishing



Appl. Physiol. Nutr. Metab. Downloaded from cdnsciencepub.com by 132.203.28.140 on 11/23/21
For personal use only.

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

Coté and Lamarche

account non-linear associations and perform equally or better
than ML algorithms and thus should also be compared with ML
algorithms.

Other Al techniques, such as unsupervised ML, can also be used
to investigate the intricate associations between diet and health.
For example, k-means clustering algorithms were used to identify
risk factors for low muscle mass based on nutritional and health-
related factors among men and women (Kwon et al. 2020). The
algorithm generated 5 clusters for men and women separately
based on age, total energy, carbohydrate ratio, protein ratio, fat
ratio, smoking habits, alcohol consumption, physical activity and a
number of chronic diseases, yielding similar characteristics among
each cluster. Logistic regression was then used to analyze the associa-
tions between each of the 9 variables and low muscle mass index,
hence identifying risk factors within each cluster. For example, key
characteristics of 2 clusters associated with an increased risk of
low muscle mass among men were old age, low energy intake,
high carbohydrate intake, low protein and fat intake, low alco-
hol consumption, less physical activity and a high number of
chronic diseases. Clustering algorithms may therefore help identify
phenotypes or risk factors related to distinct exposure-disease rela-
tionships and overcome some of the limitations of conventionally
used models, such as better representing complex data structures
(Kwon et al. 2020).

Finally, Al-based approaches are particularly powerful when
applied to the field of precision nutrition, as summarized in a
recent systematic literature review (Kirk et al. 2021). For example,
a study demonstrated that a boosted DT-based algorithm inte-
grating data from blood samples, dietary intake, anthropometry,
physical activity and gut microbiota composition was superior to
traditional glucose monitoring approaches in predicting post-
prandial glycemic responses to real-life meals (Zeevi et al. 2015).
Data also showed that individualized dietary interventions based
on these predictions significantly improved postprandial glucose
management through consistent alterations to the gut micro-
biota (Zeevi et al. 2015). Berry et al. (2020) demonstrated promis-
ing applications of RF regression models to predict the postprandial
triglyceride, glucose and C-peptide response to food intake based
on meal composition, habitual diet, meal context, anthropometry,
genetics, microbiome and clinical and biochemical parameters. Hall
et al. (2018) used an unsupervised clustering algorithm to identify
different types of patterns of elevations in postprandial glucose
response, “glucotypes”. The temporal profiles of blood glucose
responses of 57 participants with different diagnoses of diabetes
were clustered into 3 “glucotypes” representing low, moderate
and severe variability in glycemic responses. Further research may
allow a more accurate identification of patients among whom high
glucose variability influences the risk of developing diabetes or car-
diovascular diseases. Using information from 96 Single Nucleotide
Polymorphisms (SNPs) related to type 2 diabetes as well as sex, body
mass index and age among a sample of 677 healthy or diabetic par-
ticipants, Lopez et al. (2018) have shown that a RF algorithm per-
formed better than logistic regression for classifying the diabetes
status. Other studies in precision nutrition focused on predicting
body weight or risk of obesity. Ramyaa et al. (2019) have used super-
vised regression algorithms, including SVM, neural networks and
KNN, as well as unsupervised algorithms, including k-means cluster-
ing, to predict weight or body mass index using self-reported dietary
intake and physical activity data. For instance, a KNN algorithm
could predict body weight with a mean approximate error of
6.98 kg. When performing k-means clustering and then using
KNN to predict body weight within the cluster, the algorithm
performed better with a mean approximate error of 1.1 kg. Similarly,
Babajide et al. (2020) tested different ML algorithms, including SVM,
RF and ANN, to predict body weight at the end of 10-week dietary
intervention program based on anthropometry, body composition,
metabolic rate and dietary intake data. The RF model performed best
with the lowest error rate and highest R-square value of 96%. Curbelo

Montafiez et al. (2017) have used a RF-based feature selection algo-
rithm to identify the most relevant SNPs and a SVM classifier to iden-
tify genetic variants predicting susceptibility to obesity. The SVM
classifier performed better than logistic regression when using the
obesity-associated SNPs identified by the RF-based algorithm.

In summary, it is being increasingly recognized that traditional
predictive models may fall short in deciphering the complex inter-
actions and nonlinear associations between diet-related data and
health outcomes. Al-based approaches, particularly ML algorithms,
show great potential in this field because of their capacity to better
capture such complexity in predictive medicine.

Dietary assessment

Assessing dietary intake in research using self-reported meth-
ods such as 24-hour recalls, food diaries and food frequency ques-
tionnaires is highly challenging because such methods are
time-consuming, subjective and prone to nontrivial systematic and
random errors (Zhao et al. 2021). Morgenstern et al. (2021) have
provided a thorough overview on how ML can help address chal-
lenges in nutritional epidemiology, with particular focus on mea-
surement errors, statistical power, increasing precision and validity
and reducing bias.

Non-image-based tools

The measurement of dietary intakes and behaviours using
non-image-based tools may also be enhanced through the use of
novel ML-based approaches. For example, a voice-based mobile
nutrition monitoring system that uses NLP techniques has been
developed to monitor dietary intake (Hezarjaribi et al. 2018).
Once NLP techniques convert spoken words to text, an algorithm
links food names to a nutrition database to estimate calorie
intake. This monitoring system estimated calorie intake with an
accuracy of 92.2%. Kalantarian and Sarrafzadeh (2015) used a
smartwatch microphone combined with a RF algorithm to iden-
tify chews and swallows. Authors report good classification per-
formance between food items, talking and ambient noise, with
an F-measure of 94.5%, a common metric used in ML. Heydarian
et al. (2019) have summarized the current evidence on the use of
upper limb-mounted motion sensors for passive and objective
assessment of certain eating behaviours. DT, RF, SVM and DL
algorithms can be used to differentiate between eating activities
(e.g., chewing, swallowing) and non-eating activities (e.g., walk-
ing, writing, talking on the phone, brushing teeth). In another
study, Mertes et al. (2020) used a plate with weight sensors and a
bite detection algorithm based on a RF classifier to assess eating.
Out of 836 bites, the algorithm detected 602 bites, yielding an ac-
curacy of 74%. Other studies have focused on developing algo-
rithms that improve the accuracy of food intake measurements
using data derived from existing self-reported instruments. For
example, applying DT-based approaches to the UK National Diet
and Nutrition Survey, Rosso and Giabbanelli (2018) have shown
that public health dietary surveys can be simplified while improving
accuracy in predicting adherence to 5 key dietary recommendations.
Authors concluded that the use of simplified surveys to monitor
public health nutrition is cost-effective while possibly attenuat-
ing biases as participation burden is reduced. Chin et al. (2019)
have demonstrated the feasibility of using ML algorithms to sub-
stantially decrease time required to estimate nutrient intakes
that are not automatically outputted in a web-based 24-hour
recall, by combining 24-hour recall data with information from
food and nutrient databases. Finally, applying ML algorithms to
dietary intake data from the Global Burden of Disease study,
Schmidhuber et al. (2018) have developed predictive models that
estimate the consumption of each nutrient based on their
national availability, with an accuracy greater than 80%. Such
data are invaluable to address the nutritional needs of specific
populations in the context of particular food systems.
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Image-based tools

Development of new dietary assessment methods based on
automated food image recognition and analysis is a fast-evolving
field of research. Indeed, an increasing number of food image
databases, algorithms for food recognition and classification
models are being developed and validated for use on multiple
devices for food intake monitoring (Vieira Resende Silva and
Cui 2017). For example, the Snap-n-eat is a food recognition appli-
cation based on a SVM classifier that estimates energy, food
and nutrient intake using images taken directly with the user’s
smartphone, without additional intervention by the research
team (Zhang et al. 2015). Similarly, the Keenoa food recognition
application, which is linked to the Canadian Nutrient File 2015
(Deeks et al. 2017) generates a nutrient analysis that is sent
directly to a dietician when a patient or participant in research
takes a picture of their meal, thus facilitating the monitoring of
dietary habits by a dietician or a research team (Ji et al. 2020). The
use of artificial neural networks (ANN), particularly convolu-
tional neural networks (CNN), is also prominent in food recogni-
tion algorithms (Vieira Resende Silva and Cui 2017). Merchant
and Pande (2019) have developed a smartphone application based
on a CNN for food recognition to provide nutritional assessment
and suggest food recipes to diabetic patients. The algorithm rec-
ognized food with an accuracy of 70%. Fang et al. (2019) have
developed a CNN to estimate total energy intake based on a sin-
gle image of a meal, yielding predictions with an average error of
209 kilocalories. Since such algorithms are training-based, cap-
turing more images with distinct food types and sizes will help
generate more accurate predictions. Another study has shown
that a trained ANN can reconstruct a 3D point cloud of a single
food image taken in depth on a smartphone and predict its vol-
ume with an accuracy of up to 93% (Lo et al. 2018). Other studies
have developed CNN algorithms to recognize foods and drinks
among voluminous datasets of images. For example, CNN algo-
rithms were able to recognize 11 food groups among thousands of
images with an accuracy of up to 82% (Gozde Ozsert and Ozyildirim
2018). Quite similarly, Jia et al. (2019) have developed a CNN algo-
rithm that differentiates food items from non-food items with an ac-
curacy of 86.4% using images passively taken by a wearable camera
among free-living individuals and Liu et al. (2016) developed CNN
algorithms trained using food images taken by smartphones that
recognized different foods with an accuracy of up to 77%.

The performance of ML algorithms to recognize and identify
food on images is improving rapidly due to the voluminous and
increasing number of food image datasets available (Tahir and
Chu 2021). Indeed, the training-based nature of ML algorithms
implies that the use of more images of distinct food types and
sizes will inevitably improve their performance. Popular food
datasets used to develop such algorithms include the Food-101
dataset (11 categories, 101000 images (Bossard et al. 2014)), the
Food-5k (2 categories, 5000 images (Singla et al. 2016)), the Food-
11 (11 categories, 16 643 images (Singla et al. 2016)), the UEC-FOOD-
100 (100 categories, 14 361 images (Matsuda et al. 2012)) and the
UEC-FOOD-256 (256 categories, 25 088 images (Kawano and Yanai
2015)). Other studies are developing databases by extracting
images from publicly available data, like Mezgec and Korousic
Seljak (2017), who generated a dataset of 225 953 images of food
and drinks from the Internet, or Rich et al. (2016) who generated
a dataset with 808 864 food-related images from Instagram.

These examples are just a glimpse at the numerous Al applica-
tions that exist for collecting nutritional data and assessing food
intake (Kirk et al. 2021; Lo et al. 2020, Tahir and Chu 2021). Multi-
ple ML, NLP and DL algorithms are being developed to assess food
intake more accurately, by relying more on objectively recorded
food intake and behaviours, thus potentially attenuating biases
known to be associated with self-reported dietary intake data as well
as decreasing participation burden (Zhao et al. 2021; Morgenstern
et al. 2021). However, conventional dietary assessment tools and
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Al-based tools are to date complementary methods because most
new Al-based tools cannot yet fully replace conventional tools (Zhao
et al. 2021; Morgenstern et al. 2021).

Nutritional metabolomics and biomarkers

Principal component analysis, multivariate data analysis and
partial least-squares discriminant analysis are among the most
common models used to analyze metabolomics data. However,
Al and related algorithms, such as ANN, RF and SVM, are particu-
larly well-tailored to decipher the nonlinear nature of complex
associations found in large nutritional metabolomics datasets.
More specifically, Al techniques combined with metabolomics
are used to identify biomarkers of foods or nutrients. For exam-
ple, Shinn et al. (2021) have developed a RF algorithm to identify
fecal bacteria biomarkers of 6 specific foods. The overall classi-
fication accuracy of the 6 foods was 70% using 22 fecal bacteria
biomarkers. KNN, SVM and RF algorithms have been developed
to predict total antioxidant properties of food matrices based
on datasets of flavonoid food content, which may ultimately
reveal new roles of these bioactive molecules on health and dis-
ease (Guardado Yordi et al. 2019). In the sports nutrition realm,
ML has been employed to investigate the impact of nutrient
intake on biomarkers of hydration in cyclists (Munoz et al.
2020). Since multicollinearity between variables can increase
errors in traditional statistical modelling, thus augmenting the
chance of observing null associations, researchers used k-means clus-
tering to first identify clusters representing 1 or more nutrients that
may serve as mediators of body water status in cyclists.

Al-based methods applied to large metabolomics datasets may
help identify biomarkers of health outcomes. For instance, SVM,
a supervised ML algorithm, and Random Walks, an unsupervised
ML algorithm, were developed to predict anti-cancer molecules
within different foods (Veselkov et al. 2019). The researchers were
able to show that specific plant-based foods contained molecules
with anti-cancer properties that were similar to those seen with
existing cancer drugs on molecular networks. The relationship
between food addiction and the brain-gut-microbiome axis has
been explored using metabolomics and brain imaging among
female participants with obesity (Dong et al. 2020). Researchers
were able to accurately classify participants according to criteria
related to food addiction using a RF algorithm that processed
fecal metabolites and brain imaging data. Algorithms like RF,
SVM and ANN have also been used to process mass spectrometry-
based metabolomics, through selection and processing of peaks,
normalizing, imputing and interpreting data, for biomarker
detection, classification or regression (Liebal et al. 2020).

Finally, Al-related approaches are widely used to facilitate analy-
sis and interpretation of multiple omics datasets (Khorraminezhad
et al. 2020; Liebal et al. 2020; Mendez et al. 2020). For example,
Perakakis et al. (2019) applied SVM, KNN and RF algorithms to
metabolomics, lipidomics and glycomics data to predict non-
alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver
(NAFL). The SVM algorithm classified participants as healthy,
with NASH or with NAFL with an accuracy of 90%. Hence, there is
no doubt that advanced Al-based methods are revolutionizing
our capacity to take advantage of the multidimensional nature of
datasets available in the nutritional “omics” fields.

Social media content analysis

In social media lies exceptional amounts of data for health
research, including a breadth of nutrition-related information
to which large segments of the population are exposed to and
influenced by. Al-based applications, like NLP and ML, can gather,
structure and analyze information from a variety of social media
platforms to monitor and better understand nutritional behav-
iours and perceptions among populations of interest. Models
have been developed to analyze the textual and image content of
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social media, like Twitter and Reddit, to assess content and per-
ceptions regarding weight loss, emotional eating, diet, diabetes,
obesity or exercise (Karami et al. 2018; Hwang et al. 2020, Liu and
Yin 2020; Shaw and Karami 2017). For example, NLP topic model-
ling and clustering algorithms have been used to process and an-
alyze posts on t/loseit, an online community built around weight
management and weight loss (Liu and Yin 2020). More classical
linear regression models were then used to investigate associa-
tions between the content of the posts and the user’s weight loss.
Another study trained ML classification algorithms, including
DT, SVM, and KNN, to detect emotional eating posts in the r/loseit
community (Hwang et al. 2020). NLP was then used to categorize
the emotional eating posts in 4 main topics: addressing feelings,
sharing physical changes, sharing or asking for dietary informa-
tion and sharing dietary strategies (Hwang et al. 2020). Karami
et al. (2018) analyzed 4.5 million Twitter posts mentioning obe-
sity (51.7%), diet (23.7%), exercise (16.6%) or diabetes (8%) and iden-
tified related topics and correlations. For instance, sub-topics for
obesity, apart from diet, exercise and diabetes, included Alzhei-
mer, cancer and children. Sub-topics for diet, apart from obesity,
exercise and diabetes, included vegetarian, pregnancy, celebri-
ties, weight loss, religious and mental health. Strong correlations
existed between topics related to exercise and obesity, while no-
table correlations were found between topics related to diet and
obesity as well as diabetes and obesity.

Al-based methods are also being developed to better under-
stand the spatial pattern of nutrition-related information found
in social media. For example, NLP and geocoding of social media
posts have provided information on the real-time distribution of
nutritional behaviours, habits and health outcomes, which may
help in turn identify populations at risk (Ghosh and Guha 2013;
Nguyen et al. 2016; Shah et al. 2019; De Choudhury et al. 2016;
Cesare et al. 2019; Widener and Li 2014). Such information may
be proven to be of great value from a public health perspective.
For instance, NLP and ML algorithms have been developed to col-
lect and analyze data from Twitter to assess Canadian’s health
and nutritional habits (Shah et al. 2019). Using NLP to analyze
social media content has the advantage of being less time con-
suming than traditional dietary assessment methods and allow
quick access to information and data collected in real time (Shah
et al. 2019). The developed model classified food and non-food
posts with an accuracy of 93% and provided information such as
approximate caloric ratio (caloric intake vs energy expenditure)
of Twitter posts per province as well as foods and activities most
tweeted about per province in Canada. Another study estimated
the quality of available foods in different geographical locations
using data from 3 million food-related posts shared on Instagram
to better understand healthy food availability (De Choudhury
et al. 2016). Notably, Instagram posts made by people located in
food deserts were higher in fat, cholesterol and sugar intake and
lower in protein and fiber. Nguyen et al. (2016) used geotagged
Twitter posts to create a neighbourhood database with indicators
of well-being and health behaviours, to better understand the
effects of neighbourhood on health. For example, the study
found that social and economic disadvantage, high urbanicity
and a higher density of fast-food restaurants was associated with
lower happiness and fewer healthy behaviours. A study also used
an NLP framework to geolocate social media posts to map out
availability of healthy and unhealthy foods (Widener and Li
2014). They demonstrated among others that there was a higher
number of unhealthy food-related Twitter posts in disadvantaged
areas with low access to healthy food stores.

In sum, social media has the potential to contribute to time-
dependent and geospatial surveillance of physical activity, die-
tary habits and a multitude of other topics. Such information,
along with more conventional data on dietary habits, may even-
tually become an integral part of the evidence considered to craft
public health policy and initiatives.

Research gaps

Studies have shown that Al-based approaches do not always
outperform conventionally used classification and prediction
models. For example, many studies have reported no advantage
of using Al in disease and health outcome prediction compared
with using traditional statistical models (Christodoulou et al.
2019; Gravesteijn et al. 2020; Lynam et al. 2020; Nusinovici et al.
2020; Kuhle et al. 2018). For outcome variables that can be meas-
ured with less signal to noise ratio, like survival rate or readmis-
sion rate in hospitals, ML algorithms have been shown to
perform better than traditional statistical models (Feng et al.
2019; Mortazavi et al. 2016). However, for outcome variables that
have more signal to noise ratio, such as predicting risk of major
chronic diseases, depression or prognosticating traumatic brain
injury, ML algorithms have not always outperformed convention-
ally used models (Nusinovici et al. 2020; Gravesteijn et al. 2020;
Oh et al. 2019). ML algorithms may also have little to no impact
on improving performance when applied to smaller sample sizes
and/or used with a small number of variables, because the
advantage of added model complexity is not necessary in these
cases. There are other examples where ML algorithms did not
outperform traditional statistical models. In a study that com-
pared classification performance of 8 different linear and ML
approaches on 10 clinical metabolomics datasets, linear classifi-
cation models performed similarly to ML algorithms, like SVM
and ANN, in most datasets, because the outcome was linearly sep-
arable (Mendez et al. 2019b). Therefore, classification perform-
ance depends not only highly on the structure and the amount of
data, but also on the need for more complex algorithms (Mendez
et al. 2019b). The contradictions regarding the best models for dis-
ease and health outcome prediction suggest that Al-based model-
ling should always be compared with traditional statistical
models to identify for which types of variables and for which out-
comes traditional statistical models or Al algorithms are better
suited (Goldstein et al. 2016; Liebal et al. 2020). This is particularly
the case in nutrition where there is only a paucity of studies hav-
ing compared Al-based and traditional approaches.

Another limitation is the fact that datasets, which are neces-
sary to improve performance of Al algorithms, are not always
available. As indicated above, voluminous datasets are available
for image and social media analysis, as well as in metabolomics
analysis. However, the same cannot be said for precision nutri-
tion and other nutrition-related disease and health prediction,
which may rely on smaller sample sizes with fewer variables.
Generating voluminous datasets for precision nutrition and
nutrition-related predictions is inevitable to improve perform-
ance of algorithms.

Furthermore, the challenge of interpretability of the output
from Al algorithms remains a significant limitation in many
instances, including when trying to identify sets of metabolites
that predict a given outcome in nutritional metabolomics studies
(Mendez et al. 20194, 2020; Sen et al. 2021). Interpretability relates
to the understanding of the model’s design, i.e., how the model
works, and explainability relates to the understanding of what
the model is saying, i.e., being able to understand and explain its
prediction output (Marcinkevics and Vogt 2020). Like interpret-
ability, explainability is also a limitation of Al, especially in the
realm of health where legal, medical and ethical issues must be
considered (Amann et al. 2020). Inherent interpretability and
explainability must be a priority beyond performance and error
rates, especially for algorithms labeled as “black-box models”.
Therefore, one must adopt a critical stance towards Al when
developing and validating algorithms for specific data structures
and outcome variables. Such posture applies fully to the nutri-
tion research field.

While Al-based dietary assessment tools may address certain
challenges and limitations associated with the use of conventional
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dietary assessment instruments such as 24-hour recalls, food dia-
ries and food frequency questionnaires, they are not exempt of im-
portant limitations. While Al-based dietary assessment tools may
be less subjective to biases associated to self-reported data, this is
not always the case as reactive biases remain when participants
knowingly wear a sensor or take pictures of their meals (Zhao et al.
2021). For example, Ji et al. (2020) demonstrated that participants
using an Al-based dietary assessment smartphone application alone
under-reported food intakes compared with when a dietician could
adjust the participants intake on the application. Food image analy-
sis is also limited in its capacity to determine the nutrient content of
certain foods, such as the fat percentage of dairy products. Identify-
ing hidden or mixed foods and precisely estimating nutrients and
calories from food images have also been mentioned as important
challenges when using Al-based tools (Vieira Resende Silva and Cui
2017). Hence, Al-based dietary assessment tools cannot currently
address all the challenges and limitations inherent to traditional
tools. Using Al for dietary assessment is promising, but more
research is needed to improve and validate algorithms (Zhao et al.
2021). Therefore, it may be more appropriate and even recom-
mended for the time being at least to combine Al-based and tradi-
tional tools to improve dietary assessment and the quality of dietary
intake data (Zhao et al. 2021).

Finally, many limitations and ethical concerns exist regarding
the use of Al for social media analysis. Social media information
comes in large amounts and concerns a wide variety of topics.
However, this information can be incomplete, incorrect or biased
and algorithms have inherent limitations in this regard (Lanfranchi
2017; Matheny et al. 2020). For example, people may post about what
they eat in a different location from where they live, creating a geo-
graphical bias (Shah et al. 2019). Also, algorithms may not always be
developed to identify food words or posts that were used in a meta-
phorical way (Shah et al. 2019; Widener and Li 2014). The type and
number of posts can also be affected by other factors, like seasons,
special events or new social media trends (Shah et al. 2019; Widener
and Li 2014). More importantly, social media data are inevitably bi-
ased because of missing information concerning people who do not
use the social media of interest, with notable underrepresentation
of minority and low socioeconomic groups (Hwang et al. 2020;
Lanfranchi 2017; Matheny et al. 2020; Safdar et al. 2020; Widener
and Li 2014). This is an important concern from a public health
nutrition perspective, where we wish to identify populations at
risk. There have also been ethical and regulation concerns related
to the use of Al to extract and use social media data. Many users
may be unaware that their information is used for research
because of a misunderstanding of what “publicly available
data” means (Kern et al. 2016). Therefore, meticulousness is nec-
essary to avoid training algorithms with strongly biased and
inequitable data and results should always be interpreted with
nuance. It may be of more interest to use social media as a tool
for taking the pulse, for more time-dependent monitoring and for
comparison purposes with other public health datasets rather than
using it as the only data source (Widener and Li 2014).

Conclusion

Has Al revolutionized nutrition research? Not quite yet. Appli-
cation of Al-based methods may contribute to improving predic-
tive models of diet and disease outcomes, to better collecting,
processing and understanding complex nutrition-related data,
and to better monitoring of a population’s nutritional status.
However, several limitations and concerns regarding the use of
Al in nutrition research emphasize the importance of further
research to develop and identify the algorithms best suited to
nutrition data. The remaining gaps between the promises and
the true enhancements of research through Al reinforces the im-
portance of deploying Al-based approaches with caution and re-
alism, with emphasis on legal and regulatory issues as well as on
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prioritization of equity, inclusion, and a human rights lens for
this work while addressing implicit and explicit biases (Matheny
etal. 2020).
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The science and tools of measuring energy intake and output in humans have rapidly advanced in the last decade. Engineered devices such
as wearables and sensors, software applications, and Web-based tools are now ubiquitous in both research and consumer environments. The
assessment of energy expenditure in particular has progressed from reliance on self-report instruments to advanced technologies requiring
collaboration across multiple disciplines, from optics to accelerometry. In contrast, assessing energy intake still heavily relies on self-report
mechanisms. Although these tools have improved, moving from paper-based to online reporting, considerable room for refinement remains in
existing tools, and great opportunities exist for novel, transformational tools, including those using spectroscopy and chemo-sensing. This report
reviews the state of the science, and the opportunities and challenges in existing and emerging technologies, from the perspectives of 3 key
stakeholders: researchers, users, and developers. Each stakeholder approaches these tools with unique requirements: researchers are concerned with
validity, accuracy, data detail and abundance, and ethical use; users with ease of use and privacy; and developers with high adherence and utilization,
intellectual property, licensing rights, and monetization. Cross-cutting concerns include frequent updating and integration of the food and nutrient
databases on which assessments rely, improving accessibility and reducing disparities in use, and maintaining reliable technical assistance. These
contextual challenges are discussed in terms of opportunities and further steps in the direction of personalized health. Adv Nutr 2022;13:1-15.

Statement of Significance: This article is the first to discuss the status and challenges of current and emerging technology tools designed
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developers. The objective of this work is to bring together experts to address interdisciplinary and cross-cutting issues with the shared mission
of improving the measurement of energy intake and expenditure.
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Introduction regulation, and energy balance. The future of personalized

The collective and cross-disciplinary contributions of sci-
entists, engineers, software developers, and experts from
multiple technical domains are beginning to arrive at what
even a few decades ago was just a dream: personalized health.
The fields of personalized nutrition and physical activity have
broadly kept pace with other health disciplines in this regard,
contributing to deeper understanding of complex, multi-
tiered relations between food, eating behaviors, metabolic

health and the next generation of nutrition and physical
activity guidance rely heavily on what we can learn about
individual behavior, which requires accurate assessment of
these behaviors.

This article discusses the status of and ongoing chal-
lenges for current and emerging technology tools designed
to measure individual food intake, eating behavior, and
physical activity through the perspectives of 3 stakeholders:
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researchers, users, and developers. These tools have multiple
applications including monitoring outcomes in interven-
tions that strive to alter dietary intake (1) or physical
activity (2), and have the potential to transform energy
metabolism research and improve health outcomes. With
growing interest in determinants that influence individual
variability in health outcomes, such as genetic, behavioral,
and psychological differences, these tools can enable self-
monitoring, allow for detailed research analysis, and provide
an avenue for personalized professional recommendations.
Previous review articles have summarized the current state
of tools for assessing dietary intake (3-6), eating behavior (7,
8), and physical activity (6, 9, 10).

Broadly, current tools tend to be either active (requiring
user input) or passive (not requiring user input). Examples
include engineered devices such as wearables and sensors,
mobile phone applications (apps), and Web-based tools. One
promising area of emerging tools is sensor technology that
aims to enable more accurate and objective measurement
of dietary intake and eating behavior than self-report.
These sensor-based tools generally fall into 3 categories:
wearable sensors, camera-based devices, and weight scale-
based devices. Wearable sensors include devices with sensors
on the head or neck to detect chewing or swallowing
(11-16), wrist-based inertial sensors to detect hand-to-
mouth gestures as a proxy for bites (12, 17, 18), and
others (19-21). Camera-based methods (21-25) use food
images to recognize consumed food and estimate energy
intake. Weight-scale devices are used in dining locations
to continuously weigh consumed food (26-28), although
eating behaviors can only be captured at the location of the
instrument (29).

Multimodal sensing technology has advanced steadily,
with the development of devices that have improved esti-
mates of physical activity, energy expenditure, and sleep, and
provide important contextual information. For example, for
tracking activity, a multimodal sensing device may include
traditional actigraphy and >1 of the following: multiple
accelerometers (30), gyroscopes (31), magnetometers (31),
inclinometers (32, 33), Global Positioning System (GPS)
(34, 35), photovoltaic sensors (36-38), heart-rate sensors
(39), wireless proximity sensors (40), galvanic skin sensors
(41), and user-friendly screen displays (42). However, few
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if any devices on the market contain all these features, due
in part to manufacturing costs, battery demands, and size
limitations. Going forward, advancements will likely involve
improving existing features and combining them into a single
device (43), much like a commercially available smartwatch
(44). Each of these tools, and others discussed in this
article, present challenges and opportunities for stakeholders
(Table 1). Underpinning most new or emerging tools are
questions of user burden, validity, and privacy.

Before proceeding to specific challenges, we submit the
following underlying premise: that stakeholders share the
goal of accurately measuring intake and expenditure by I)
maximizing the capture of objective data, and/or 2) minimiz-
ing error in the capture of subjective data. For emerging tools,
this generally means moving toward technology that can
capture data as freely as possible from user input. Further, any
new tools should reduce or minimize the burden on users and
researchers (45). For researchers, tools should maximize the
amount and completeness of data collected, include a reliable
system of data storage and retrieval (46), and, when possible,
have automated, standardized, and harmonized data coding
that uses shared terminology and definitions (45). For users,
tools should be simple and intuitive, provide privacy controls
(47, 48), and require minimal instruction (49, 50) and time
to complete assessments (46). For developers, particularly
where monetization opportunities exist, satisfying the de-
mands of researchers and users should ensure use by both
groups remains high and continuous. Finally, sustained user
adherence is a desirable goal for all stakeholders.

Current Status of Knowledge

State of technology tools: assessing energy intake
compared with expenditure
Current physical activity tools are considerably more ad-
vanced than dietary intake tools. Although both intake and
expenditure methodologies previously relied heavily on sub-
jective data, technology for measuring expenditure has suc-
cessfully integrated expertise across wide-ranging fields (e.g.,
optics, electromechanical engineering, inferential statistics)
and has advanced in nearly all necessary technical and
nontechnical domains, from complex algorithms that can
differentiate between psychological or physical stressors (51),
to the aesthetic elegance of wearable devices. Meanwhile,
intake methodologies still overwhelmingly rely on digital
adaptations of paper-based instruments of self-reported in-
take, including diaries, records, and image-based approaches.
Assessing intake may be more complex than assessing
expenditure because intake is a question of measuring not
just behavior, but also endless heterogeneous origins, prepa-
rations, and combinations of foods. Further, even if people
were able to perfectly describe the foods they ate, they would
not be able to report their nutritional qualities. There are
significant opportunities for advancing the development of
intake technologies that, similarly to expenditure-measuring
technologies, make use of a wide range of scientific fields to
better capture both food intake and eating behavior.
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TABLE 1

Summary of opportunities and challenges of emerging technologies in dietary assessment and energy expenditure

Researcher challenges User challenges

Developer challenges

Dietary intake and eating ® Upgrade self-reported dietary ® Streamline user interface of ® (apitalize on opportunities to
behavior intake assessments dietary assessments improve existing tools
® Enhance portion size ® |ncrease convenience and ® |mprove image-based
estimation decrease burden of dietary methods of assessment
® Simplify and maximize food assessment (active image capture, passive
lists ® |mprove wearability, comfort, image capture and
® \alidate dietary assessment and acceptability multimodal sensing,

tools
® (Consider reactivity in
self-monitoring

Energy expenditure and ® |mprove energy expenditure
physical activity assessment
® Standardize validation studies
of activity trackers
® |ncorporate novel analysis
techniques for activity tracker
data
Cross-stakeholder
challenges

Technical assistance
Build collaborations

Maintain data integrity

segmentation, food
recognition, portion size
estimation, food-image
databases, automatic image
analysis)
® Preserve privacy in public
® (reate new tools
® |ncrease convenience and Capitalize on opportunities to
decrease burden of dietary improve existing tools
assessment ® Preserve privacy in public
® |mprove wearability, comfort,
and acceptability

Simplify dashboards and enhance communication with users
Enhance user and researcher output of dietary intake
Improve accessibility and reduce disparity

Build motivation to encourage long-term use

Preserve user and bystander privacy while maximizing data collection

Researcher perspectives

Many challenges and opportunities exist for researchers
to address both input-focused and output-focused needs.
Here, we define input-focused needs as those related to
the quality of incoming data (e.g., accuracy of user food
intake reports, completeness of food and nutrient databases),
whereas output-focused needs include generating research-
ready data that are use-compatible across multiple platforms
and use commonly agreed-upon terminologies, researcher
and/or user dashboards, and other output, such as automated
health messaging.

Input-focused needs.

Upgrade self-reported dietary intake assessments. Con-
ventional methods of dietary assessment are interviewer-
administered 24-h dietary recalls, FFQs, and dietary records,
all of which are self-report (52) and subject to error via
limitations of human memory, social desirability bias (52,
53), and reactivity to self-monitoring [i.e., altered energy
intake on reporting days (54)]. Development of modern
dietary assessment tools has focused on digital adaptations of
these conventional methods [e.g., online 24-h dietary records
(55), online FFQs (56)] and food-logging apps (57), which are
already in widespread use. Although these tools will continue
to experience self-report limitations, there is room for other
improvements, especially with respect to accuracy of portion
size estimation and amount of user burden.

Enhance portion size estimation. A participant’s ability to
estimate and remember portion sizes of consumed foods
has been a large source of error in dietary assessment
(58, 59) and thus is a target for improvement. Some
new, common self-report methods (e.g., food-logging apps)
use reference images of portion sizes to assist users with
estimation (3, 50, 60). Flexibility in entering portion size is
another consideration. Some software allows users to choose
portion sizes from a predefined list, or enter them manually,
and choose between different measurement units, such as
standardized portions or household measures (3, 50, 61).
Additional software improvements would allow for inclusion
of dimensions and packaged food amounts (3, 50, 61) and
automatic conversion of variably reported portion sizes into
standard metric units for research purposes, meeting both
user and researcher needs. Ideally, data will be harmonized
for use across different platforms, necessarily preceded by the
development of common data terminologies, to also allow
for accurate comparisons of data points, such as nutrient
calculations.

Promising emerging approaches use images of consumed
foods, such as image-assisted dietary recall [in which images
are used to assist a research participant (62, 63)], image-based
dietary record [in which images document eating occasions
(63, 64)], and automated image analysis (65). Advantages of
such methods are reduced reliance on participant memory
and direct visual documentation of eating occasions (66).

Opportunities and challenges of technology tools 3



In particular, image-assisted 24-h dietary records have been
shown to reduce underreporting (62).

Food images can be analyzed with manual, semiauto-
matic, and automatic approaches (5). Manual image analysis
has the most potential for immediate application in research;
however, approaches with higher levels of automation require
further development. As with image-assisted methods, accu-
rate analysis requires high-quality images (67).

Simplify and maximize food lists. A great deal of user
burden in self-report software and apps derives from lists
of food items. Presented lists depend on the quality of the
underlying food databases and affect the accuracy of user
entry and output data (68, 69). Determining the optimal
length of the food list has been a challenge (61, 68).
Although extensive and highly detailed lists may benefit
researchers (70-72), for users, scrolling through long lists
can be burdensome (68). Even so, concise food lists also
may be problematic (61), even if they produce only small
differences in total nutrient intake compared with extensive
lists (69, 73), because users may feel frustrated when precise
food items cannot be found. There is limited research on
how users find the “best match” when an exact match is
missing (68). Although barcode entry eases user burden,
manufacturer data on which researchers subsequently rely
may be incomplete. Hence, researchers must compare the
benefits and limitations of different databases, as well as their
effects on user-entry behavior, and the specificity of resulting
data.

Validate dietary assessment tools. Several reviews have
examined the validity [i.e., acceptable levels of accuracy,
precision, and reliability (52)] of technology tools for
measuring dietary intake (3, 45, 60, 61, 66, 74-76). A recent
review (3) of technology-based tools for research, surveil-
lance, or consumer use identified interviewer-administered
24-h dietary records, weighed portions, biomarker data, and
direct observation of eating occasions as common refer-
ence/validation measures. Although most of the reviewed
comparison studies showed acceptable levels of agreement
between the technology tool and the traditional self-report
method (within ~60 kcal), it was observed that use of
validation biomarkers was lacking (3). Such comparisons
can provide valuable information, but researchers should be
cautious of possible correlated errors and seek validation
studies that use objective measures such as doubly labeled
water (DLW) or direct observation.

Improve energy expenditure assessment. As with dietary
assessment, self-report via diaries or questionnaires was the
most common method for measuring physical activity in
research (77-79). Although such methods are inexpensive
and convenient, they have poor reliability and validity
compared with DLW (10). Like intake data, self-reported
physical activity is affected by question misinterpretation,
recall bias, and social desirability (10, 78, 79). Floor effects
have been observed with unstructured or spontaneous
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activities (e.g., housework, gardening), resulting in failure to
capture low-intensity activities (77, 79). Overestimation is
another common issue (77, 78).

As noted, the use of physical activity devices has become
increasingly common by consumers (80, 81), and in epidemi-
ological (82) and intervention (79) studies. Common activity
trackers include pedometers, accelerometers, and heart-rate
monitors. Despite their widespread use, these devices are
still somewhat limited in capturing physical activities that
vary in intensity and displacement (i.e., stationary compared
with mobile). Pedometers can measure only walking activity
in step counts (83). Accelerometers have limited sensitivity
with detecting light-intensity activities and nonambulatory
activities such as cycling and weightlifting (9). The perceived
relation between heart rate and energy expenditure has
been the premise of using heart-rate monitors, but they
have poor correlation at low and high intensities (10, 83).
Beyond physical activity, energy expenditure can already be
measured by direct calorimetry using existing, innovative,
portable tools, such as the Personal Calorie Monitor (84).
However, the ongoing challenge is to develop devices or
analytic methods that can assess all types of physical activities
and energy expenditure, as well as associated physiological
phenomena (e.g., body temperature, perspiration, heart rate)
(85). The field is already moving toward integration. Recent
studies show it is possible to distinguish, using a wristband
device, between simultaneous psychological and physical
stressors (51). Another recent device undergoing validation is
a commercial wristband containing a photoplethysmogram,
accelerometer, thermometer, capacitive touch sensor, and
gyroscope (86, 87).

Additional significant upgrades to existing devices and
tools would also address user- and/or population-based
differences in activity, which can vary by sex, age, ability,
health status, and other characteristics (10). New tools
should include feedback and data output that reflect
user characteristics such as age, sex, body composition,
fitness, and perceived exertion. In addition, given that
most validation studies have been done in laboratory
settings, key environmental characteristics that influence
perceived exertion such as elevation, temperature, and
humidity (88-90) would ideally be captured by newer devices
and software, and integrated into expenditure estimation
algorithms.

Standardize validation studies of activity trackers. Thus
far, validation studies of activity trackers have exhibited
heterogeneity in study design and activity calculations,
posing challenges to comparisons. Variable aspects of
study design include definition of “valid” days that are
suitable for analysis [e.g., 10 h of wear time (91)], de-
vice placement [e.g., hip compared with wrist (9, 92)],
and context [laboratory compared with free-living (9)].
As noted, many validation studies are conducted in the
laboratory. However, pattern recognition models based on
laboratory data have limited validity in free-living settings
(9, 93).



In addition to study design, the devices themselves
exhibit heterogeneity in sensitivity, sampling frequency,
noise-separating filters, and other aspects of data capture
(91). Algorithms for obtaining desired output such as steps,
energy expenditure, and distance use different underlying
calculations, which are further obscured by their proprietary
nature and restricted sharing (9, 92). In data analysis, there
is little consensus on best practices for data processing,
algorithms (94), and data interpretation [e.g., the “cut-point
conundrum” (95)]. Given these variables of study design
and calculations, standardizing data output and validation
methods is logistically difficult, and will likely require
significant and ongoing collaboration between researchers
and developers.

Consider reactivity in self-monitoring. Reactivity in self-
monitoring—the conscious or unconscious changes in be-
havior as a reaction to the act of self-monitoring (54)—is
a recognized phenomenon in both intake and expenditure
research. For example, wearing an activity monitor may cause
a participant to exercise more than usual (96), or using a food
app may shift participant eating behavior away from complex
dishes to mitigate the burden of logging foods (53, 68, 97).
To date, few studies have examined how technology tools
induce this reactivity (66). From a researcher perspective,
it is beneficial to have control over the feedback or health
messages a user receives from a program. The frequent desire
of researchers to minimize reactivity to self-monitoring is
often in direct contrast to user preferences to access and use
their own health data.

Output-focused needs.

Simplify dashboards and enhance communication with
users. Online 24-h dietary records, online FFQs, and food-
logging apps should have a customizable dashboard for re-
search participant management tasks such as registering new
participants, updating contact information, viewing lists of
usernames, and exporting files (49, 70). Such improvements
need not be limited to dietary data. Integrating both real-
time intake and expenditure data in a live dashboard is
aspirational, and would provide researchers (and users, if ap-
propriate) with opportunities to detect and address missing
data due to technical issues or participant noncompliance
(98).

Immediate communication with participants would be
beneficial as well. In particular, Ecological Momentary As-
sessment (EMA) prompts have been shown to be successful
methods of user engagement (98). EMA involves real-time
measurements of behaviors and experiences of research
participants in their natural settings (99). Advantages of
EMA-based communication with participants include the
ability to provide feedback on image or input quality and
address and edit implausible or incomplete entries (45).

Enhance user and researcher output of dietary intake.
Researchers also must specify the output desired from
technology tools, including transformations of raw intake

data. Some tools, such as the Automated Self-Administered
24-hour (ASA24) Dietary Assessment Tool, already perform
automated calculations of food and nutrient intake, including
food group and supplement data (61). Researchers have an
important role in determining the accuracy of calculations,
decisions that should not rest with developers alone (68).
Updated tools should improve the accuracy of nutrient intake
calculations derived from recipe functions that prompt users
to enter ingredients and preparation methods (100), and
include foods, food groups, food patterns, and supplement
data. Further, these should be equipped to export data in mul-
tiple file formats for both users (if desired) and researchers
(46). Cross-platform compatibility—or the ability to readily
harmonize data across different platforms—to accurately
compare the accuracy and validity of multiple inputs, and
to integrate outputs, would be an ideal outcome in current
and future software/platform iterations. As mentioned, such
harmonization requires the development of common data
terminology as well as essential metrics that can be easily
translated for a variety of end-users (e.g., researchers,
clinicians, users).

Incorporate novel analysis techniques for activity tracker
data. As noted, many activity trackers have built-in propri-
etary algorithms for measuring activity counts and trans-
lating them to minutes of activity or energy expenditure.
Researchers have more recently focused on machine learning
to analyze activity counts, as well as raw acceleration data
(94, 101). Machine-learning algorithms create a predictive
model by associating patterns of raw data based on known
reference activities (102), thereby addressing concerns of
physical activity as a nonlinear action and heterogeneity
of developer-defined activity counts. Identifying the most
relevant method of machine learning for a given application
is a key consideration, and may include random forest (103),
artificial neural network (104), and support vector machine
(105, 106) approaches, among others. Distinctions between
free-living and laboratory-based activities (94, 107) and
consideration of on-body location (12) will be able to further
refine estimates of expenditure.

User perspectives

Streamline the user interface of dietary assessments.
Potential users of digital dietary assessments include con-
sumers, research participants, and patients. Accordingly,
developing new tools should be an iterative process that
involves usability testing and improvements based on user
feedback (108), which has often emphasized the importance
of aesthetics, simplicity, intuitiveness, and practicality (70,
108-110). Notably, users have expressed preferences for a
clean layout with no pop-ups (70) and a flat interface with
a single screen for multiple recall activities such as selecting
food items, recording times of meals, and specifying portion
sizes (108, 111). Some users prefer a predefined list of meals
or template that gives structure to the recall (108). As users
make entries on the main screen, a side navigation panel with
a dynamic list of entered items and options to edit them has
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been shown to be helpful (108). Graphics and images, such as
examples of portion sizes, also could improve aesthetics, ease
of use, and data validity (109).

Increase the convenience and decrease the burden of
dietary assessment.

Any new technology tool should be convenient and mini-
mally disruptive to the user’s lifestyle (112, 113). In research,
investigator preferences for detailed, accurate data often
conflict with user needs for convenient reporting methods
(70). Users have noted difficulties with logging food intake
in various situations such as commuting, at the workplace,
and in social gatherings (113), and perceive the recording
process as time-consuming and burdensome (113, 114).
Hence, tools could have the option to customize the level
of detail for dietary assessment (115), or different tools
could accommodate specific needs of users (and, ostensibly,
researchers).

As mentioned, tools could provide multiple options for
data entry, such as image capture, text, selection from
databases, and barcode scanning (63), and should be adapt-
able to different devices including smartphones and others
(116), thereby catering to user preferences. Moreover, tools
should allow users to either make entries during eating
occasions or make all entries in 1 sitting, similar to a recall,
although this flexibility may be problematic in research
settings (109). Regardless of the data entry method, users
should be able to edit entries at any time and review them
before final submission (108, 109). Ultimately, features that
make tools flexible and convenient help users adhere to long-
term reporting of dietary intake.

Improve wearability, comfort, and acceptability.

Comfort and acceptability are important considerations for
wearable devices. The ideal wearable intake or expenditure
device is portable, lightweight, unobtrusive, and aesthetically
pleasing (117). Examples of current intake wearables include
cameras worn around the neck (62, 118), a microcamera
attached to the ear (119), a badge-like miniature camera
(65), and a head-mounted camera (120). Users reported
discomfort with using an ear-worn microcamera (119) or
neck-worn camera (62, 96) and a preference for small,
inconspicuous designs (96).

Another important consideration is creating a device that
can be easily worn in the correct orientation such that users’
body shapes and postures do not affect data capture and
quality (62, 121). Device placement is critical for activity
trackers as well; the hip is the most widely used target owing
to its proximity to the center of mass and ability to capture
most movements. However, many people remove devices
before sleeping or showering, resulting in poor compliance,
and belts can move and twist throughout the day (92).
Innovative “smart clothing” (122, 123)—although eminently
wearable—suffers from similar limitations. Device placement
on the nondominant wrist has garnered great interest because
of its potential to increase compliance and total wear time
(92), but wrist-worn trackers may fail to accurately capture
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energy expenditure of nonambulatory arm movements (44)
and may not function properly in populations that use
assistive devices (124). Hence, developing a device that is
accurate, functional, and acceptable for daily continuous
wear by diverse users is an ongoing challenge.

User comfort with devices in public and social settings
is another important consideration, especially for image-
capture tools. Notably, users have expressed feeling embar-
rassed or self-conscious taking images or videos of their
meals in front of other people (113, 114), and wearable
cameras often attract unwanted attention (125). Hence, when
designing studies, investigators should weigh the benefits
and limitations of attention-drawing tools (e.g., wearable
cameras) compared with more discreet ones (e.g., apps).

Improve accessibility and reduce disparity.
Smartphone ownership is growing rapidly worldwide, but
growth has been largely restricted to younger and better-
educated populations, especially in emerging economies
(126). Similarly, users of health apps and health-related
wearables tend to be younger, more highly educated, and
more affluent than nonusers, indicating possible disparities
in access to these tools (127, 128). Disparities render these
tools inaccessible to older adults, individuals with lower
socioeconomic status, and other populations that may have
low digital or eHealth literacy [defined as “the ability to
seek, find, understand, and appraise health information
from electronic sources and apply the knowledge gained to
addressing or solving a health problem” (129)]. It falls to
developers and entities such as public institutions, nonprofit
organizations, and research bodies to facilitate universal
access to these tools (128, 130). A promising approach is
to develop affordable tools appropriate for a wide range of
reading and eHealth literacy levels (128, 131). In dietary
assessment, this may entail using images of food items and
portion sizes, developing educational material intended to
expand nutrition knowledge, and providing assistance with
interpreting results. Tools should be available in multiple
languages and connected to food databases that are suited
to ethnic dietary patterns. These efforts would promote
equitable access and potentially support public health efforts.
A major area for improvement is accessibility for older
adults. Aging is associated with changes in vision, hearing,
motor function, and cognition, and many older adults have
limited digital literacy (116, 132). Given these challenges,
adoption rates of health apps is low among smartphone
owners age 65 y and older, and downloaded health apps
are shortly abandoned (133). To encourage wider adoption
and long-term use, tool features should include adjustable
text size and color contrast between the background, text,
and images (111, 133). Buttons should be large enough for
easy operation (133), and text and symbols that accompany
each icon should be unambiguous and/or explicitly indicate
their function, eliminating user guesswork (111). Tools
should avoid using symbols that may be unfamiliar to older
users with limited technology experience (111). Further,
navigation structure should be consistent and simple (133),



and each recording task should minimize the number of steps
toward completion (111). Feedback should be available in
different modes (e.g., audio, vibrotactile, visual) (133), and
the tool should generate messages and warnings to prevent
errors due to unintended actions (133). Overall, where
possible, tool development should follow the principles of
universal design (134).

Build motivation to encourage long-term use.

User burnout, especially for recording dietary intake, is
a challenge commonly observed in research settings (68,
110, 135). Tools should minimize user recording fatigue
and make the experience enjoyable, incentivizing users to
regularly maintain their records. An important motivation is
the opportunity to set personal goals and monitor progress
(115). Whereas researchers may seek to prevent reactivity
to self-monitoring and restrict display metrics for specific
hypotheses, users often prefer to see quantification of their
health data and behaviors, and to identify opportunities
for improvement (127). The process of self-quantifying
behavior can boost an individuals confidence and self-
efficacy (115, 127), which can be powerful motivation to
continue using the tool long-term. Thus, adaptions of full
quantification approaches to meet researcher needs may
instead include reporting to users abbreviated measures such
as adherence to a chosen dietary pattern (e.g., ketogenic
or paleo diets), intake of certain nutrients (e.g., calcium,
folate), or the balance of recorded dietary intake (e.g., healthy,
neutral, unhealthy) (115). Tools may display health behaviors
as visually appealing graphs or organized metrics, or in
comparison with previous behaviors, personal goals, or peers
(115).

Tools should also be interactive and engage users as much
as possible. For example, when an app detects a lapse in
dietary recording using EMA or similar approaches, it should
remind and encourage users to make regular entries (76, 115,
135). Gamification could augment the entertainment value of
tools (110, 131), and rewards such as coupons and discounts
could be effective incentives (115). Further, a social network
where users can share their results, discuss their concerns,
and exchange advice could promote camaraderie (110, 127,
131) and motivate users to continue recording dietary intake
for sustained periods.

Developer perspectives

Capitalize on opportunities to improve existing tools.
Developers should explore technology-enhanced features
that further streamline the process of recording dietary
intake. Multiple modes of user entry such as text entry,
database browsing, voice recording, speech-to-text, and
image capture (63) can decrease user burden. Allowing the
user to save favorite foods, view lists of recent items, and copy
entries also saves time (46).

Innovative technology including data-driven approaches,
augmented reality, and portable systems can further enhance
tool features. An online 24-h dietary record or food-logging
app with a data-driven algorithm might make suggestions

based on user intake history (46) and prompt forgotten
items (136). Applications of augmented reality, such as a
ruler function embedded in a smartphone camera, would be
helpful for estimating portion size (137).

Integrate food, nutrient, and food-image databases.
Developers should focus efforts on maintaining continuous
access of apps/software to high-quality, regularly updated
food composition databases (138), including public data sets
[e.g., the USDA’s FoodData Central (139) and the European
Food Safety Authority (EFSA) Comprehensive European
Food Consumption Database (140)], licensed databases
produced by research- or consumer-oriented companies,
and nutrition fact labels provided by manufacturers (68).
Any comprehensive database would include the most recent
data on supplements, branded products, restaurant dishes,
nonlabeled food items, culture-specific foods, food groups,
food patterns, and product reformulations (68, 141). With
new products on the market every year, updating databases
remains a challenge (68, 71). The USDA Global Branded
Food Products Database, a component of FoodData Central,
is one such database that currently incorporates industry-
provided nutrient data on labeled food items (139). Any
efforts are necessarily ongoing, and should consolidate
multiple sources of data, maintain a complete and com-
prehensive database, and standardize data coding of food
intake.

Image-based methods of assessment, discussed below,
require large and diverse food-image databases (142, 143).
Currently, most image data sets are tailored for specific
studies or types of food (142), and no publicly available,
general food-image database yet exists. Some initiatives
have compiled food images online (144, 145), but photos
often vary in lighting, angle, and other characteristics, and
may not include food volume or nutritional information
(142). Going forward, an organized food-image database
expanding on existing food and nutrient databases will be
crucial if image-based intake assessment methodologies are
to advance beyond their current nascent state.

Improve image-based methods of assessment.

Active and passive image capture. As an emerging set of
methods, dietary assessment using images requires further
technical refinement.

Both active and passive image capture approaches have
challenges with obtaining analysis-ready, high-quality im-
ages (118, 146). The ideal methods require minimal user
instruction and have high tolerance for user error. However,
with active capture, a primary challenge is user burden. Users
must follow specific and often demanding steps for high-
quality image capture (142), e.g., place food on a brightly
colored dish (147) or a container with a specific shape (24),
separate food items (148), take pictures at a 45-60° angle
(63), and place in the frame fiducial markers (63) of known
color and dimension (5, 63, 143). In the realm of cutting-edge
technology, virtual reality could eliminate the need for some
of these steps, including using fiducial markers (137).

Opportunities and challenges of technology tools 7



Passive image capture also presents technical and privacy
challenges. This approach involves a wearable device that is in
continuous operation and takes images at an adjustable rate,
such as the badge-like eButton (65) or neck-worn SenseCam
(62, 118). Passive capture devices can result in images of
suboptimal quality especially under poorly lit conditions
(62, 118), tend to require considerable amounts of power
(65, 117), and have limited memory capacity (117, 121).
Improved devices should thus facilitate passive capture of
images under a variety of environmental conditions and
more efficiently use battery power and memory. Fortunately,
single-unit devices with multimodal gating mechanisms
(e.g., including inertial and acoustic sensors to detect
chewing sounds) hold promise for preserving battery life,
maintaining privacy (117), and avoiding unnecessary data
collection (119, 149).

Automatic image analysis. Once captured, images can
be analyzed using manual, semiautomatic, or automatic
approaches (5). In a manual approach, nutritionists calculate
nutritional content from an image using the user descriptions
of ingredients and portion sizes, food analysis software,
and food databases (150-152). However, manual approaches
require extensive user and staft training, time, and resources
(63). Automatic approaches use software and classification
models to segment, recognize, and calculate volumes of
food, thereby reducing user input (153, 154). This strategy
currently faces issues with generality, because food databases
in automatic approaches are often limited in terms of the
number and types of food items (63). Further, the segmen-
tation and recognition phases rely on high-quality images
where all food items are clearly visible (63). As an alternative
to fully automatic approaches, semiautomatic approaches
use classification software that relies on cues provided by
users or researchers, such as manually identifying foods or
segmenting items (98, 155). However, as with fully manual
approaches, the required human input in even semiautomatic
approaches may be too burdensome for practical or long-
term use.

Segmentation, food recognition, and portion size estima-
tion. After retrieval of necessary images, image analysis
consists of 3 main phases: segmentation of food regions
and items, extraction and recognition of food properties,
and estimation of portion size (5, 117, 143). Segmentation
generally uses algorithms that rely on graph-based, color, or
spatial representations of the images; algorithmic techniques
such as region-growing and edge (100) or circle detection
(156) are often used (142, 143). Accuracy decreases as the
number of unique foods increases (142), and further de-
creases if foods are similar in color, contour, or other charac-
teristics (143). The selection of an appropriate segmentation
algorithm depends on the types of foods, characteristics of
the images, automation level, and amount and type of user
input.

Compared with segmentation, food recognition is more
complex. The main strategies for recognition are traditional
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classifiers and deep learning techniques (143). Traditional
classifiers extract specific visual features from the images,
such as shapes, texture, and pixel color. This approach
requires the researcher to manually identify the important
features of the image during development (143). This
information is then organized and fed into models such as
support vector machines (24, 157), Bag of Features (157, 158),
and K-Nearest Neighbors (24). However, these machine-
learning techniques are poor at recognizing mixed foods
or foods with similar appearances (143), which may have
different nutritional content (5). As alternatives to traditional
classifiers, deep learning techniques could eliminate the
need for user or researcher input after training/development
(143, 159, 160), and have performed significantly better
than traditional techniques (143, 160). However, this is an
emerging approach and requires further refinement.

The final step in the analysis process is portion size
estimation. In fully automated image analyses, deriving a
3-dimensional quantity from a single 2-dimensional image is
a challenge (142, 143). Attempts to measure volume include
generating 3-dimensional shape models based on the food
type (161, 162), and using multiple pictures or short videos
to reconstruct the food item (25, 162). Although these
techniques appear promising, they require large amounts of
processing power and time (143, 147).

Create new tools.

As noted, there is a dearth of cutting-edge technology
tools to assess intake, especially relative to expenditure
technologies, with most being digital adaptations of paper-
based methodologies. Branches of optics, thermo-sensing,
and other technologies are not exclusive to expenditure
assessment tools and are currently underutilized for assessing
dietary intake. There have been inconsistent advancements
in these tools, but several promising ones include portable,
handheld near-infrared (NIR) analysis sensors (163) and
smart utensils with light spectrophotometers (164) that
analyze the nutrient composition of foods. NIR is a long-
standing technology in food testing and an established
method for quantifying macronutrients in many types of
food and agricultural products, notably for food adulteration
(165, 166). NIR could move toward wide consumer use, but
first it must be miniaturized and a database must be compiled
of nutrient profiles for foods against which calibration
training must occur (160). It is easy to imagine a future
in which handheld food analysis tools integrating chemo-
sensing, spectroscopy, optics, etc., become as common as
wrist-worn activity trackers.

Ensure technical assistance is available.

Although intake and expenditure assessment tools should be
as intuitive as possible and require minimal user training,
technical assistance for users will likely always be necessary.
Developers should consider tutorials and help guides to
accompany apps and devices, tailored to the computer
literacy of the target audience (110, 116). Effective assistance
is crucial for increasing user comfort with technology and



willingness to continue user engagement as consumers or
research participants (116, 167).

Ethical and Legal Considerations

Scientific interest in recording free-living individual behavior
has led to rapid growth of digital health research (130) and
federally funded studies on pervasive technologies (168). The
ability to collect unprecedented amounts of continuous, real-
time personal data has contributed to growing ethical and le-
gal concerns (169), recently culminating in 2018 policies such
as the European Union’s General Data Protection Regulation
(170) and the California Consumer Privacy Act (171). User
privacy is a concern in research with pervasive technologies
(48,169) and, hence, technologies should comply with ethical
guidelines. Researchers have found the current regulatory
infrastructure and ethical guidelines to be insufficient (169),
and updating them to reflect ongoing technological progress
will be challenging (48). Further, standards of data security
and privacy largely differ among various stakeholders such
as technology companies, engineers, and scientists working
with human subjects (48). Variable familiarity with novel
technology or privacy risk management could also lead
to variability in institutional review board (IRB) reviews
of research protocols (48) and under- or overprotection
of participants (47). Guidance on app development (e.g.,
on compliance with the Health Insurance Portability and
Accountability Act) from entities such as the US Department
of Health and Human Services may be an important resource
(172) for responsible development of and research with new
digital health tools.

Research ethics of pervasive technologies

Pertinent aspects of research ethics surrounding pervasive
technologies include informed consent, participant privacy,
bystander rights, and data management (48, 169). Re-
searchers have speculated on the existence of the “privacy
paradox,” where users express privacy concerns while con-
senting to broad terms of service and wide sharing of per-
sonal information on hundreds of apps and websites (173).
This purported discrepancy between stated concerns and
actual behavior may suggest users’ insuflicient understanding
of how their data are collected and their inability to protect
their own interests (173), suggesting that obtaining meaning-
ful informed consent may be difficult. Hence, the informed
consent process should convey information, especially the
potential risks of data breach and loss of privacy, in a way
that is appropriate for the participant’s technological literacy
and knowledge about data usage (48).

As for participant privacy, sensitive data such as GPS
coordinates and images should be unlinked from personally
identifiable information and protected health information
(174). Other strategies include providing the user with more
control over data collection, such as the option to remove
the recording device, a privacy or on-and-oft switch (65,
121), and the opportunity to privately review and delete
sensitive images (174, 175). Whereas the privacy of the
research subject is prioritized, the status of bystander rights

under regulations is ambiguous, especially regarding privacy
in specific circumstances (e.g., home, workplace, public
park) and the participant’s responsibility to disclose use of
a recording device (48). To prevent possible violations of
privacy, past study protocols have instructed participants
to confer with family and cohabitants before the start of a
study and provided them with a procedure for responding
to individuals who did not want to be recorded (174). As
technology enhances the granularity of recorded data on
free-living behavior, violation of participant and bystander
privacy is a growing concern.

Finally, data management has its own set of challenges,
and poor practices could increase the risk of data breach (48).
Researchers should submit detailed protocols for maximizing
data security, and IRBs should consult experts for best
practices on technology, data security, and law (48, 174).

Emerging initiatives for ethical practices

There are recommended practices for obtaining informed
consent, protecting participant privacy, respecting bystander
rights, and maximizing data security. However, there are
risks of harm to participants that remain unknown (176).
Some initiatives have aimed to help researchers and IRB
members navigate this uncertainty. One approach is directly
asking research participants about their experiences with
pervasive technologies, the extent to which the informed
consent process reflected actual experiences, and their per-
ceptions of data confidentiality (125). Another noteworthy
initiative is Connected and Open Research Ethics (CORE),
an interdisciplinary online community that connects re-
searchers, ethicists, IRB affiliates, and other stakeholders
of digital health research (47). CORE features a library
and forum for posting questions and sharing resources
such as examples of IRB protocols and informed consent
forms (47). Such interdisciplinary resource-sharing efforts
will promote awareness of the risks of digital health research
and, ultimately, responsible and ethical practices.

Conclusions and Directions

Consumer preferences continue to drive developer en-
hancements to technologies designed to capture health-
related data. Opportunities and challenges for researchers
and developers abound. Many emerging tools rely on
underlying research into technologies unrelated to consumer
health behavior, such as artificial intelligence and machine
learning, GPS, optics, accelerometry, or image recognition.
Adapting these innovations for assessing dietary intake
and energy expenditure requires ongoing collaboration
between researchers and developers in the context of user
acceptability.

Ever closer to personalized health

Knowledge of accurate dietary intake and energy expenditure
is expected to provide insight into the etiology of illness and
inform tailored preventive and treatment interventions (177,
178). The accelerated adoption of telehealth approaches due
to the COVID-19 pandemic (179, 180) will make ongoing
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adoption of emerging behavior technologies even more likely
in clinical practice. Such tools are already beginning to be
implemented by practitioners to support personalized health
recommendations (181-183).

New dietary and activity assessment tools provide oppor-
tunities for real-time monitoring and guidance. For example,
providers may select nutrients or food groups of clinical
interest; identify and recommend the optimal amount of
exercise based on a patient’s age, fitness, and health status (9,
184); and choose to display specific metrics to their patients
(181). Messaging features allow health care providers to give
immediate feedback or answer patient questions, as well as
serve as a vehicle for brief counseling sessions, which, for
example, have been shown to increase physical activity in
patients (177, 185). In addition, cloud-based systems allow
multiple providers to access data and coordinate care (49,
68, 76, 186). However, for practitioners to meaningfully
use complex and voluminous nutritional and activity data
in clinical practice, they will need efficient, targeted, and
clinically effective algorithms. It is not reasonable to expect
that small or even large clinical practices or hospital systems
will develop their own such algorithms for use with their
patient populations; these will need to be generated by
researchers in conjunction with developers, with the clinical
guidance of expert providers.

Collaboration among stakeholders

Developing a technology tool requires interdisciplinary col-
laboration and effective communication between developers
and other stakeholders, be they researchers or end-users.
Given their different training backgrounds, and involvement
at different stages of a tool’s development and application,
collaborators must work toward achieving at least a baseline
understanding of their respective needs, limitations, and
operations. For example, most developers are trained in
engineering, mathematics, and/or computational sciences,
and thus researchers must gain a basic understanding of a
developer’s vocabulary to ensure an effective cross-discipline
collaboration. Conversely, because researchers work with
human subjects, developers must have some understanding
of research ethics involving human subjects (187). If a
commercial product is used in a study, its terms of service
and privacy policy may conflict with human research
protections (48). Researchers are also required to support
tool development with scientific evidence, such as theories
of behavior change (115) or accurate calculation of nutrient
intake (68).

Researchers are similarly encouraged to understand the
workflow of typical device or software development pro-
cesses and challenges. Researchers, whether involved in
product development or validity studies, should be prepared
to navigate complex legal areas, especially intellectual prop-
erty and proprietary issues (187). In particular, studies on
the validity of consumer activity trackers have encountered
difficulties comparing algorithms and evaluating ongoing
updates to software and hardware (177, 188). This becomes
particularly important in long-term research studies, which
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should carefully plan for technology updates, product dis-
continuations, etc. Going forward, with the common goal of
developing valid tools, researchers and developers may have
to find the delicate balance between protecting ownership
rights and establishing a framework for sharing open-source
code.

Finally, among the many opportunities may be some
obvious ones. For example, given the many devices that
can now readily detect various activity types and related
physiological phenomena, it would be a natural next step
to assess whether these devices may be informative with
respect to assessing intake and eating behavior. That is, can
these ostensible “activity trackers” also be used to assess
hunger by heart rate variability, or macronutrient content of
a meal given postprandial body temperature? Collaboration
opportunities not just between stakeholders, but between the
intake and expenditure sides of the energy balance equation,
are evident.

Summary

All emerging technologies require improvements in acces-
sibility, acceptability, and availability. In addition, as tech-
nologies become ever-more pervasive, increasing attention
must be paid to ethics and responsible use. Current tools in
expenditure assessment have successfully integrated diverse
scientific domains to accurately capture activity and other
physiological phenomena with minimal to no user input.
Opportunities for improvement remain, especially with
regard to capturing dietary intake, despite improvements
rendered from digital adaptations of older methodolo-
gies. Although considerable advancements are occurring
in image-based assessment approaches, there remains a
pressing need for transformational technologies—perhaps
still to be discovered—that move the field definitively beyond
self-report (189) and integrate advances across the domains
of chemo-sensing, spectroscopy, and many others. Such
innovations will likely require “out of the box” creativity
and engineering from researchers and developers; this is the
present and future challenge.

Acknowledgments

We thank Adela Hruby for editorial work. The authors’
responsibilities were as follows—SKD: developed and drafted
the manuscript with content contributions from AJM, ES,
CBW, SD, and RPS; and all authors: participated in reviewing
and editing and read and approved the final manuscript.

References

1. Villinger K, Wahl DR, Boeing H, Schupp HT, Renner B. The
effectiveness of app-based mobile interventions on nutrition
behaviours and nutrition-related health outcomes: a systematic
review and meta-analysis. Obes Rev 2019;20(10):1465-84.

2. Kirk MA, Amiri M, Pirbaglou M, Ritvo P. Wearable technology
and physical activity behavior change in adults with chronic
cardiometabolic disease: a systematic review and meta-analysis. Am
] Health Promot 2019;33(5):778-91.

3. Eldridge AL, Piernas C, Illner A-K, Gibney MJ, Gurinovi¢c MA,
De Vries JHM, Cade JE. Evaluation of new technology-based tools



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

for dietary intake assessment—an ILSI Europe Dietary Intake and
Exposure Task Force evaluation. Nutrients 2019;11:55.

. Vu T, Lin F, Alshurafa N, Xu W. Wearable food intake monitoring

technologies: a comprehensive review. Computers 2017;6(1):4.

. Doulah A, Mccrory MA, Higgins JA, Sazonov E. A systematic review

of technology-driven methodologies for estimation of energy intake.
IEEE Access 2019;7:49653-68.

. McClung HL, Ptomey LT, Shook RP, Aggarwal A, Gorczyca AM,

Sazonov ES, Becofsky K, Weiss R, Das SK. Dietary intake and physical
activity assessment: current tools, techniques, and technologies for use
in adult populations. Am J Prev Med 2018;55(4):e93-e104.

. Kankanhalli A, Shin J, Oh H. Mobile-based interventions for dietary

behavior change and health outcomes: scoping review. JMIR Mhealth
Uhealth 2019;7(1):e11312.

. Bell BM, Alam R, Alshurafa N, Thomaz E, Mondol AS, de la Haye K,

Stankovic JA, Lach J, Spruijt-Metz D. Automatic, wearable-based, in-
field eating detection approaches for public health research: a scoping
review. NPJ Digit Med 2020;3(1):38.

. Ainsworth B, Cahalin L, Buman M, Ross R. The current state

of physical activity assessment tools.
2015;57(4):387-95.

Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ.
Practical guide to measuring physical activity. ] Acad Nutr Diet
2014;114(2):199-208.

Sazonov E, Schuckers S, Lopez-Meyer P, Makeyev O, Sazonova N,
Melanson EL, Neuman M. Non-invasive monitoring of chewing and
swallowing for objective quantification of ingestive behavior. Physiol
Meas 2008;29(5):525-41.

Amft O, Troster G. On-body sensing solutions for automatic dietary
monitoring. IEEE Pervasive Comput 2009;8(2):62-70.

Sazonov ES, Makeyev O, Schuckers S, Lopez-Meyer P, Melanson EL,
Neuman MR. Automatic detection of swallowing events by acoustical
means for applications of monitoring of ingestive behavior. IEEE Trans
Biomed Eng 2010;57(3):626-33.

Pafller S, Fischer W-J. Food intake activity detection using a wearable
microphone system. In: 7th International Conference on Intelligent
Environments (IE); 25-28 July, 2011; Nottingham, United Kingdom.
Amsterdam (Netherlands): IOS Press; 2011. p. 298-301.

Paller S, Fischer W-J. Food intake monitoring: automated chew
event detection in chewing sounds. IEEE ] Biomed Health Inform
2014;18(1):278-89.

Fontana JM, Farooq M, Sazonov E. Automatic ingestion monitor: a
novel wearable device for monitoring of ingestive behavior. IEEE Trans
Biomed Eng 2014;61(6):1772-9.

Dong Y, Scisco J, Wilson M, Muth E, Hoover A. Detecting periods
of eating during free-living by tracking wrist motion. IEEE ] Biomed
Health Inform 2014;18(4):1253-60.

Salley JN, Hoover AW, Wilson ML, Muth ER. Comparison between
human and bite-based methods of estimating caloric intake. ] Acad
Nutr Diet 2016;116(10):1568-77.

Rahman T, Adams AT, Zhang M, Cherry E, Zhou B, Peng H,
Choudhury T. BodyBeat: a mobile system for sensing non-speech body
sounds. In: MobiSys 14: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services; 16-19
June, 2014; Bretton Woods, NH. New York: Association for Computing
Machinery; 2014. p. 2-13.

Mirtchouk M, Merck C, Kleinberg S. Automated estimation of
food type and amount consumed from body-worn audio and
motion sensors. In: Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing; 12-16
September, 2016; Heidelberg, Germany. New York: Association for
Computing Machinery; 2016. p. 451-62.

Doulah A, Ghosh T, Hossain D, Imtiaz MH, Sazonov E. “Automatic
ingestion monitor version 2” — a novel wearable device for automatic
food intake detection and passive capture of food images. IEEE ]
Biomed Health Inform 2021;25(2):568-76.

Martin CK, Kaya S, Gunturk BK. Quantification of food intake using
food image analysis. In: Annual International Conference of the IEEE

Prog Cardiovasc Dis

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Engineering in Medicine and Biology Society; 2-6 September, 2009;
Minneapolis, MN. Manhattan (NY): IEEE; 2009. p. 6869-72.
Pouladzadeh P, Shirmohammadi S, Al-Maghrabi R. Measuring
calorie and nutrition from food image. IEEE Trans Instrum Meas
2014;63(8):1947-56.

Zhu F, Bosch M, Khanna N, Boushey CJ, Delp EJ. Multiple hypotheses
image segmentation and classification with application to dietary
assessment. IEEE ] Biomed Health Inform 2015;19(1):377-88.

Kong F, Tan J. DietCam: automatic dietary assessment with mobile
camera phones. Pervasive Mob Comput 2012;8(1):147-63.

Kissileff HR, Klingsberg G, Van Itallie TB. Universal eating monitor
for continuous recording of solid or liquid consumption in man. Am J
Physiol 1980;238(1):R14-22.

Chang K-h, Liu S-y, Chu H-h, Hsu JY-j, Chen C, Lin T-y, Chen C-
y, Huang P. The diet-aware dining table: observing dietary behaviors
over a tabletop surface. In: Fishkin KP, Schiele B, Nixon P, Quigley
A, editors. Pervasive computing. Berlin and Heidelberg (Germany):
Springer Berlin Heidelberg; 2006. p. 366-82.

Papapanagiotou V, Diou C, Langlet B, Ioakimidis I, Delopoulos A.
Automated extraction of food intake indicators from continuous
meal weight measurements. In: Ortufio F, Rojas I, editors.
Bioinformatics and biomedical engineering. Cham (Switzerland):
Springer International Publishing; 2015. p. 35-46.

Papapanagiotou V, Diou C, Ioakimidis I, Sodersten P, Delopoulos
A. Automatic analysis of food intake and meal microstructure based
on continuous weight measurements. IEEE ] Biomed Health Inform
2019;23(2):893-902.

Kelly LA, McMillan DG, Anderson A, Fippinger M, Fillerup G,
Rider J. Validity of actigraphs uniaxial and triaxial accelerometers for
assessment of physical activity in adults in laboratory conditions. BMC
Med Phys 2013;13(1):5.

Hibbing PR, Lamunion SR, Kaplan AS, Crouter SE. Estimating energy
expenditure with Actigraph GT9X inertial measurement unit. Med Sci
Sports Exerc 2018;50(5):1093-102.

Bassett DR, John D, Conger SA, Rider BC, Passmore RM, Clark
JM. Detection of lying down, sitting, standing, and stepping
using two activPAL monitors. Med Sci Sports Exerc 2014;46(10):
2025-9.

An H-S, Kim Y, Lee J-M. Accuracy of inclinometer functions of the
activPAL and Actigraph GT3X+: a focus on physical activity. Gait
Posture 2017;51:174-80.

Wieters KM, Kim J-H, Lee C. Assessment of wearable global
positioning system units for physical activity research. J Phys Act
Health 2012;9(7):913-23.

Carlson JA, Schipperijn J, Kerr ], Saelens BE, Natarajan L, Frank
LD, Glanz K, Conway TL, Chapman JE, Cain KL, et al. Locations of
physical activity as assessed by GPS in young adolescents. Pediatrics
2016;137(1):e20152430.

Albrecht BM, Stalling I, Recke C, Bammann K. Accelerometer-
assessed outdoor physical activity is associated with meteorological
conditions among older adults: cross-sectional results from the
OUTDOOR ACTIVE study. PLoS One 2020;15(1):¢0228053.

Flynn JI, Coe DP, Larsen CA, Rider BC, Conger SA, Bassett DR,
Jr. Detecting indoor and outdoor environments using the Actigraph
GT3X+ light sensor in children. Med Sci Sports Exerc 2014;46(1):201-
6.

Joyce DS, Zele AJ, Feigl B, Adhikari P. The accuracy of artificial
and natural light measurements by actigraphs. ] Sleep Res
2020;29(5):e12963.

Brage S, Westgate K, Franks PW, Stegle O, Wright A, Ekelund U,
Wareham NJ. Estimation of free-living energy expenditure by heart
rate and movement sensing: a doubly-labelled water study. PLoS One
2015;10(9):e0137206.

Kuzik N, Carson V. Accelerometer Bluetooth proximity validation
in parents and early years children. Meas Phys Educ Exerc Sci
2018;22(4):287-93.

Correa JB, Apolzan JW, Shepard DN, Heil DP, Rood JC, Martin CK.
Evaluation of the ability of three physical activity monitors to predict

Opportunities and challenges of technology tools 11



42.

43.

44.

45.

46.

4

~

48.

49.

50.

5

—

52.

53.

54.

55.

5

o)

5

~

58.

59.

12

weight change and estimate energy expenditure. Appl Physiol Nutr
Metab 2016;41(7):758-66.

Hurter L, Fairclough SJ, Knowles ZR, Porcellato LA, Cooper-Ryan
AM, Boddy LM. Establishing raw acceleration thresholds to classify
sedentary and stationary behaviour in children. Children (Basel)
2018;5(12):172.

Bagot KS, Matthews SA, Mason M, Squeglia LM, Fowler ], Gray K,
Herting M, May A, Colrain I, Godino J, et al. Current, future and
potential use of mobile and wearable technologies and social media
data in the ABCD study to increase understanding of contributors to
child health. Dev Cogn Neurosci 2018;32:121-9.

Wright SP, Hall Brown, TS, Collier SR, Sandberg K. How consumer
physical activity monitors could transform human physiology
research. Am J Physiol Regul Integr Comp Physiol 2017;312(3):R358-
67.

Sharp DB, Allman-Farinelli M. Feasibility and validity of mobile
phones to assess dietary intake. Nutrition 2014;30(11-12):1257-66.
Rusin M, Arsand E, Hartvigsen G. Functionalities and input methods
for recording food intake: a systematic review. Int ] Med Inf
2013;82(8):653-64.

. Torous ], Nebeker C. Navigating ethics in the digital age: introducing

Connected and Open Research Ethics (CORE), a tool for researchers
and institutional review boards. ] Med Internet Res 2017;19(2):e38.
Nebeker C, Harlow ], Espinoza Giacinto R, Orozco-Linares R, Bloss
CS, Weibel N. Ethical and regulatory challenges of research using
pervasive sensing and other emerging technologies: IRB perspectives.
AJOB Empir Bioeth 2017;8(4):266-76.

Arens-Volland AG, Spassova L, Bohn T. Promising approaches
of computer-supported dietary assessment and management—
current research status and available applications. Int ] Med Inf
2015;84(12):997-1008.

Cade JE. Measuring diet in the 21st century: use of new technologies.
Proc Nutr Soc 2017;76(3):276-82.

. Sevil M, Rashid M, Hajizadeh I, Askari MR, Hobbs N, Brandt R, Park

M, Quinn L, Cinar A. Discrimination of simultaneous psychological
and physical stressors using wristband biosignals. Comput Methods
Programs Biomed 2021;199:105898.

Kirkpatrick SI, Baranowski T, Subar AF, Tooze JA, Frongillo EA.
Best practices for conducting and interpreting studies to validate self-
report dietary assessment methods. ] Acad Nutr Diet 2019;119(11):
1801-16.

Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C,
Neuhouser ML, Thompson FE, Potischman N, Guenther PM, Tarasuk
V, etal. Addressing current criticism regarding the value of self-report
dietary data. ] Nutr 2015;145(12):2639-45.

Nelson RO, Hayes SC. Theoretical explanations for reactivity in self-
monitoring. Behav Modif 1981;5(1):3-14.

Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE,
Bingley C, Willis G, Islam NG, Baranowski T, McNutt S, et al.
The Automated Self-Administered 24-hour dietary recall (ASA24): a
resource for researchers, clinicians, and educators from the National
Cancer Institute. ] Acad Nutr Diet 2012;112(8):1134-7.

. Fallaize R, Forster H, Macready AL, Walsh MC, Mathers JC,

Brennan L, Gibney ER, Gibney M]J, Lovegrove JA. Online dietary
intake estimation: reproducibility and validity of the Food4Me food
frequency questionnaire against a 4-day weighed food record. ] Med
Internet Res 2014;16(8):e190.

. Lemacks JL, Adams K, Lovetere A. Dietary intake reporting accuracy

of the Bridge2U mobile application food log compared to control meal
and dietary recall methods. Nutrients 2019;11(1):199.

Cade JE, Warthon-Medina M, Albar S, Alwan NA, Ness A, Roe M,
Wark PA, Greathead K, Burley V], Finglas P, et al. DIET@NET: best
practice guidelines for dietary assessment in health research. BMC
Med 2017;15(1):202.

Timon CM, Cooper SE, Barker ME, Astell AJ, Adlam T, Hwang
F, Williams EA. A comparison of food portion size estimation by
older adults, young adults and nutritionists. ] Nutr Health Aging
2018;22:230-6.

Das et al.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Timon CM, van den Barg R, Blain R], Kehoe L, Evans K, Walton
J, Flynn A, Gibney ER. A review of the design and validation of
web- and computer-based 24-h dietary recall tools. Nutr Res Rev
2016;29(2):268-80.

Conrad J, Koch SAJ, Néthlings U. New approaches in assessing
food intake in epidemiology. Curr Opin Clin Nutr Metab Care
2018;21(5):343-51.

Gemming L, Rush E, Maddison R, Doherty A, Gant N, Utter J, Ni
Mhurchu C. Wearable cameras can reduce dietary under-reporting:
doubly labelled water validation of a camera-assisted 24 h recall. Br
J Nutr 2015;113(2):284-91.

Boushey CJ, Spoden M, Zhu EM, Delp EJ, Kerr DA. New mobile
methods for dietary assessment: review of image-assisted and image-
based dietary assessment methods. Proc Nutr Soc 2017;76(3):283-94.
Boushey CJ, Spoden M, Delp EJ, Zhu F, Bosch M, Ahmad Z, Shvetsov
YB, DeLany JP, Kerr DA. Reported energy intake accuracy compared
to doubly labeled water and usability of the mobile food record among
community dwelling adults. Nutrients 2017;9(3):312.

Sun M, Burke LE, Mao Z-H, Chen Y, Chen H-C, Bai Y, Li Y, Li C, Jia
W. eButton: a wearable computer for health monitoring and personal
assistance. In: Proceedings of the 5Ist Annual Design Automation
Conference; 1-5 June, 2014; San Francisco, CA. New York: Association
for Computing Machinery; 2014. p. 1-6.

Archundia Herrera MC, Chan CB. Narrative review of new methods
for assessing food and energy intake. Nutrients 2018;10(8):1064.
Howes E, Boushey CJ, Kerr DA, Tomayko EJ, Cluskey M. Image-based
dietary assessment ability of dietetics students and interns. Nutrients
2017;9(2):114.

Gilhooly CH. Are calorie counting apps ready to replace traditional
dietary assessment methods? Nutr Today 2017;52(1):10-8.

Blanchard CM, Chin MK, Gilhooly CH, Barger K, Matuszek G, Miki
AJ, Coté RG, Eldridge AL, Green H, Mainardi F, et al. Evaluation of
PIQNIQ, a novel mobile application for capturing dietary intake. ] Nutr
2021;151(5):1347-56.

Carter MC, Albar SA, Morris MA, Mulla UZ, Hancock N, Evans CE,
Alwan NA, Greenwood DC, Hardie L], Frost GS, et al. Development
of a UK online 24-h dietary assessment tool: myfood24. Nutrients
2015;7(6):4016-32.

Carter MC, Hancock N, Albar SA, Brown H, Greenwood DC, Hardie
L], Frost GS, Wark PA, Cade JE. Development of a new branded
UK food composition database for an online dietary assessment tool.
Nutrients 2016;8(8):480.

Thompson FE, Subar AF. Dietary assessment methodology. In:
Coulston AM, Boushey CJ, Ferruzzi MG, Delahanty LM, editors.
Nutrition in the prevention and treatment of disease. 4th ed.
Cambridge (MA): Academic Press; 2017. p. 5-48.

Evans K, Hennessy A, Walton J, Timon C, Gibney E, Flynn A.
Development and evaluation of a concise food list for use in a web-
based 24-h dietary recall tool. ] Nutr Sci 2017;6:¢46.

Illner AK, Freisling H, Boeing H, Huybrechts I, Crispim SP, Slimani N.
Review and evaluation of innovative technologies for measuring diet
in nutritional epidemiology. Int J Epidemiol 2012;41(4):1187-203.
Conrad J, N6thlings U. Innovative approaches to estimate individual
usual dietary intake in large-scale epidemiological studies. Proc Nutr
Soc 2017;76(3):213-9.

Allman-Farinelli M, Gemming L. Technology interventions to manage
food intake: where are we now? Curr Diab Rep 2017;17(11):103.
Shephard RJ, Aoyagi Y. Measurement of human energy expenditure,
with particular reference to field studies: an historical perspective. Eur
J Appl Physiol 2012;112(8):2785-815.

Steene-Johannessen J, Anderssen SA, van der Ploeg HP, Hendriksen
IJM, Donnelly AE, Brage S, Ekelund U. Are self-report measures able
to define individuals as physically active or inactive? Med Sci Sports
Exerc 2016;48(2):235-44.

Silfee V], Haughton CF, Jake-Schoffman DE, Lopez-Cepero A, May
CN, Sreedhara M, Rosal MC, Lemon SC. Objective measurement of
physical activity outcomes in lifestyle interventions among adults: a
systematic review. Prev Med Rep 2018;11:74-80.



80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Gartner. Gartner forecasts global spending on wearable devices to total
$81.5 billion in 2021. Stamford (CT): Gartner; 2021.

Grand View Research. Wearable technology market size, share &
trends analysis report by product (wrist-wear, eye-wear & head-
wear, foot-wear, neck-wear, body-wear), by application, by region,
and segment forecasts, 2020-2027. San Francisco (CA): Grand View
Research; 2020.

Rowlands AV, Mirkes EM, Yates T, Clemes S, Davies M, Khunti
K, Edwardson CL. Accelerometer-assessed physical activity in
epidemiology: are monitors equivalent? Med Sci Sports Exerc
2018;50(2):257-65.

Ndahimana D, Kim E-K. Measurement methods for physical activity
and energy expenditure: a review. Clin Nutr Res 2017;6(2):68-80.
Lyden K, Swibas T, Catenacci V, Guo R, Szuminsky N, Melanson EL.
Estimating energy expenditure using heat flux measured at a single
body site. Med Sci Sports Exerc 2014;46(11):2159-67.

O’Driscoll R, Turicchi J, Beaulieu K, Scott S, Matu J, Deighton K,
Finlayson G, Stubbs J. How well do activity monitors estimate energy
expenditure? A systematic review and meta-analysis of the validity of
current technologies. Br ] Sports Med 2020;54(6):332-40.

Miller DJ, Capodilupo JV, Lastella M, Sargent C, Roach GD, Lee VH,
Capodilupo ER. Analyzing changes in respiratory rate to predict the
risk of COVID-19 infection. PLoS One 2020;15(12):0243693.
Berryhill S, Morton CJ, Dean A, Berryhill A, Provencio-Dean N, Patel
SI, Estep L, Combs D, Mashaqi S, Gerald LB, et al. Effect of wearables
on sleep in healthy individuals: a randomized crossover trial and
validation study. J Clin Sleep Med 2020;16(5):775-83.

Sanchez R, Villena M. Comparative evaluation of wearable devices for
measuring elevation gain in mountain physical activities. Proc Inst
Mech Eng P J Sport Eng Technol 2020;234(4):312-9.

Levine A, Buono MJ. Rating of perceived exertion increases
synergistically during prolonged exercise in a combined heat
and hypoxic environment. ] Therm Biol 2019;84:99-102.

Maughan RJ, Otani H, Watson P. Influence of relative humidity on
prolonged exercise capacity in a warm environment. Eur ] Appl Physiol
2012;112(6):2313-21.

Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity
assessment with accelerometers: new insights and validation studies.
Obes Rev 2013;14(6):451-62.

Schrack JA, Cooper R, Koster A, Shiroma EJ, Murabito JM, Rejeski
W], Ferrucci L, Harris TB. Assessing daily physical activity in older
adults: unraveling the complexity of monitors, measures, and methods.
] Gerontol A Biol Sci Med Sci 2016;71(8):1039-48.

Sardinha LB, Judice PB. Usefulness of motion sensors to estimate
energy expenditure in children and adults: a narrative review of studies
using DLW. Eur J Clin Nutr 2017;71(3):331-9.

Farrahi V, Niemeld M, Kangas M, Korpelainen R, Jamsa T. Calibration
and validation of accelerometer-based activity monitors: a systematic
review of machine-learning approaches. Gait Posture 2019;68:285-99.
Trost SG. State of the art reviews: measurement of physical activity in
children and adolescents. Am ] Lifestyle Med 2007;1(4):299-314.
Arab L, Estrin D, Kim DH, Burke J, Goldman J. Feasibility testing of
an automated image-capture method to aid dietary recall. Eur J Clin
Nutr 2011;65(10):1156-62.

Thompson FE, Subar AF, Loria CM, Reedy JL, Baranowski T. Need
for technological innovation in dietary assessment. ] Am Diet Assoc
2010;110(1):48-51.

Martin CK, Correa JB, Han H, Allen HR, Rood JC, Champagne CM,
Gunturk BK, Bray GA. Validity of the Remote Food Photography
Method (RFPM) for estimating energy and nutrient intake in near real-
time. Obesity 2012;20(4):891-9.

Shiffman S, Stone AA, Hufford MR. Ecological momentary
assessment. Annu Rev Clin Psychol 2008;4(1):1-32.

Zhang MM. Identifying the cuisine of a plate of food. Technical Report
CSE 190. La Jolla (CA): University of California at San Diego; 2011.
Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of
accelerometer methods for physical activity research. Br J Sports Med
2014;48(13):1019-23.

102.

103.

104.

105.

106.

107.

108.

109.

110.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Narayanan A, Desai F, Stewart T, Duncan S, Mackay L. Application
of raw accelerometer data and machine-learning techniques to
characterize human movement behavior: a systematic scoping review.
J Phys Act Health 2020;17(3):360-83.

Pavey TG, Gilson ND, Gomersall SR, Clark B, Trost SG. Field
evaluation of a random forest activity classifier for wrist-worn
accelerometer data. ] Sci Med Sport 2017;20(1):75-80.

Trost SG, Wong W-K, Pfeiffer KA, Zheng Y. Artificial neural networks
to predict activity type and energy expenditure in youth. Med Sci
Sports Exerc 2012;44(9):1801-9.

Wang Z, Wu D, Chen J, Ghoneim A, Hossain MA. A triaxial
accelerometer-based human activity recognition via EEMD-based
features and game-theory-based feature selection. IEEE Sens ]
2016;16(9):3198-207.

Mimouna A, Khalifa AB, Ben Amara NE. Human action recognition
using triaxial accelerometer data: selective approach. In: 15th
International Multi-Conference on Systems, Signals & Devices (SSD);
19-22 March, 2018; Hammamet, Tunisia. Manhattan (NY): IEEE;
2018. p. 491-6.

Keadle SK, Lyden KA, Strath SJ, Staudenmayer JW, Freedson PS. A
framework to evaluate devices that assess physical behavior. Exerc
Sport Sci Rev 2019;47(4):206-14.

Simpson E, Bradley J, Poliakov I, Jackson D, Olivier P, Adamson
AJ, Foster E. Iterative development of an online dietary recall tool:
INTAKE24. Nutrients 2017;9(2):118.

Bucher Della Torre S, Carrard I, Farina E, Danuser B, Kruseman M.
Development and evaluation of e-CA, an electronic mobile-based food
record. Nutrients 2017;9(1):76.

Chen YS, Wong JE, Ayob AF, Othman NE, Poh BK. Can Malaysian
young adults report dietary intake using a food diary mobile
application? A pilot study on acceptability and compliance. Nutrients
2017:9(1):62.

. Watkins I, Kules B, Yuan X, Xie B. Heuristic evaluation of healthy

eating apps for older adults. ] Consum Health Internet 2014;18(2):105-
27.

Kelly P, Marshall SJ, Badland H, Kerr J, Oliver M, Doherty AR, Foster
C. An ethical framework for automated, wearable cameras in health
behavior research. Am ] Prev Med 2013;44(3):314-9.

Kerr DA, Dhaliwal SS, Pollard CM, Norman R, Wright JL, Harray AJ,
Shoneye CL, Solah VA, Hunt WJ, Zhu F, et al. BMI is associated with
the willingness to record diet with a mobile food record among adults
participating in dietary interventions. Nutrients 2017;9(3):244.

Zang ], Song ], Wang Z, Yao C, Ma J, Huang C, Zhu Z, Smith
LP, Du S, Hua J, et al. Acceptability and feasibility of smartphone-
assisted 24 h recalls in the Chinese population. Public Health Nutr
2015;18(18):3272-7.

Zahry NR, Cheng Y, Peng W. Content analysis of diet-related
mobile apps: a self-regulation perspective. Health Commun
2016;31(10):1301-10.

Kirkpatrick SI, Gilsing AM, Hobin E, Solbak NM, Wallace A, Haines
J, Mayhew AJ, Orr SK, Raina P, Robson PJ, et al. Lessons from studies
to evaluate an online 24-hour recall for use with children and adults in
Canada. Nutrients 2017;9(2):100.

Prioleau T, Moore E, Ghovanloo M. Unobtrusive and wearable
systems for automatic dietary monitoring. IEEE Trans Biomed Eng
2017;64(9):2075-89.

O’Loughlin G, Cullen S§J, McGoldrick A, O’Connor S, Blain R,
O’Malley S, Warrington GD. Using a wearable camera to increase the
accuracy of dietary analysis. Am J Prev Med 2013;44(3):297-301.
Pettitt C, Liu J, Kwasnicki RM, Yang G-Z, Preston T, Frost G. A
pilot study to determine whether using a lightweight, wearable micro-
camera improves dietary assessment accuracy and offers information
on macronutrients and eating rate. Br ] Nutr 2016;115(1):160-7.
Schiboni G, Wasner F, Amft O. A privacy-preserving wearable
camera setup for dietary event spotting in free-living. In: 2018
IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops); 19-23 March,
2018; Athens, Greece. Manhattan (NY): IEEE; 2018. p. 872-7.

Opportunities and challenges of technology tools 13



121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

13

—_

132.

133.

134.

135.

136.

137.

138.

14

Gemming L, Utter J, Ni Mhurchu C. Image-assisted dietary
assessment: a systematic review of the evidence. ] Acad Nutr
Diet 2015;115(1):64-77.

Muhammad Sayem AS, Hon Teay S, Shahariar H, Fink PL, Albarbar
A. Review on smart electro-clothing systems (SeCSs). Sensors
2020;20(3):587.

E&T Editorial Staff. Sensors woven into clothing could monitor
vital signs. [Internet]. London: The Institution of Engineering
and Technology; 2020. [Cited 2021 Jul 8]. Available from:
https://eandt.theiet.org/content/articles/2020/04/sensors-woven-
into-clothing- could-monitor-vital-signs/.

Walker RK, Hickey AM, Freedson PS. Advantages and limitations of
wearable activity trackers: considerations for patients and clinicians.
Clin J Oncol Nurs 2016;20(6):606-10.

Nebeker C, Lagare T, Takemoto M, Lewars B, Crist K, Bloss CS, Kerr
J. Engaging research participants to inform the ethical conduct of
mobile imaging, pervasive sensing, and location tracking research.
Transl Behav Med 2016;6(4):577-86.

Taylor K, Silver L. Smartphone ownership is growing rapidly around
the world, but not always equally. Washington (DC): Pew Research
Center; 2019.

Régnier F, Chauvel L. Digital inequalities in the use of self-tracking diet
and fitness apps: interview study on the influence of social, economic,
and cultural factors. JMIR Mhealth Uhealth 2018;6(4):e101.

Bol N, Helberger N, Weert JCM. Differences in mobile health app use:
a source of new digital inequalities? Inform Soc 2018;34(3):183-93.
Norman CD, Skinner HA. eHealth literacy: essential skills for
consumer health in a networked world. ] Med Internet Res
2006;8(2):e9.

Miiller AM, Maher CA, Vandelanotte C, Hingle M, Middelweerd
A, Lopez ML, DeSmet A, Short CE, Nathan N, Hutchesson M]J,
et al. Physical activity, sedentary behavior, and diet-related eHealth
and mHealth research: bibliometric analysis. ] Med Internet Res
2018;20(4):e122.

. Lee HE, Cho J. What motivates users to continue using diet and fitness

apps? Application of the uses and gratifications approach. Health
Commun 2017;32(12):1445-53.

Takemoto M, Manini TM, Rosenberg DE, Lazar A, Zlatar ZZ,
Das SK, Kerr J. Diet and activity assessments and interventions
using technology in older adults. Am ] Prev Med 2018;55(4):
e105-15.

Harrington CN, Ruzic L, Sanford JA. Universally accessible mHealth
apps for older adults: towards increasing adoption and sustained
engagement. In: Antona M, Stephanidis C, editors. Universal
access in human-computer interaction. Human and technological
environments: 11th International Conference, UAHCI 2017, Held
as Part of HCI International 2017, Vancouver, BC, Canada, July
9-14, 2017, Proceedings, Part III. Cham (Switzerland): Springer
International Publishing; 2017. p. 3-12.
Steinfeld E, Maisel J. Universal design:
environments. Hoboken (NJ): Wiley; 2012.
Gilmore LA, Duhé AF, Frost EA, Redman LM. The technology
boom: a new era in obesity management. ] Diabetes Sci Technol
2014;8(3):596-608.

Osadchiy T, Poliakov I, Olivier P, Rowland M, Foster E. Validation of
arecommender system for prompting omitted foods in online dietary
assessment surveys. In: PervasiveHealth 19: proceedings of the 13th
EAI International Conference on Pervasive Computing Technologies
for Healthcare; 20-23 May 2019; Trento, Italy. New York: Association
for Computing Machinery; 2019. p. 208-15.

Yang Y, Jia W, Bucher T, Zhang H, Sun M. Image-based food portion
size estimation using a smartphone without a fiducial marker. Public
Health Nutr 2019;22(7):1180-92.

Charrondiere UR, Rittenschober D, Nowak V, Stadlmayr B,
Wijesinha-Bettoni R, Haytowitz D. Improving food composition
data quality: three new FAO/INFOODS guidelines on conversions,
data evaluation and food matching. Food Chem 2016;193:
75-81.

creating inclusive

Das et al.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

USDA, Agricultural Research Service (ARS). FoodData Central.
[Internet]. Beltsville (MD): USDA ARS; 2019. [Cited 2021 Feb 20].
Available from: fdc.nal.usda.gov.

European Food Safety Authority (EFSA). The EFSA Comprehensive
European Food Consumption Database. [Internet]. Parma (Italy):
EFSA; 2020. [Cited 2021 Apr 1]. Available from: https://www.efsa.
europa.eu/en/food- consumption/comprehensive-database.

Steele R. An overview of the state of the art of automated capture of
dietary intake information. Crit Rev Food Sci Nutr 2015;55(13):1929-
38.

Hassannejad H, Matrella G, Ciampolini P, De Munari I, Mordonini
M, Cagnoni S. Automatic diet monitoring: a review of computer
vision and wearable sensor-based methods. Int J Food Sci Nutr
2017;68(6):656-70.

Subhi MA, Ali SH, Mohammed MA. Vision-based approaches for
automatic food recognition and dietary assessment: a survey. IEEE
Access 2019;7:35370-81.

Bossard L, Guillaumin M, Van Gool L. Food-101 - mining
discriminative components with random forests. In: Fleet D, Pajdla T,
Schiele B, Tuytelaars T, editors. Computer vision - ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part VI. Cham (Switzerland): Springer International
Publishing; 2014. p. 446-61.

Pouladzadeh P, Yassine A, Shirmohammadi S. FooDD: food detection
dataset for calorie measurement using food images. In: Murino V,
Puppo E, Sona D, Cristani M, Sansone C, editors. New trends in image
analysis and processing - ICIAP 2015 workshops. Cham (Switzerland):
Springer International Publishing; 2015. p. 441-8.

Rollo ME, Ash S, Lyons-Wall P, Russell A. Trial of a mobile phone
method for recording dietary intake in adults with type 2 diabetes:
evaluation and implications for future applications. ] Telemed Telecare
2011;17(6):318-23.

Zhu F, Bosch M, Woo I, Kim S, Boushey CJ, Ebert DS, Delp EJ. The use
of mobile devices in aiding dietary assessment and evaluation. IEEE ]
Sel Top Signal Process 2010;4(4):756-66.

Dahl Lassen A, Poulsen S, Ernst L, Kaae Andersen K, Biltoft-Jensen A,
Tetens I. Evaluation of a digital method to assess evening meal intake
in a free-living adult population. Food Nutr Res 2010;54:5311.

Liu J, Johns E, Atallah L, Pettitt C, Lo B, Frost G, Yang G-Z. An
intelligent food-intake monitoring system using wearable sensors. In:
Proceedings of the 2012 Ninth International Conference on Wearable
and Implantable Body Sensor Networks (BSN); 9-12 May, 2012;
London, United Kingdom. Washington (DC): IEEE Computer Society;
2012. p. 154-60.

Ptomey LT, Willis EA, Honas JJ, Mayo MS, Washburn RA, Herrmann
SD, Sullivan DK, Donnelly JE. Validity of energy intake estimated by
digital photography plus recall in overweight and obese young adults.
J Acad Nutr Diet 2015;115(9):1392-9.

McClung HL, Champagne CM, Allen HR, McGraw SM, Young
AJ, Montain SJ, Crombie AP. Digital food photography technology
improves efficiency and feasibility of dietary intake assessments in
large populations eating ad libitum in collective dining facilities.
Appetite 2017;116:389-94.

Prinz N, Bohn B, Kern A, Piingel D, Pollatos O, Holl RW. Feasibility
and relative validity of a digital photo-based dietary assessment: results
from the Nutris-Phone study. Public Health Nutr 2019;22(7):1160-7.

Akpro Hippocrate EA, Suwa H, Arakawa Y, Yasumoto K. Food weight
estimation using smartphone and cutlery. In: Proceedings of the
First Workshop on IoT-enabled Healthcare and Wellness Technologies
and Systems; 30 June, 2016; Singapore. New York: Association for
Computing Machinery; 2016. p. 9-14.

Jia W, Li Y, Qu R, Baranowski T, Burke LE, Zhang H, Bai Y, Mancino
JM, Xu G, Mao Z-H, et al. Automatic food detection in egocentric
images using artificial intelligence technology. Public Health Nutr
2019;22(7):1168-79.

Fang S, Liu C, Tahboub K, Zhu F, Delp EJ, Boushey CJ. cTADA: the
design of a crowdsourcing tool for online food image identification
and segmentation. In: 2018 IEEE Southwest Symposium on Image


https://eandt.theiet.org/content/articles/2020/04/sensors-woven-into-clothing-could-monitor-vital-signs/
file:fdc.nal.usda.gov
https://www.efsa.europa.eu/en/food-consumption/comprehensive-database

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

Analysis and Interpretation (SSIAI); 8-10 April, 2018; Las Vegas, NV.
Manhattan (NY): IEEE; 2018. p. 25-8.

Matsuda Y, Yanai K. Multiple-food recognition considering co-
occurrence employing manifold ranking. In: Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012); 11-15
November, 2012; Tsukuba, Japan. Manhattan (NY): IEEE; 2012. p.
2017-20.

Hoashi H, Joutou T, Yanai K. Image recognition of 85 food categories
by feature fusion. In: Proceedings of the 2010 IEEE International
Symposium on Multimedia; 13-15 December, 2010; Taichung, Taiwan.
Washington (DC): IEEE Computer Society; 2010. p. 296-301.
Kawano Y, Yanai K. Real-time mobile food recognition system. In:
Proceedings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition Workshops; 23-28 June, 2013; Portland, OR.
Washington (DC): IEEE Computer Society; 2013. p. 1-7.
Christodoulidis S, Anthimopoulos M, Mougiakakou S. Food
recognition for dietary assessment using deep convolutional neural
networks. In: Murino V, Puppo E, Sona D, Cristani M, Sansone C,
editors. New trends in image analysis and processing—ICIAP 2015
Workshops. Cham (Switzerland): Springer International Publishing;
2015. p. 458-65.

Pouladzadeh P, Shirmohammadi S, Yassine A. You are what you eat:
so measure what you eat! IEEE Instrum Meas Mag 2016;19(1):9-15.
Xu C, He Y, Khannan N, Parra A, Boushey C, Delp E. Image-based
food volume estimation. In: Proceedings of the 5th International
Workshop on Multimedia for Cooking & Eating Activities; 21 October,
2013; Barcelona, Spain. New York: Association for Computing
Machinery; 2013. p. 75-80.

Hassannejad H, Matrella G, Ciampolini P, Munari I, Mordonini M,
Cagnoni S. A new approach to image-based estimation of food volume.
Algorithms 2017;10(2):66.

Thong YJ, Nguyen T, Zhang Q, Karunanithi M, Yu L. Predicting food
nutrition facts using pocket-size near-infrared sensor. In: 39th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC); 11-15 July, 2017; Jeju, Republic of Korea.
Manhattan (NY): IEEE; 2017. p. 742-5.

Huang Q, Yang Z, Zhang Q. Smart-U: smart utensils know what
you eat. In: IEEE INFOCOM: IEEE Conference on Computer
Communications; 15-19 April, 2018; Honolulu, HI. Manhattan (NY):
IEEE; 2018. p. 1439-47.

Calibre Control. Why is NIR an effective food testing technique?
[Internet]. Warrington (United Kingdom): Calibre Control
International; 2019. [Cited 2021 Apr 1]. Available from:

https://www.calibrecontrol.com/news-blog/2019/10/28/why-is-
nir-an-effective-food- testing- technique.

Trimble S. Food-processing relies on near-infrared spectroscopy.
[Internet]. Camas (WA): Felix Instruments; 2020. [Cited 2021 Apr 1].
Available from: https://felixinstruments.com/blog/food- processing-
relies-on-near-infrared-spectroscopy/.

Ward HA, McLellan H, Udeh-Momoh C, Giannakopoulou P, Robb C,
Wark PA, Middleton L. Use of online dietary recalls among older UK
adults: a feasibility study of an online dietary assessment tool. Nutrients
2019;11(7):1451.

Dunseath S, Weibel N, Bloss CS, Nebeker C. NIH support of
mobile, imaging, pervasive sensing, social media and location tracking
(MISST) research: laying the foundation to examine research ethics in
the digital age. NPJ Digit Med 2018;1(1):20171.

Klurfeld DM, Hekler EB, Nebeker C, Patrick K, Khoo CSH.
Technology innovations in dietary intake and physical activity
assessment: challenges and recommendations for future directions.
Am ] Prev Med 2018;55(4):e117-22.

Haug CJ. Turning the tables — the new European General Data
Protection Regulation. N Engl ] Med 2018;379(3):207-9.

McGraw D, Mandl KD. Privacy protections to encourage use of health-
relevant digital data in a learning health system. NPJ Digit Med
2021;4(1):2.

Office for Civil Rights, US Department of Health and Human
Services. Resources for mobile health apps developers. [Internet].

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

Washington (DC): Office for Civil Rights; 2020. [Cited 2021 Jun 24].
Available from: https://www.hhs.gov/hipaa/for- professionals/special-
topics/health-apps/index.html.

Bashir M, Hayes C, Lambert AD, Kesan JP. Online privacy and
informed consent: the dilemma of information asymmetry. Proc Assoc
Inf Sci Technol 2015;52(1):1-10.

Nebeker C, Linares-Orozco R, Crist K. A multi-case study of research
using mobile imaging, sensing and tracking technologies to objectively
measure behavior: ethical issues and insights to guide responsible
research practice. ] Res Admin 2015;46(1):118-37.

Thomaz E, Parnami A, Essa I, Abowd GD. Feasibility of identifying
eating moments from first-person images leveraging human
computation. Proceedings of the 4th International SenseCam &
Pervasive Imaging Conference; 18-19 November, 2013; San Diego,
CA. New York: Association for Computing Machinery; 2013.
p. 26-33.

Nebeker C, Bartlett Ellis R], Torous J. Development of a decision-
making checklist tool to support technology selection in digital health
research. Transl Behav Med 2020;10(4):1004-15.

Lobelo F, Rohm Young D, Sallis R, Garber MD, Billinger SA, Duperly
J, Hutber A, Pate RR, Thomas RJ, Widlansky ME, et al. Routine
assessment and promotion of physical activity in healthcare settings: a
scientific statement from the American Heart Association. Circulation
2018;137(18):e495-522.

Chen J, Gemming L, Hanning R, Allman-Farinelli M. Smartphone
apps and the nutrition care process: current perspectives and future
considerations. Patient Educ Couns 2018;101(4):750-7.

Koonin LM, Hoots B, Tsang CA, Leroy Z, Farris K, Jolly T, Antall
P, McCabe B, Zelis CBR, Tong I, et al. Trends in the use of
telehealth during the emergence of the COVID-19 pandemic —
United States, January-March 2020. MMWR Morb Mortal Wkly Rep
2020;69(43):1595-9.

Wosik J, Fudim M, Cameron B, Gellad ZF, Cho A, Phinney D, Curtis
S, Roman M, Poon EG, Ferranti J, et al. Telehealth transformation:
COVID-19 and the rise of virtual care. ] Am Med Inform Assoc
2020;27(6):957-62.

Forster H, Walsh MC, Gibney M]J, Brennan L, Gibney ER. Personalised
nutrition: the role of new dietary assessment methods. Proc Nutr Soc
2016575(1):96-105.

Michel M, Burbidge A. Nutrition in the digital age—how digital tools
can help to solve the personalized nutrition conundrum. Trends Food
Sci Technol 2019;90:194-200.

Sauceda A, Frederico C, Pellechia K, Starin D. Results of the
Academy of Nutrition and Dietetics' consumer health informatics
work group’s 2015 member app technology survey. ] Acad Nutr Diet
2016;116(8):1336-8.

Zubin Maslov P, Schulman A, Lavie CJ, Narula J. Personalized exercise
dose prescription. Eur Heart ] 2018;39(25):2346-55.

Crump C, Sundquist K, Sundquist J, Winkleby MA. Exercise is
medicine: primary care counseling on aerobic fitness and muscle
strengthening. ] Am Board Fam Med 2019;32(1):103-7.

Spanakis EG, Santana S, Tsiknakis M, Marias K, Sakkalis V, Teixeira
A, Janssen JH, de Jong H, Tziraki C. Technology-based innovations to
foster personalized healthy lifestyles and well-being: a targeted review.
] Med Internet Res 2016;18(6):e128.

Buday R, Tapia R, Maze GR. Technology-driven dietary assessment: a
software developer’s perspective. ] Hum Nutr Diet 2014;27:10-7.
Lobelo F, Kelli HM, Tejedor SC, Pratt M, McConnell MV,
Martin SS, Welk GJ. The Wild Wild West: a framework to
integrate mHealth software applications and wearables to support
physical activity assessment, counseling and interventions for
cardiovascular disease risk reduction. Prog Cardiovasc Dis 2016;58(6):
584-94.

Ershow AG, Ortega A, Timothy Baldwin ], Hill JO. Engineering
approaches to energy balance and obesity: opportunities for novel
collaborations and research: report of a joint National Science
Foundation and National Institutes of Health workshop. ] Diabetes Sci
Technol 2007;1(1):95-105.

Opportunities and challenges of technology tools 15


https://www.calibrecontrol.com/news-blog/2019/10/28/why-is-nir-an-effective-food-testing-technique
https://felixinstruments.com/blog/food-processing-relies-on-near-infrared-spectroscopy/
https://www.hhs.gov/hipaa/for-professionals/special-topics/health-apps/index.html

Ghanbari et al. Translational Psychiatry (2021)11:103

ARTICLE Open Access

Metabolomics reveals biomarkers of opioid use
disorder

Reza Ghanbari®'?, Yuanyuan Li', Wimal Pathmasiri®', Susan McRitchie', Arash Etemadi®, Jonathan D. Pollock?,
Hossein Poustchi?, Afarin Rahimi-Movaghar’, Masoumeh Amin-Esmaeili*®, Gholamreza Roshandel @,
Amaneh Shayanrad?, Behrouz Abaei®, Reza Malekzadeh? and Susan C. J. Sumner®'

Abstract

Opioid use disorder (OUD) is diagnosed using the qualitative criteria defined by the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5). Diagnostic biomarkers for OUD do not currently exist. Our study focused on
developing objective biological markers to differentiate chronic opiate users with OUD from chronic opiate users
without OUD. Using biospecimens from the Golestan Cohort Study, we compared the metabolomics profiles of high
opium users who were diagnosed as OUD positive with high opium users who were diagnosed as OUD negative.
High opium use was defined as maximum weekly opium usage greater than or equal to the median usage (2.4 g per
week), and OUD was defined as having 2 or more DSM-5 criteria in any 12-month period. Among the 218 high opium
users in this study, 80 were diagnosed as OUD negative, while 138 were diagnosed as OUD positive. Seven hundred
and twelve peaks differentiated high opium users diagnosed as OUD positive from high opium users diagnosed as
OUD negative. Stepwise logistic regression modeling of subject characteristics data together with the 712
differentiating peaks revealed a signature that is 95% predictive of an OUD positive diagnosis, a significant (p < 0.0001)
improvement over a 63% accurate prediction based on subject characteristic data for these samples. These results
suggest that a metabolic profile can be used to predict an OUD positive diagnosis.

Introduction

More than fifty years have passed since Dole and Nys-
wander described opioid addiction as a metabolic disease,
suggesting that opioids disrupt homeostasis to produce
drug-seeking behavior in the face of adverse con-
sequences’. An important issue in the addiction is that
people exposed to opioids may develop dependence, but
not Opioid Use Disorder (OUD)? OUD is a chronic
recurrent disorder that increasingly causes undesirable
emotional states by involving the brain’s reward system
and could include impaired social functioning®*,
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Despite significant advances in the genetics and neu-
robiology of addiction as a brain disease, and preliminary
studies to discover biomarkers of OUD, validated systemic
biomarkers for OUD do not exist®. Differential diagnosis
of OUD is obtained through interview or questionnaire to
determine if the patients meet the DSM-5 diagnostic
criteria. These criteria include impaired control, social
impairment, risky use, tolerance, withdrawal, craving, and
continued use despite problems. Having at least two of the
11 criteria meets the diagnoses of OUD with the number
of criteria met as an indicator of the severity of the OUD®.

Iran is a country with a high rate of opiate use. Opium is
the main opiate used’. Our study focused on a random
sample of opium users in the Golestan Cohort Study
(GCS) in Iran, where more than 8400 individuals (about
17% of the participants) reported chronic opiate use with
a median duration of use of 19 years®. 75% of the opium
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users in the full cohort used a combination of teriak and
shireh with only 4 people reporting heroin use®.

We investigated urinary metabolomic profiles to reveal
biomarkers that could differentiate high opium users who
were diagnosed as OUD positive from high opium users
who were diagnosed as OUD negative. Our investigation
is important because optimized treatment relies on
accurate diagnosis of OUD. The DSM-5, the predominant
diagnostic instrument in psychiatry, has known limita-
tions for diagnosis of substance abuse disorders’. Objec-
tive biological markers can improve the diagnosis that is
currently based on subjective DSM-5 questionnaire. In
addition metabolites that are increased or decreased in
opium users diagnosed with OUD (compared with opium
users not diagnosed with OUD) can be used to determine
pathway perturbations, and lead to the identification of
druggable or nutritional targets.

Materials and methods
Study population

The details of the GCS (a cohort of over 50,000 adults
aged 40-75 living in Golestan Province, Northeast Iran)
have been previously published'’. The GCS was approved
by appropriate ethics committees at Tehran University of
Medical Sciences, the US National Cancer Institute (NCI,
IRB# 07-C-N120), and the International Agency for
Research on Cancer (IARC).

In 2018, a random sample of 451 GCS participants who
reported long-term opium use and 92 never-users were
recalled. They underwent a detailed interview using
modified Persian and Turkman versions of the Section L
of WHO Composite International Diagnostic Interview
(CIDI, version 2.1) to diagnose lifetime OUD’, based on
the Diagnostic and Statistical Manual of Mental Dis-
orders, 5th edition (DSM-5). The presence of 2 or more of
the 11 criteria during any 12-month period of life was
defined as lifetime OUD.

Variables considered for adjustment of the logistic
regression models (see below) included age at enrollment,
gender, tobacco use (current/former/never), BMI, and route
of opium use (ingestion/inhalation). OUD diagnosis was the
outcome for the models. Alcohol use was not included in
the analysis, because it was rare in this population, and only
3.5% of participants reported ever using alcohol.

No subjects participated in drug-related treatment for
addiction as part of the GCS. Cohort participants gave
non-fasted spot urine samples which were stored at
—20°C until 2015 when they were transferred on dry ice
to the NCI Biorepository and stored at —80 °C. Aliquots
were then shipped to UNC Chapel Hill.

Sample selection
In this sample selection, we excluded individuals who
had discordant reports of their opiate use compared with

Page 2 of 10

baseline (baseline users who reported no lifetime opium
use at the recall visit and vice versa, n = 24), and those
without a urine sample available (z=28). We also
restricted the current analysis to high opium users
reporting equal to or more than the median intake (2.4 g
per week), to reduce the chance of misclassification. The
final sample used in the current study included 138 urine
samples from high opium users who were diagnosed as
OUD positive, and 80 urine samples from high opium
users diagnosed as OUD negative. Urine samples were
selected from an additional 80 subjects who reported that
they had never used opium.

Untargeted metabolomics via ultra-performance liquid
chromatography (UPLC) high-resolution mass
spectrometry

Details of the sample preparation, data acquisition, data
preprocessing and metabolite identification and annota-
tion are provided in the Supplementary Material Section.
In brief, urine samples were prepared according to pub-
lished methods'!, and untargeted metabolomics data were
acquired on a Vanquish UHPLC systems coupled with a
Q Exactive™ HF-X Hybrid Quadrupole-Orbitrap™ Mass
Spectrometer (UPLC-HR-MS; Thermo Fisher Scientific).
Data were processed using Progenesis QI (Waters Cor-
poration). Peaks detected by UPLC-HR-MS were identi-
fied or annotated. Signals detected on our untargeted
platform are matched to an in-house physical standards
library that was developed by acquiring data for over 2000
chemical standards run under the same conditions to the
study samples. The evidence basis for metabolite identi-
fications and annotations are based on matching to our
in-house library physical standards library (Ontology
Level, OL), as well as to Public Databases (PD), and are
detailed in the supplementary material.

Hypothesis testing

Statistical tests for the normalized peaks in the meta-
bolomics profiles were conducted using a two-tailed ¢-test
with the Satterthwaite correction for unequal variances or
the chi-square test. Statistical analyses were conducted
using SAS 9.4 (SAS Institute Inc, Cary, NC). In this
exploratory metabolomics study, p-values were not
adjusted for multiple testing'>'®, The nominal p-values
are reported for the following comparisons 80 high opium
users diagnosed as OUD negative versus 138 high opium
users diagnosed as OUD positive.

Logistic regression modeling

Logistic regression was used to model which peaks/
metabolites were predictive of a positive OUD diagnosis.
Several modeling approaches were used that included all
normalized metabolomics peaks, or included subsets of
peaks. Stepwise logistic regression procedures (criteria:
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model entry p<0.1 and model removal p>0.05) with
standardization of continuous variables, was used for
model selection. The Hosmer-Lemeshow goodness-of-fit
test was used to assess the final model for adequacy.
Receiver operating characteristics (ROC) curve and the
area under the curve (AUC) were used to evaluate
metabolites as predictors of OUD. Stepwise models were
conducted, with and without subject characteristics as
potential covariates, using:

(a) 712 peaks which differentiated high opium users
who were diagnosed as OUD positive from high
opium users who were diagnosed as OUD negative.

(b) 40 identified/annotated metabolites that
differentiated the high opium users who were
diagnosed as OUD positive from high opium
users who were diagnosed as OUD negative (26
of these 40 metabolites also differentiated opium
users from non-opium users).

(¢) 14 identified/annotated metabolites that were
unique to differentiation of high opium users who
were diagnosed as OUD positive from high opium
users who were diagnosed as OUD negative (but
did not also differentiate opium users from non-
opium users).

Pathway enrichment: high opium users who were
diagnosed as OUD positive from the high opium users who
were diagnosed OUD as negative

Pathway enrichment was conducted using the
Mummichog software in Metaboanalyst 4.0'*. All features
(m/z) remaining after filtering data were entered together
with the p-value that was calculated for the comparison of
high opium users who were diagnosed as OUD positive
and high opium users who were diagnosed OUD as
negative. A p-value cut-off of 0.01 was used to determine
the size of the permutation group that the algorithm used
for selecting significant features to match for all possible
metabolites. A mass accuracy of 3 ppm was used as the
threshold for annotations used in identifying candidate
pathways. All possible metabolites which were matched
by m/z were searched in the human reference metabolic
network (hsa,, /1), and the null distribution of module
activities was estimated by using 100 permutations of
random lists drawn from the experimental reference
feature list. The candidate pathways were based on the
similarity of m/z.

Results
Sample characteristics

The subject characteristics for the 218 high Opium
users who were diagnosed as OUD positive (138 subjects)
or OUD negative (80 subjects) are provided in Table 1.
For these study samples, the OUD diagnosis was
associated at p < 0.1 with age at the time of enrollment

Page 3 of 10

Table 1 Subject characteristics of high opium users
diagnosed as OUD positive and high opium users
diagnosed as OUD negative.

Characteristic OUD positive OUD negative p-value®
(n=138) (n=80)
Age at enrollment (yrs),  49.0 (6.1) 51.0 (6.6) 0.029
mean (SD) [range] [39.7, 67.5] [40.5, 68.6]
Male (count, %) 110 (79.7%) 62 (77.5%) 0.700
Tobacco smoking status 0.141
Current smoker 76 (55.1%) 37 (46.2%)
(count, %)
Former smoker 11 (8.0%) 13 (16.3%)
(count, %)
Never smoker (count, %) 51 (36.9%) 30 (37.5%)
Opium use, maximum 310 (16.8) 29.8 (23.8) 0.698
nokhods/week, mean (SD) [12.0, 105.0] [12.0, 168.0]
[range}1
Ever used alcohol 0.790
Yes 35 (25.4%) 19 (23.8%)
No 103 (74.6%) 61 (76.3%)
Body mass index, mean 235 (4.2) 242 (47) 0.230
(SD) [range] [15.5,37.5] [15.6, 37.3]
Route of opium 0.054

administration

Inhalation 73 (52.9%) 53 (66.3%)
Ingestion 65 (47.1%) 27 (33.7%)
Severity of opioid use
disorder, DSM-5
Absent 0 80 (100%)
Mild 65 (47.1%) 0
Moderate 43 (31.2%) 0
Severe 30 (21.7%) 0

"Nokhod is the local measurement for the amount of opium used, and is
equivalent to approximately 0.2 grams (42). The sample of 218 opium users was
selected from 430 opium users with the following distribution of maximum
nokhods per week: 119 subjects had low opium use (0.3-3.0), 93 subjects had
moderate opium use (3.5-10.5), and 218 subjects had high opium use (= 12.0).
2Bold values indicate statistical significance P <0.1.

(p =0.029, OUD positive were 2 years younger than OUD
negative), and route of opium exposure (p = 0.054, higher
by inhalation than by ingestion), but was not associated
with BMI, gender, or tobacco use.

Metabolic profiles of high opium user diagnosed as OUD
positive versus high opium user diagnosed as OUD
negative

Over 7714 UPLC-HRMS signals were obtained after
data preprocessing. Hypothesis testing and fold change
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High Opium Users vs Non-users

3,217 differentiating peaks

analytics.

519 differentiating peaks

26 identified metabolites
(OL1, OL2a, OL2b)

Fig. 1 Over 3700 peaks differentiated high opium users from non-opium users. 712 peaks differentiated high opium users diagnosed as OUD
positive from high opium users diagnosed as OUD negative. 193 peaks were unique to the differentiation OUD positive versus OUD negative high
opium users. Metabolites were identified or annotated using an in-house physical standards library, and peaks were annotated using big data

High Opium Users
OUD + versus OUD —

193 differentiating peaks

14 identified metabolites
(OL1, OL2a, OL2b)

were determined for the normalized peaks in the meta-
bolomics data set for the comparison of (a) high opium
users diagnosed as OUD positive vs high opium users
diagnosed as OUD negative, and (b) opium users vs non-
opium users. Over 700 peaks (712) tested different by ¢-
test (p <0.10) between high opium users diagnosed as
OUD positive versus high opium users diagnosed as OUD
negative (Fig. 1). Forty of the 712 peaks were identified or
annotated through matching to the in-house physical
standards library (Table 2), while additional peaks were
annotated using big data analytics (Table S1).

Pathway enrichment

Pathway enrichment was conducted in Metaboanalyst'*
using all 7714 peaks. A cut-off for pathway significance
(p<0.01) was used to determine the size of the permu-
tation group that the algorithm used to determine the
enrichment between high opium users diagnosed as OUD
positive versus high opium users diagnosed as OUD
negative. The candidate pathways based on the match of
exact mass (<3 ppm) of key metabolites that are included
in the known pathway map are provided in Table S2. The
distribution plot of the Enrichment Factor versus —log10
(P) is shown in Fig. 2. High opium users diagnosed as
OUD positive versus those diagnosed as OUD negative
had an enrichment for pathways involving biotin (vitamin
B7), folate (vitamin B9), cytochrome P450 metabolism,
purine metabolism, keratan sulfate degradation, N-glycan
degradation, and R group synthesis. Vitamin absorption,
bioavailability, and utilization are known to be impacted
by drug addiction'®. Cytochrome P450s are involved in the
metabolism of opium, and the slow versus fast metabo-
lism has been associated with addiction'®. Opioid use has
been shown to alter purine metabolism'”. Keratan sulfate
is a glycosaminoglycan that is at significant levels in
central and peripheral nervous systems'®. N-glycan is

required to express the correctly folded form of the delta-
opioid receptor'®. R group synthesis is associated with the
FAD/FADH2 conversion of fatty acids.

Modeling approach 1

Stepwise logistic regression was used to determine
which of the 712 peaks were predictive of an OUD posi-
tive diagnosis. First, the area under the ROC curve (AUC)
was calculated using the subject characteristics (Table 1)
of age at the time of enrollment and route of opium use.
This base model resulted in an AUC of 0.625 (Figure S1a).
Second, all 712 peaks that differentiated (p <0.10) the
high opium users diagnosed as OUD positive from high
opium users diagnosed as OUD negative was modeled
without including subject characteristics. This resulted in
an AUC of 0.720 which was significantly different (p =
0.042) from the base model. Third, all 712 peaks that
differentiated (p < 0.10) the high opium users diagnosed as
OUD positive from high opium users diagnosed as OUD
negative was modeled with age at the time of enrollment
and opium use as covariates. This resulted in an AUC of
0.946, which was significantly increased (p < 0.0001) over
the base model. Using this modeling approach, only 16
peaks were selected that were predictive of an OUD
positive diagnosis (Table 3). Two of the 16 peaks matched
to pterin (OL1) and tryptophan (OL2b) using the in-
house physical standards library. Annotations using
public databases are provided for 6 additional peaks, while
8 of the peaks remained unknown unknowns.

Modeling approach 2

Forty of the 712 peaks that differentiated (p < 0.10) high
opium users diagnosed as OUD positive from high opium
users diagnosed as OUD negative could be matched to the
in-house physical standards library (Table 2, Fig. 1). Major
differentiators included metabolites derived from opium
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Table 2 Signals that differentiated (p < 0.10) high OUD positive opium users from high OUD negative opium users
(Fig. 1) matched to 40 metabolites in the in-house physical standards library.

Ontology Metabolite p-Value Fold change Derivation?

oL1® Pterine 0.001 13 (4)° Vitamin B9 metabolism
OL2A Deoxyadenosine 0.002 16 (+) Purine metabolism

oL1 Morphine-6-beta-D-glucuronide 0.002 1.6 (+) Opium use

oL1 Morphine-3-beta-D-glucuronide 0.004 16 (+) Opium use

OL2B Naloxone-3-beta-D-glucuronide 0.005 24 (+) Opium use

OoL1 Morphine 0.005 15 (+) Opium use

OL2B Octopamine 0.006 1.5 (+) Tryptophan metabolism
oLl Cotinine 0.006 1.6 (+) Tobacco use

OoL1 Codeine 0.007 14 (+) Opium use

oL1 Codeine-6-beta-D-glucuronide 0.013 14 (+) Opium use

OL2B Morphine-3-beta-D-glucuronide 0.015 14 (+) Opium use

OL2B Serine 0.017 17 (=) Amino acid metabolism
OL2B Morphine 0.019 15 (+) Opium use

OL2A 6-Carboxyhexonate 0.021 13 (=) Fatty acid metabolism
OL2A N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 0.023 35 () Butadiene and acrylamide
oLl Sarcosine 0.026 12 (+) Amino acid methylation
OL2A Codeine isomer or derivative 0.030 14 (+) Opium use

oLl Hydroxycotinine 0.034 14 (+) Tobacco use

OL1 N-Acetyl-DL-tryptophan 0.035 12 (-) Amino acid acetylation
OL2B Tryptophan 0.038 13 (=) Tryptophan metabolism
OoL1 Codeine 0.040 13 (+) Opium use

OL2B Dihydromorphine 0.042 1.5 (+) Opium use

OL1 N-Acetylcystine 0.048 1.1 (=) Amino acid acetylation
OoL1 Mono-isobutyl phthalate 0.049 21 (+) Environmental exposure
OoL1 N-Methyl-D-aspartic acid 0.049 12 (+) Amino acid methylation
OL2B Lauroylcarnitine 0.057 19 (-) Carnitine metabolism
OL2A Kynurenine 0.060 14 (=) Tryptophan metabolism
OoL1 Nicotine 0.068 15 (++) Tobacco use

OL2B N-Acetylproline 0.069 13 (=) Amino acid acetylation
OL1 2,4-Dihydroxypteridine 0.069 1.2 (4) Vitamin B9 metabolism
OoL1 Azelate 0.071 14 (=) Fatty acid oxidation
OL2B N-Acetylcysteine 0.072 1.2 (-) Amino acid acetylation
OL2A Creatinine 0.079 1.1 (=) Amino acid metabolism
OL2A N-Acetylproline 0.081 1.1 (=) Amino acid acetylation
OL2B Glycocholate 0.082 14 (+) Bile acid metabolism
OL1 N-Acetyl-S-(2-carbamoylethyl)-L-cysteine 0.084 1.2 (-) Butadiene and acrylamide

OL2B Mono ethyl hexyl phthalate 0.085 14 (+) Environmental exposure
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Table 2 continued

Ontology Metabolite p-Value Fold change Derivation?

OL2B 3-Methylhistamine 0.087 14 (=) Amino acid methylation
OL2A N-Acetylphenylalanine 0.094 1.2 (-) Amino acid acetylation
oLl Phosphorylcholine 0.096 19 (+) Choline metabolism

Fourteen of these metabolites (bold) were unique to the differentiation (p < 0.10) of high opium users who were diagnosed as OUD positive versus OUD negative.
“Derivation: Metabolites were derived from endogenous metabolism, opium use, tobacco use, or environmentally related exposure.

®Ontology: OL1, highly confident identification based on matching with in-house physical standard library (IPSL) via retention time (RT, with RT error <|0.5| min), exact
mass (MS, with mass error <5 ppm), and tandem mass similarity based on experimental fragmentation spectra (experimental MS/MS, with similarity >30); OL2a,
confident identification based on matching with IPSL via MS and RT; OL2b, annotation for the isomer or derivatives of the compound listed, based on matching with

IPSL via MS and MS/MS.
“Direction of change. +/—, increased/decreased in OUD positive.
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as OUD positive versus high opium users who were diagnosed OUD as negative was used as the threshold to determine the size of the permutation

P6; Biotin
Metabolism
P5; R Group
Synthesis
6 8 10

use, tobacco use, involved in biopterins and vitamin B9,
tryptophan metabolism, acetylation of amino acids, bile
acids, fatty acids, and carnitine metabolism. In addition, N-
Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (p =0.023) and
N-Acetyl-S-(2-carbamoylethyl)-L-cysteine (p = 0.083) were
lower in urine of high opium users diagnosed as OUD
positive vs high opium users diagnosed as OUD negative.
N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine and N-Acetyl-
S-(2-carbamoylethyl)-L-cysteine (p =0.083) are metabolic
products of butadiene’® (BD) and acrylamide® (AM),

respectively. These metabolites have previously been
detected in biospecimens from tobacco users at sig-
nificantly higher levels than non-tobacco users. They are
attributed to the metabolism of the parent compounds
(AM and BD) that form during the curation process, or on
combustion of tobacco®. They could also be formed in the
curing and combustion of opium or other plant material.

Stepwise logistic regression using these 40 metabolites
resulted in an AUC of 076, which was significantly
increased (p =0.0049) over the base model (Figure S1b).
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Table 3 Metabolites predictive of a positive OUD diagnosis in high opium users.

Page 7 of 10

Ontology® Model 1P Model 2° Model 3
16 peaks (Table S3) 8 metabolites (Table S4) 5 metabolites (Table S5)
OoL1 Pterine (+)° Pterine (4) Pterine (+)
oLl - Sarcosine (+) Sarcosine (+)
OL2b Tryptophan (—) Tryptophan (—) Tryptophan (—)
OoL1 - Azelate (—) Azelate (—)
OL2b - N-acetylproline (—) -
OL2b - Octopamine (+) -
OL2b - Serine (—) -
OL1 - Nicotine (+) -
OL2a - N-Acetyl-dihydroxybutyl-cysteine (—)
PDJ? 2-Polyprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone - -
PDa 5a-androst-16-en-3a-ol - -
PDa L-Tyrosinamide - -
PDb D-1-[(3-Carboxypropyl)aminol-1-deoxyfructose - -
PDc Alanyl-Proline - -
PDc Phlorisobutyrophenone 2-glucoside - -

Age at time of enrollment and route of opium use were covariates in the model. Model 1 used 712 peaks that differentiated high opium users diagnosed as OUD
positive from high opium users diagnosed as OUD negative. Models 2 and 3 included peaks matched using the in-house physical standards library.

?Ontology: OL1, highly confident identification based on matching with in-house physical standard library (IPSL) via retention time (RT, with RT error <|0.5| min), exact
mass (MS, with mass error <5 ppm), and tandem mass similarity based on experimental fragmentation spectra (experimental MS/MS, with similarity =30); OL2a,
confident identification based on matching with IPSL via MS and RT; OL2b, annotation for the isomer or derivatives of the compound listed, based on matching with

IPSL via MS and experimental MS/MS.

PEight of the 16 peaks that predicted OUD under Model 1 were identified or annotated, while 8 peaks (not listed) remained unknown.

“Direction of change. +/—, increased/decreased in OUD positive.

9pD, Public Data Base. PDa, annotation based on matching with PD via MS and experimental MS/MS (could be the listed compound, or the isomer or derivatives of the
listed compound); PDb, annotation based on matching with public database via MS and predict MS/MS; PDc, annotation for the listed compound based on matching
with public database via MS and isotopic similarity or adducts; PDd, annotation for the listed compound based on matching with public database via MS.

Including subject characteristics of age at the time of
enrollment and route of opium exposure resulted in an AUC
of 0.80, also significantly (p <0.0001) increased from the
base model. Metabolites that were predictive of an OUD
positive diagnosis (Table 3) included tryptophan, pterine,
sarcosine, N-acetylproline, azelate, octopamine, serine,
and nicotine.

Metabolic profiles unique to the OUD positive versus OUD
negative diagnosis

Five hundred and nineteen of the 712 peaks that tested
different between OUD positive high opium users versus
high OUD negative high opium users, also differentiated
the opium users from non-opium users (Fig. 1). To pro-
vide a focus on only metabolites that are important to the
diagnosis of OUD, the 519 signals that were also impor-
tant to differentiation of opium users from non-opium
users were excluded for this analysis. This resulted in 193
peaks unique to the differentiation (p <0.10) of subjects
diagnoses as OUD positive versus those diagnoses as
OUD negative. Of these 193 peaks, only 14 peaks that

defined the OUD diagnosis matched to the in-house
physical standards library. These 14 metabolites are listed
in Table 2, while the additional annotated peaks through
public databases are provided in Table S1.

Eleven of the 14 peaks that matched to the in-house
library that were most important to defining
OUD included the following endogenous metabolites:
pterine (p =0.0011), 2,4-dihydroxypterine (p =0.0695),
sarcosine (p =0.0263), phosphorylcholine (p =0.0962),
6-carboxyhexonate (p =0.021), lauroylcarnitine (0.0574),
glycocholate (p =0.0816), 3-methylhistamine (0.087),
azelate (p=0.0713), n-methyl-D-aspartic acid (p=
0.0488), and tryptophan (0.0378).

The biological significance of these 11 endogenous
metabolites is summarized:

(a) Pterin is part of biopterin and folate. Biopterins are
cofactors for aromatic amino acid hydroxylases,
which are involved in the synthesis of dopamine,
norepinephrine, epinephrine, and serotonin, and
trace amines®>. The active form of folate (vitamin
B9) is tetrahydrofolate which accepts and donates
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one carbon unit (methyl group). Diliydroxypteridine
is involved in folate and riboflavin pathways**.

(b)  Phosphorylcholine is derived from phosphorylation
of choline?, and sarcosine is an intermediate in the
metabolism of choline to glycine.

(¢) N-Methyl-d-aspartic acid (NMDA) is an agonist
at the NMDA receptor and mimics the
action of glutamate®”, and tryptophan is in the
neurotransmitter pathway®. Azelaic acid (AZA)
is a competitive inhibitor of tyrosinase in vitro®’.

(d) Lauroylcarnitine is associated with fatty oxidation
disorders involving acyl CoA dehydrogenase
deficiency, and carnitine palmitoyltransferase I and
Il deficiency®. 6-Carboxyhexanoic acid is a
medium-chain  fatty acid  derived from
heptanedioic acid and is involved in the gut
microbial biosynthesis of biotin®".

(e)  Glycocholate is a secondary bile acid, produced in the
microbial flora of the colonic environment by
bacteria®’, and is absorbed and recirculated. Bile
acids are important for absorption of hydrophobic
nutrients, dietary fats and vitamins, and the regulation
enzymes involved in cholesterol homeostasis.

() 3-Methylhistamine is a prominent metabolite of
histamine, which has a role in allergy, inflammation,
gastric acid secretion, and neurotransmission®>,

Three metabolites (Table 2) derived from exogenous

exposures were also important to the differentiation of the
high opium users who were diagnosed as OUD positive
from high opium users who were diagnosed as OUD
negative. These included mono-isobutyl phthalate (p =
0.0485, +) and mono ethyl hexyl phthalate (p = 0.0852, +),
which could arise as metabolic products following inges-
tion of phthalates that leach from plastics used in inha-
lation of opium. N-Acetyl-S-(3,4-dihydroxybutyl)-L-
cysteine was also a differentiator (p =0.0228, —), and is
presumably derived as a metabolic product of BD intake
associated with the curing or combustion of plant matter.

Modeling approach 3

Stepwise logistic regression using the 14 metabolites
unique to the differentiation of OUD positive versus OUD
negative, together with covariates of age at the time of
enrollment and route of opium use resulted in an AUC of
0.751, which was significantly increased (p < 0.0005) over
the base model (Figure Slc). Stepwise logistic regression
using only the 14 metabolites (with no subject char-
acteristics) resulted in an ACU of 0.706, which was not
significantly increased (p =0.127) over the base model.
Results from Model 3 (with or without the covariates of
age at time of enrollment and route of opium use) show 5
of the 14 metabolites (pterine, sarcosine, tryptophan,
azelate, and N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine)
as predictive of a positive OUD (Table 3).
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Discussion

Our study revealed metabolomics signatures of OUD in
a predominantly Turkmen population of chronic high
opium users. We provide metabolite identifications and
annotations for 712 features detected using untargeted
mass spectrometry that are important to the differentia-
tion of high opium users diagnosed as OUD positive from
high opium users diagnosed as OUD negative. None of
these identifications are known metabolites derived from
other drugs of abuse. Pathway enrichment analysis points
to a general disruption in vitamin B9 (folate), vitamin B7
(biotin), cytochrome P450, purine, and glycan metabo-
lism, and FAD/FADH2 conversion of fatty acids.

Stepwise logistic regression analysis of these 712 peaks,
together with subject characteristics, resulted in 16 can-
didate peaks that predict 95% of the high opium users
who were diagnosed as OUD positive.

Forty of the 712 features which differentiate high opium
users who were diagnosed as OUD positive from high
opium users who were diagnosed as OUD negative mat-
ched to an in-house physical standards library. Models
constructed with only these 40 metabolites predicted 80%
of the subjects diagnosed as OUD positive, selecting 8
metabolites as predictors. Predictors of an OUD diagnosis
in these high opium users included an increase in three
endogenous compounds (pterine, sarcosine, and octopa-
mine), a decrease in four endogenous compounds (tryp-
tophan, azelate, N-acetylproline, and serine), and an
increase in nicotine. Fourteen metabolites were deter-
mined to be unique to OUD diagnosis, after subtracting
analytes known to overlap with opium use. Models using
these 14 metabolites predicted 75% of the subjects testing
OUD positive and replicated pterine, sarcosine, trypto-
phan, and azelate as metabolite predictors.

Many identified or annotated metabolites that differ-
entiated high opium users who were OUD positive from
high opium users who were OUD negative play a sig-
nificant role in neurotransmitter synthesis and signal
transduction®*. Tryptophan is the major amino acid pre-
cursor of serotonin (5HT). 5HT deficits have been
implicated in physical symptoms and emotional dysphoria
following withdrawal from opioids®. Alterations in sar-
cosine, serine, kyneurate, NMDA found in this study are
consistent with the observations that glutamatergic sig-
naling is disrupted by opioids®. Sarcosine (methyl-gly-
cine) acts as an NMDA receptor agonist and a glycine
receptor agonist®. Serine is converted to D-serine by
serine racemace. D-serine acts as co-agonist with gluta-
mate to activate NMDA receptors®. Kyneurate a meta-
bolite of tryptophan metabolized to quinolinic acid acts as
a NMDA receptor agonist®”. Octopamine is a trace amine
that is an agonist of TAARI1 receptors implicated in
mediating the actions of drugs of abuse*’. Methylhista-
mine is a histamine receptor (H3) agonist that inhibits the
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firing of cholinergic neurons in the ventral striatum and
decreases dopamine release®'.

Limitations of the current study include the (a) use of
self-report for the amount of opium consumed, (b)
assumption that symptoms over any 12-month period-of-
time are accurately recalled, (c) estimated amount/grams
of opium may vary within or among regions, and be
underestimated®?, (d) analyses were not stratified by the
route of administration or type of opiate used due to the
sample size, and because this paper focuses on a marker of
OUD independent of route, (e) that the current study was
not powered for multiple testing, and (f) that the meta-
bolomic profiles are not quantitated, or replicated in this
cohort or across cohorts.

The year that the individuals met a DSM-5 OUD diag-
nosis during their history of opium use is unknown because
the DSM-5 interview was not conducted at the time of
baseline urine collection. These urinary baseline metabo-
lomic profiles presented herein could result from chronic
opium use, and/or from inherent individual metabolic dif-
ferences present prior to the acquisition of OUD.

Chronic use of opiates and opioids without meeting the
criteria for DSM-5 OUD is not unique to the Turkman
population for opiate use. Some chronic pain patients trea-
ted with prescription opioids and chronic users of illicit
opioids do not meet the criteria for DSM-5 OUD. This
suggests that the approaches used in this study are likely to
be generalizable to other cohorts. This is also consistent with
other substance use disorders where heavy use does not
necessarily imply a substance used disorder™.

Research on biomarkers for OUD and other substance
use disorders has focused on neuroimaging (MRI, fMRI,
and PET) and EEG studies**. While these biomarkers
may eventually be clinically validated in other popula-
tions, they will be costly to implement. In contrast,
validation of biomarkers in other populations in
accessible biological fluids (e.g., urine, blood, saliva) will
be less costly, and easier to implement in general
medical practice. In addition, these non-invasive bio-
markers will be important complements to results from
neuroimaging studies.

In conclusion, if the current results are replicated, the
identification of peripheral biomarkers for OUD would
represent a significant advancement in defining and
managing the disease. It would further validate the Dole
and Nyswander hypothesis that OUD is a brain disease in
which metabolism is disrupted, and would provide bio-
markers for OUD that could be used to optimize treat-
ment. In addition, validation of the discovered metabolic
perturbations related to vitamins and fatty acids could
lead to the development of a nutrient cocktail to test in
clinical settings for efficacy to mitigate symptoms that
lead to the diagnosis of OUD.
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Summary

Background—~Previous studies in medical imaging have shown disparate abilities of artificial
intelligence (Al) to detect a person’s race, yet there is no known correlation for race on medical
imaging that would be obvious to human experts when interpreting the images. We aimed to
conduct a comprehensive evaluation of the ability of Al to recognise a patient’s racial identity
from medical images.

Methods—Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory
Mammaogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial,
RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first,
performance quantification of deep learning models in detecting race from medical images,
including the ability of these models to generalise to external environments and across multiple
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imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic
population features by assessing the ability of these hypothesised confounders to detect race in
isolation using regression models, and by re-evaluating the deep learning models by testing them
on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of
image corruptions on model performance, we investigated the underlying mechanism by which Al
models can recognise race.

Findings—In our study, we show that standard Al deep learning models can be trained to predict
race from medical images with high performance across multiple imaging modalities, which was
sustained under external validation conditions (x-ray imaging [area under the receiver operating
characteristics curve (AUC) range 0-91-0-99], CT chest imaging [0-87-0-96], and mammaography
[0-81]). We also showed that this detection is not due to proxies or imaging-related surrogate
covariates for race (eg, performance of possible confounders: body-mass index [AUC 0-55],
disease distribution [0-61], and breast density [0-61]). Finally, we provide evidence to show

that the ability of Al deep learning models persisted over all anatomical regions and frequency
spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable
will be challenging and demand further study.

Interpretation—The results from our study emphasise that the ability of Al deep learning
models to predict self-reported race is itself not the issue of importance. However, our finding that
Al can accurately predict self-reported race, even from corrupted, cropped, and noised medical
images, often when clinical experts cannot, creates an enormous risk for all model deployments in
medical imaging.

Funding—National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of
National Institutes of Health, US National Science Foundation, National Library of Medicine
of the National Institutes of Health, and Taiwan Ministry of Science and Technology.

Introduction

Bias and discrimination in artificial intelligence (Al) systems has been studied in multiple
domains,2~* including in many health-care applications, such as detection of melanoma,>6
mortality prediction,” and algorithms that aid the prediction of health-care use,® in which the
performance of Al is stratified by self-reported race on a variety of clinical tasks.? Several
studies have shown disparities in the performance of medical Al systems across race.

For example, Seyyed-Kalantari and colleagues showed that Al models produce significant
differences in the accuracy of automated chest x-ray diagnosis across racial and other
demographic groups, even when the models only had access to the chest x-ray itself.?
Importantly, if used, such models would lead to more patients who are Black and female
being incorrectly identified as healthy compared with patients who are White and male.
Moreover, racial disparities are not simply due to under-representation of these patient
groups in the training data, and there exists no statistically significant correlation between
group membership and racial disparities.10

In related work, several groups reported that Al algorithms can identify various demographic
patient factors. One study!! found that an Al model could predict sex and distinguish
between adult and paediatric patients from chest x-rays, while other studies!? reported
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reasonable accuracy at predicting the chronological age of patients from various imaging
studies. In ophthalmology, retinal images have been used to predict sex, age, and cardiac
markers (eg, hypertension and smoking status).13-15 These findings, which show that
demographic factors that are strongly associated with disease outcomes (eg, age, sex, and
racial identity), are also strongly associated with features of medical images and might
induce bias in model results, mirroring what is known from over a century of clinical and
epidemiological research on the importance of covariates and potential confounding.16:17
Many published Al models have conceptually amounted to simple bivariate analyses (ie,
image features and their ability to predict clinical outcomes). Although more recent Al
models have begun to consider other risk factors that conceptually approach multivariate
modelling, which is the mainstay of clinical and epidemiological research, key demographic
covariates (eg, age, sex, and racial identity) have been largely ignored by most deep learning
research in medicine.

Findings regarding the possibility of confounding of racial identity in deep learning models
suggest a possible mechanism for racial disparities resulting from Al models: that Al
models can directly recognise the race of a patient from medical images. However, this
hypothesis is largely unexplored!® and, in contrast to other demographic factors (eg, age and
sex), there is a widely held, but tacit, belief among radiologists that the identification of a
patient’s race from medical images is almost impossible, and that most medical imaging
tasks are essentially race agnostic (ie, the task is not affected by the patient’s race). Given
the possibility for discriminatory harm in a key component of the medical system that

is assumed to be race agnostic, understanding how race has a role in medical imaging
models is of high importance!® as many Al systems that use medical images as the primary
inputs are being cleared by the US Food and Drug Administration and other regulatory
agencies.20-22

In this study, we aimed to investigate how Al systems are able to detect a patient’s race to
differing degrees of accuracy across self-reported racial groups in medical imaging. To do
so, we aimed to investigate large publicly and privately available medical imaging datasets
to examine whether Al models are able to predict an individual’s race across multiple
imaging modalities, various datasets, and diverse clinical tasks.

Definitions of race and racial identity

Race and racial identity can be difficult attributes to quantify and study in health-care
research23 and are often incorrectly conflated with biological concepts (eg, genetic
ancestry).24 In this modelling study, we defined race as a social, political, and legal construct
that relates to the interaction between external perceptions (ie, “how do others see me?”) and
self-identification, and specifically make use of self-reported race of patients in all of our
experiments. We variously use the terms race and racial identity to refer to this construct
throughout this study.
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We obtained public and private datasets (table 1, appendix p 2) that covered several imaging
modalities and clinical scenarios. No one single race was consistently dominant across the

datasets (eg, the proportion of Black patients was between 6% and 72% across the datasets).
For all datasets, ethical approval was obtained from the relevant institutional ethical boards.

Investigation of possible mechanisms of race detection

We conduced three main groups of experiments to investigate the cause of previously
established Al performance disparities by patient race. These experiments were: (1) to assess
the ability of deep learning Al models to recognise race from medical images, including the
ability of these models to generalise to new environments and across multiple imaging
modalities; (2) to examine possible confounding anatomic and phenotype population
features as explanations for these performance scores, and (3) to investigate the underlying
mechanisms by which Al models can recognise race. The full list of experiments are
summarised in table 2 and the appendix (pp 22-23).

We did not present measures of performance variance or null hypothesis tests because these
data are uninformative given the large dataset sizes and the large effect sizes reported (ie,
even in experiments in which a hypothesis could be defined, all p values were <0-001).

Race detection in radiology imaging

To investigate the ability of deep learning systems to detect race from radiology images,
first, we developed models for the detection of racial identity on three large chest x-ray
datasets—MIMIC-CXR (MXR),25 CheXpert (CXP),28 and Emory-chest x-ray (EMX) with
both internal validation (ie, testing the model on an unseen subset of the dataset used to train
the model) and external validation (ie, testing the model on a completely different dataset
than the one used to train the model) to establish baseline performance. Second, we trained
racial identity detection models for non-chest x-ray images from multiple body locations,
including digital radiography, mammograms, lateral cervical spine radiographs, and chest
CTs, to evaluate whether the model’s performance was limited to chest x-rays.

After establishing that deep learning models could detect a patient’s race in medical imaging
data, we generated a series of competing hypotheses to explain how this process might
occur. First, we assessed differences in physical characteristics between patients of different
racial groups (eg, body habitus?’ or breast density28). Second, we assessed whether there
was a difference in disease distribution among patients of different racial groups (eg,
previous studies provide evidence that Black patients have a higher incidence of particular
diseases, such as cardiac disease, than White patients).2%:30 Third, we assessed whether there
were location-specific or tissue-specific differences (eg, there is evidence that Black patients
have a higher adjusted bone mineral density and a slower age-adjusted annual rate of decline
in bone mineral density than White patients).31:32 Fourth, we assessed whether there were
effects of societal bias and environmental stress on race outcomes from medical imaging
data, as shown by differences in race detection by age and sex (reflecting cumulative and
occupational differences in exposures). Last, we assessed whether there was an effect on the
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ability of Al deep learning systems to detect race when multiple demographic and patient
factors were combined, including age, sex, disease, and body habitus.

We also investigated potential explanations of race detection that could target the known
shortcut mechanisms that deep models might be using as proxies for race32 by evaluating,
first, frequency domain differences in the high frequency image features (ie, textural) and
low frequency image features (ie, structural) that could be predictive of race; second, how
differences in image quality might influence the recognition of race in medical images
(given the possibility that image acquisition practices might differ for patients with different
racial identities); and, last, whether specific image regions contribute to the recognition of
racial identity (eg, specific patches or regional variations in the images, such as radiographic
markers in the top right corner).

Role of the funding source

Results

Grant support was used to pay for data collection, data analysis, data interpretation, and
writing of the manuscript. The funders did not influence the decision to publish or the target
journal for publication.

The deep learning models assessed in this study showed a high ability to detect patient race
using chest x-ray scans, with sustained performance on other modalities and strong external
validations across datasets (table 3).

The ability of deep learning models that were trained on the CXP dataset to predict patient
race from the body-mass index (BMI) alone was much lower than the image-based chest
x-ray models (area under the receiver operating characteristics curve [AUC] 0-55), indicating
that race detection is not due to obvious anatomic and phenotypic confounder variables.
Similar results were observed across stratified BMI groups (0-92-0-99; appendix p 24).

The ability of logistic regression models to classify race on the basis of tissue density (AUC
0-54) and on the combination of age and tissue density (0-61) was far lower than the ability
of the image models on the breast mammograms in the EM-Mammo dataset (0-81; appendix
p 25). These findings suggest that breast density and age did not account for most image
model performance when detecting race.

Moreover, the ability of models to predict race from the diagnostic labels alone was

much lower than the chest x-ray image-based models, with AUC values between 0-54

and 0-61 for MXR, and between 0-52 and 0-57 for CXP (appendix p 30). AUC values for
race detection in the no finding class of 0-914 (95% CI 0-901-0-926) were obtained for
Asian patients, 0-949 (0-945-0-953) for Black patients, and 0-941 (0-937-0-945) for White
patients, versus 0-944 (0-938-0-950 [Asian patients]), 0-940 (0-937-0-942 [Black patients]),
and 0-933 (0:930-0-936 [White patients]) for the entire dataset containing all disease classes,
including the no finding class. These results suggest that high AUC values for racial identity
recognition were not caused by disease labels.
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We found that deep learning models effectively predicted patient race even when the bone
density information was removed for both MXR (AUC value for Black patients: 0-960 [CI
0-958-0:963]) and CXP (AUC value for Black patients: 0-945 [C] 0-94-0-949]) datasets.
The average pixel thresholds for different tissues did not produce any usable signal to detect
race (AUC 0-5). These findings suggest that race information was not localised within the
brightest pixels within the image (eg, in the bone).

For patients in different age groups, there was no appreciable difference in racial identity
recognition performance (appendix p 15). Similarly, there was also no appreciable difference
in racial identity recognition performance between male and female patients (appendix p
17).

The performance of a logistic regression model (AUC 0-65), a random forest classifier
(0-64), and an XGBoost model (0-64) to classify race on the basis of age, sex, gender,
disease, and body habitus performed much worse than the race classifiers trained on imaging
data (AUC >0:95; appendix p 20). This finding suggests that the combination of these
confounders did not significantly affect the imaging model’s ability to classify race.

We also examined whether race information persisted in all spectral ranges and in the
presence of highly degraded images. As shown in figure 1, we tested the effect on model
performance of adding a low-pass filter and a high-pass filter for various diameters in the
MXR dataset, and show samples of the transformed images in figure 2. The addition of a
low-pass filter resulted in significantly degraded performance at around diameter ten, which
corresponded to high levels of visual degradation. A high performance (up to diameter 100)
in the absence of discernible anatomical features was maintained with the addition of a
high-pass filter (ie, model performance was maintained despite extreme degradation of the
image visually). Further experiments that used band-pass and notch filtering are reported in
the appendix (pp 25-26), with the transformed images visualised also given in the appendix

(pp 7-8).

The AUC of various image resolutions, from 1 pixel resolution to 320 x 320 images in the
MXR dataset, are shown in the appendix (p 12). For images at 160 x 160 resolution or
higher, AUC values were >0-95. There was a reduction in performance for images below this
resolution, which demonstrates that race information persisted more than random chance
even for resolutions as small as 4 x 4 (appendix p 28). Similar results were observed for the
perturbed images, with AUC values of 0-74 to 0-80 for the noisy images and 0-64 to 0-72 for
the blurred images (appendix p 29).

Concerning whether race information was localised to a specific anatomical region or body
segment, using data from multiple experiments from several datasets, there was no evidence
of a clear contribution of any anatomical regions or body segments on race identity. Models
tested on non-lung segmentations of images were better able to identify race compared with
models tested on lung segmentations, but segmented predictions were lower than the original
image predictions (appendix p 29). Therefore, the race information utilised by artificial
intelligence was likely to be determined from a combination of information from all image
segments, including both lung and non-lung segments. Similar findings were observed in
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slice-wise analysis of CT scans. Occluding the image regions identified by saliency maps
(appendix p 9) caused a decrease in AUC values in race identification but still led to AUC
values =0-67 (appendix p 29).

Race prediction was robust to the removal of any particular patch from images in the MXR
dataset, indicating that race information was not localised within a specific part of the 3

x 3 grid (appendix p 30). We observed that there are parts of the image with little race
information (appendix p 30). However, in most cases, using only one ninth of the image
was sufficient to obtain prediction performance that was almost identical to using the entire
image (appendix p 30).

Race prediction performance was also robust across models trained on single equipment and
single hospital location on the chest x-ray and mammogram datasets (appendix pp 30-31).
We observed a decrease in performance (although the outputs were better than random) on
the digitised chest x-ray in the CheXphoto dataset compared with the digital CXP dataset,
implying that some signal still persisted with different image acquisitions (appendix p 31).

Discussion

In this modelling study, which used both private and public datasets, we found that deep
learning models can accurately predict the self-reported race of patients from medical
images alone. This finding is striking as this task is generally not understood to be possible
for human experts. We also showed that the ability of deep models to predict race was
generalised across different clinical environments, medical imaging modalities, and patient
populations, suggesting that these models do not rely on local idiosyncratic differences in
how imaging studies are conducted for patients with different racial identities. Beyond these
findings, in two of the datasets (MXR and CXP) analysed, all patients were imaged in the
same locations and with the same processes, presumably independently of race.

We also provide evidence that disease distribution and body habitus of patients in the CXP,
MXR, and EMX datasets were not strongly predictive of racial group, implying that the deep
learning models were not relying on these features alone. Although an aggregation of these
and other features could be partially responsible for the ability of Al models to detect racial
identity in medical images, we could not identify any specific image-based covariates that
could explain the high recognition performance presented here.

Our findings conflict with data from Jabbour and colleagues’ study,3* which measured the
extent to which models learned potentially sensitive attributes (eg, age, race, and BMI) from
an institutional dataset (the AHRF dataset) of 1296 patient chest x-rays. Their findings led
to an AUC value of 0-66 (0-54-0-79). Possible explanations for this discrepant performance
compared with our experiment could be due to the use of transfer learning in Jabbour and
colleagues’ study, in which the MXR and CXP datasets were used for initial training, and
the final layers were fine-tuned on the AHRF dataset. This possible contamination in the
dataset might have degraded performance due to label misalignment. We do not have access
to the AHRF dataset for further external validation and Jabbour and colleagues did not
extend their experiments to MXR and CXP datasets.
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The results of the low-pass filter and high-pass filter experiments done in our study suggest
that features relevant to the recognition of racial identity were present throughout the
image frequency spectrum. Models trained on low-pass filtered images maintained high
performance even for highly degraded images. More strikingly, models that were trained on
high-pass filtered images maintained performance well beyond the point that the degraded
images contained no recognisable structures; to the human coauthors and radiologists it
was not clear that the image was an x-ray at all. Furthermore, experiments that were
involved in patch-based training, slice-based error analysis, and saliency mapping were
non-contributory: no specific regions of the images consistently informed race recognition
decisions. Overall, we were unable to isolate specific image features that were responsible
for the recognition of racial identity in medical images, either by spatial location, in the
frequency domain, or that were caused by common anatomic and phenotype confounders
associated with racial identity.

Although the ability to accurately detect self-reported race from highly degraded x-ray
images is not meaningful on its own, this ability is important in the larger sociotechnical
context that Al models operate in for medical imaging. One commonly proposed method

to mitigate the known disparity in Al model performance is through the selective removal
of features that encode sensitive attributes to make Al models “colorblind”.3> Although
this approach has already been criticised as being ineffective, or even harmful in some
circumstances,38 our work suggests that such an approach could be impossible in medical
imaging because racial identity information appears to be incredibly difficult to isolate. The
ability to detect race was not mitigated by any reasonable reduction in resolution or by

the addition of noise, nor by frequency spectrum filtering or patch-based masking. Even
ignoring the question of whether these approaches were beneficial, it seems plausible that
technical solutions along these lines are unlikely to succeed and that strategies designed

to detect racial bias,3’ paired with the intentional design of models to equalise racial
outcomes,38 should be considered to be the default approach to optimise the safety and
fairness of Al in this context. The regulatory environment in particular, while evolving, has
not yet produced strong processes to guard against unexpected racial recognition by Al
models; either to identify these capabilities in models or to mitigate the harms that might be
caused.

There were several limitations to this work. Most importantly, we relied on self-reported
race as the ground truth for our predictions. There has been extensive research into the
association between self-reported race and genetic ancestry, which has shown that there

is more genetic variation within races than between races, and that race is more a social
construct than a biological construct.24 We note that in the context of racial discrimination
and bias, the vector of harm is not genetic ancestry but the social and cultural construct

that of racial identity, which we have defined as the combination of external perceptions

and self-identification of race. Indeed, biased decisions are not informed by genetic ancestry
information, which is not directly available to medical decision makers in almost any
plausible scenario. As such, self-reported race should be considered a strong proxy for racial
identity.
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Our study was also limited by the availability of racial identity labels and the small cohorts
of patients from many racial identity categories. As such, we focused on Asian, Black,

and White patients, and excluded patient populations that were too small to adequately
analyse (eg, Native American patients). Additionally, Hispanic patient populations were

also excluded because of variations in how this population was recorded across datasets.
Moreover, our experiments to exclude bone density involved brightness clipping at 60% and
evaluating average body tissue pixels, with no methods to evaluate if there was residual bone
tissue that remained on the images. Future work could look at isolating different signals
before image reconstruction.

We finally note that this work did not establish new disparities in Al model performance

by race. Our study was instead informed by previously published literature that has shown
disparities in some of the tasks we investigated.10:3% The combination of reported disparities
and the findings of this study suggest that the strong capacity of models to recognise race in
medical images could lead to patient harm. In other words, Al models can not only predict
the patients’ race from their medical images, but appear to make use of this capability to
produce different health outcomes for members of different racial groups.

To conclude, our study showed that medical Al systems can easily learn to recognise
self-reported racial identity from medical images, and that this capability is extremely
difficult to isolate. We found that patient racial identity was readily learnable from medical
imaging data alone, and could be generalised to external environments and across multiple
imaging modalities. We strongly recommend that all developers, regulators, and users who
are involved in medical image analysis consider the use of deep learning models with
extreme caution as such information could be misused to perpetuate or even worsen the
well documented racial disparities that exist in medical practice. Our findings indicate that
future Al medical imaging work should emphasise explicit model performance audits on the
basis of racial identity, sex, and age, and that medical imaging datasets should include the
self-reported race of patients when possible to allow for further investigation and research
into the human-hidden but model-decipherable information related to racial identity that
these images appear to contain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context
Evidence before this study

We used three different search engines to do our review. For PubMed, we used

the following search terms: “(((disparity OR bias OR fairness) AND (classification))
AND (x-ray OR mammography)) AND (machine learning [MeSH Terms]).” For IEEE
Xplore, we used the following search terms: “((disparity OR bias OR fairness) AND
(mammography OR x-ray) AND (machine learning))”. For ACM, we used the following
search terms: “[Abstract: mammography x-ray] AND [Abstract: classification prediction]
AND [All: disparity fairness]”. All queries were limited to dates between Jan 1, 2010,
and Dec 31, 2020. We included any studies that were published in English, focused

on medical images, and that were original research. We also reviewed commentaries
and opinion articles. We excluded articles that were not written in English or that were
outside of the medical imaging domain. To our knowledge, there is no published meta-
analysis or systematic review on this topic. Most published papers focused on measuring
disparities in tabular health data without much emphasis on imaging-based approaches.

Although previous work has shown the existence of racial disparities, the mechanism

for these differences in medical imaging is, to the best of our knowledge, unexplored.
Pierson and colleagues noted that an artificial intelligence (Al) model that was designed
to predict severity of osteoarthritis using knee x-rays could not identify the race of the
patients. Yi and colleagues conducted a forensics evaluation on chest x-rays and found
that Al algorithms could predict sex, distinguish between adult and paediatric patients,
and differentiate between US and Chinese patients. In ophthalmology, retinal scan images
have been used to predict sex, age, and cardiac markers (eg, hypertension and smoking
status). We found few published studies that explicitly targeted the recognition of racial
identity from medical images, possibly because radiologists do not routinely have access
to, nor rely on, demographic information (eg, race) for diagnostic tasks in clinical
practice.

Added value of this study

In this study, we investigated a large number of publicly and privately available large-
scale medical imaging datasets and found that self-reported race is accurately predictable
by Al models trained with medical image pixel data alone as model inputs. First, we
showed that Al models are able to predict race across multiple imaging modalities,
various datasets, and diverse clinical tasks. This high level of performance persisted
during external validation of these models across a range of academic centres and patient
populations in the USA, as well as when the models were optimised to do clinically
motivated tasks. Second, we conducted ablations that showed that this detection was not
due to trivial proxies, such as body habitus, age, tissue density, or other potential imaging
confounders for race (eg, underlying disease distribution in the population). Finally, we
showed that the features learned appear to involve all regions of the image and frequency
spectrum, suggesting the efforts to control this behaviour when it is undesirable will be
challenging and demand further study.

Implications of all the available evidence
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In our study, we emphasise that the ability of Al to predict racial identity is itself not
the issue of importance, but rather that this capability is readily learned and therefore is
likely to be present in many medical image analysis models, providing a direct vector
for the reproduction or exacerbation of the racial disparities that already exist in medical
practice. This risk is compounded by the fact that human experts cannot similarly identify
racial identity from medical images, meaning that human oversight of Al models is of
limited use to recognise and mitigate this problem. This issue creates an enormous risk
for all model deployments in medical imaging: if an Al model relies on its ability to
detect racial identity to make medical decisions, but in doing so produced race-specific
errors, clinical radiologists (who do not typically have access to racial demographic
information) would not be able to tell, thereby possibly leading to errors in health-care
decision processes.
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Figure 1: The effect on model performance of adding a low-passfilter and a high-passfilter for
various diametersin the M XR dataset

MXR=MIMIC-CXR dataset.
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Figure 2: Samples of the images after low-passfiltersand high-passfiltersin M XR dataset
HPF=high-pass filtering. LPF=low-pass filtering. MXR=MIMIC-CXR dataset.
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Table 2:

Summary of experiments conducted to investigate mechanisms of race detection in Black patients

Areaunder thereceiver operating characteristics curve

Race detection in radiology imaging

Chest x-ray (internal validation) *

Chest x-ray (comparison of models) t

MXR, CXP, EMX

CT chest (internal validation) *

MXR (Resnet34, Densenet121) 0.97,0.94

CXP (Resnet 34) 0-98

EMX (Resnet34, Densenet121, EfficientNet-B0) 0-98, 0-97, 0-99
Chest x-ray (external validation) *

MXR to CXP, MXR to EMX 097, 0.97

CXP to EMX, CXP to MXR 0-97,0-96

EMX to MXR, EMX to CXP 0-98, 0-98

Multiple results (appendix p 26)

Image-based race detection stratified by BMI 1
EMX, MXR

NLST (slice, study) 092, 0-96
CT chest (external validation) *

NLST to EM-CT (slice, study) 0-80, 0-87

NLST to RSPECT (slice, study) 0-83, 0-90
Limb x-ray (internal validation) *

DHA 091
Mammography *

EM-Mammo (image, study) 0-78,0-81
Cervical spine x-ray *

EM-CS 0-92
Experiments on anatomic and phenotypic confounders
BMI™

CXP 0-55, 0-52

Multiple results (appendix p 24)

Breast density*

EM-Mammo 0-54
Breast density and age *

EM-Mammo 0-61
Disease distribution

MXR, CXP 0-61, 0-57
Image-based race detection for the no finding class *

MXR 0-94

Lancet Digit Health. Author manuscript; available in PMC 2022 November 11.
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Areaunder thereceiver operating characteristics curve

MXR

Removal of bone density features *
MXR, CXP

Impact of average pixel thresholds u
MXR

Impact of age 7
MXR

Impact of patient sex 1
MXR

Combination of age, sex, disease, and body habitus *

Model prediction after training on dataset with equal disease distribution t

EMX (logistic regression model, random forest classifier, XGBoost model)

0-96, 0-94

Multiple results (appendix p 27)

Multiple results (appendix p 28)

0-65, 0-64, 0.64

Experimentsto evaluate the mechanism of race detection

Frequency domain filtering
High-pass filtering *
MXR

Low-pass filtering *

MXR

Notch filtering f
MXR

Band-pass filtering t
MXR

Image resolution and quality*
MXR
Anatomical localisation
Lung segmentation experimentsf
MXR
Saliency mapsf
MXR, CXP, EMX, NLST, DHA, EM-Mammo, EM-CS
Occlusion experimentsf
MXR
Patch-based training *
MXR
Image acquisition differences’”

EMX, EM-Mammo, ChexPhoto

Multiple results (appendix p 26)

Multiple results (appendix p 26)

Multiple results (appendix p 26)

Multiple results (appendix p 25)

Multiple results (appendix p 28)

Multiple results (appendix p 29)

Multiple results (appendix pp 13-18)

Multiple results (appendix p 30)

Multiple results (appendix p 30)

Multiple results (appendix p 31)

BMI=body-mass index. CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory Cervical Spine radiograph dataset. EM-CT=Emory
Chest CT dataset. EM-Mammo=Emory Mammogram dataset. EMX=Emory CXR dataset. MXR=MIMIC-CXR dataset. NLST=National Lung
Cancer Screening Trial dataset. RSPECT=RSNA Pulmonary Embolism CT dataset.
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*
Results located in main text.

fResuIts located in the appendix.
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Table 3:

Performance of deep learning models to detect race from chest x-rays

Area under thereceiver operating characteristics curve value for race classification

Asian (95% Cl)

Black (95% ClI)

White (95% CI)

Primary race detection in chest x-ray imaging

MXR Resnet34
CXP Resnet34
EMX Resnet34

0-986 (0-984-0-988)
0-981 (0-979-0-983)
0-969 (0-961-0-976)

0.982 (0-981-0-983)
0-980 (0-977-0-983)
0-992 (0-991-0-994)

0981 (0-979-0-982)
0-980 (0-978-0-981)
0-988 (0-986-0-989)

External validation of race detection modelsin chest x-ray imaging

MXR Resnet34 to CXP
MXR Resnet34 to EMX  0-914 (0-899-0-928)
CXP Resnet34 to MXR
CXP Resnet34 to EMX

EMX Resnet34 to CXP

0-947 (0-944-0-951)

0-974 (0-971-0-977)
0-915 (0-901-0-929)

EMX Resnet34 to MXR  0-966 (0-962-0-969)

0-949 (0-946-0-952)

0-962 (0-957-0-966)
0983 (0-981-0-985)
0-955 (0-952-0-957)
0-968 (0-965-0-971)
0970 (0-968-0-972)
0-973 (0-970-0-977)

0948 (0-945-0-951)
0975 (0-973-0-978)
0956 (0-954-0-958)
0954 (0-951-0-958)
0964 (0-962—0-965)
0947 (0-945-0-950)

Race detection in non-chest x-ray imaging modalities: binary race detection (Black or White)

NLST

NLST to EM-CT
NLST to RSPECT
EM-Mammo
EM-CS

DHA

092 (slice; 0-910-0-918), 0-96 (study; 0-926-0-982)
0-80 (slice; 0-796-0-800), 0-87 (studly; 0-829-0-904)
0-83 (slice; 0-825-0-834), 0-90 (study; 0-836-0-958)
078 (slice; 0-773-0-786), 0-81 (study; 0-794-0-818)
0-913 (0-892-0-931)

087 (0-752-0-894)

Values reflect the area under the receiver operating characteristics curve for each model on the test set per slice and per study (by

averaging the predictions across all slices). CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory Cervical Spine radiograph

Page 22

dataset. EM-CT=Emory Chest CT dataset. EM-Mammo=Emory Mammogram dataset. EMX=Emory CXR dataset. MXR=MIMIC-CXR dataset.

NLST=National Lung Cancer Screening Trial dataset. RSPECT=RSNA Pulmonary Embolism CT dataset.
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Abstract

In utero and early life exposure to inorganic arsenic (iAs) alters immune response in experimental
animals and is associated with an increased risk of infant infections. iAs exposure is related to
differences in the gut microbiota diversity, community structure, and the relative abundance of
individual microbial taxa both in laboratory and human studies. Metabolomics permits a direct
measure of molecular products of microbial and host metabolic processes. We conducted NMR
metabolomics analysis on infant stool samples and quantified the relative concentrations of 34
known microbial-related metabolites. We examined these metabolites in relation to both in utero
and infant log, urinary total arsenic concentrations (utAs, the sum of iAs and iAs metabolites)
collected at approximately 6 weeks of age using linear regression models, adjusted for infant sex,
age at sample collection, type of delivery (vaginal vs. cesarean section), feeding mode (breast
milk vs. any formula), and specific gravity. Increased fecal butyrate (6= 214.24), propionate (6=
518.33), cholate (6= 8.79), tryptophan (6= 14.23), asparagine (6 = 28.80), isoleucine (6= 65.58),
leucine (b= 95.91), malonate (4 =50.43), and uracil (& = 36.13), concentrations were associated
with a doubling of infant utAs concentrations (p<0.05). These associations were largely among
infants who were formula fed. No clear associations were observed with maternal utAs and
infant fecal metabolites. Metabolomic analyses of infant stool samples lend further evidence that
the infant gut microbiota is sensitive to As exposure, and these effects may have functional
consequences.
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Introduction

Arsenic (As) is naturally present in the earth’s crust and has been used for a broad

range of industrial purposes, including as antibacterial and immune modulating medicines
in the nineteenth and early twentieth centuries (Kapp 2018). Anthropogenic and natural
sources of As contribute to widespread exposure primarily from the food and drinking
water systems. The World Health Organization estimates that at least 140 million people
worldwide across 50 countries are exposed to drinking water exceeding the provisional
guideline of 10 pg/L As. Populations relying on private, unregulated water systems remain
vulnerable to As concentrations above regulatory limits. Fish and seafood contain As in
forms that are not metabolized by humans and therefore considered non-toxic such as
arsenobetaine. However, other dietary sources, especially rice and rice products, fruits and
fruit juices, and seaweeds, may contain appreciable concentrations of inorganic As (iAs)
and other potentially detrimental forms of As (EFSA Panel on Contaminants in the Food
Chain 2009). Diet is the primary source of As exposure for the majority of people and
contributes to disproportionately higher intakes of As among young children for their body
weight (EFSA Panel on Contaminants in the Food Chain 2009). This poses a health concern,
especially for infants consuming formula mixed with potentially contaminated water and
when transitioning to solid foods such as infant rice cereal (EFSA Panel on Contaminants in
the Food Chain 2009; Carignan et al. 2016; Signes-Pastor et al. 2018).

Evidence both from laboratory experiments and epidemiologic investigations support
immunotoxic effects of As on both innate and adaptive immunity (Dangleben et al. 2013).
In our earlier work, we observed an increased risk of infant infection associated with higher
in utero As concentrations, and specifically lower respiratory infections Farzan et al. 2016.
Immunity develops in utero and evolves during the first years of life (Dietert et al. 2010).
The gut microbiota plays an essential, bidirectional role in this process—gut microbiota
stimulate the maturation of the neonatal immune system, and in turn, an infant’s immune
response helps to shape the composition of microbes inhabiting the gut (Madan et al.
2012). We previously reported on the relation between infants’ urinary As concentrations
and gut microbiota composition in a pregnancy cohort of maternal—child dyads from New
Hampshire (Hoen et al. 2018; Laue et al. 2020). Notably, we observed decreased relative
abundance of keystone taxa in the genera Bacteroides and Bifidobacterium involved in
immune maturation (Hoen et al. 2018; Laue et al. 2020). Analysis of fecal samples using
next-generation sequence-based methods allowed us to observe the genetic make-up of
microbes in the gut and estimate its diversity, community structure, and composition.
However, it only can be used to make inferences about the collective function of the gut
microflora. Metabolomics complements genetic sequence-based profiling by providing a
critical bridge from microbiota composition to the complex array of small molecules that
directly influence biologic activities. As-induced functional changes in the gut microbiota
as reflected in the metabolome have been characterized from mouse experiments (L. et al.
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2019). By comprehensively profiling the fecal metabolome in the context of a longitudinal
pregnancy cohort study, we sought to gain a clearer window into the phenotype of the human
infant gut microbiota related to As exposure.

Materials and Methods

Study Population

Our study is based on the ongoing New Hampshire Birth Cohort Study of women

recruited during pregnancy and whose offspring are followed to update exposure and health
information (Hoen et al. 2018). Reproductive and medical history, health, diet, and lifestyle
factors were ascertained from questionnaires and medical record review during pregnancy,
and a maternal urine sample was collected at approximately 24 to 28 weeks gestation.
Newborn infant characteristics were documented from the delivery medical records, and
both infant urine and stool samples were collected at approximately 6 weeks of life.

Assessment of Maternal Pregnancy (In Utero) and Infant Postnatal As Exposure

iAs undergoes a series of reduction and oxidative methyl processes from iAslV to iAsll|

to MMAV to monmethyl-arsonus acid (MMAIII) to DMAV and is excreted in these forms
(Abuawad et al. 2021). Therefore, to estimate As exposure, we analyzed urine samples
collected during pregnancy at 24-28 weeks gestation and during infancy at approximately

6 weeks of life for As species [arsenite (iAslll), arsenate (iAsV), monomethylarsonic acid
(MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB)] using high-performance
liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry, ICPMS
(Hoen et al. 2018). To compute total urinary As we summed the individual fractions

of iAs (iAslll and iAsIV) and the metabolites of iAs, MMA, and DMA (utAs = iAs +
MMA + DMA), excluding arsenobetaine found in fish and seafood, which is unmetabolized
and considered non-toxic. Although MMAIII is excreted it is rapidly converted to DMA
and therefore typically undetectable using standard approaches. Specific gravity of urine
was determined by a handheld refractometer with automatic temperature compensation
(PAL-10S; ATAGO Co. Ltd.) to adjust for urinary dilution. We further divided MMA by
iAs and DMA by MMA to calculate the primary and secondary methylation indices (PMI
and SMI), respectively, as indicators of iAs metabolic capacity (Shen et al. 2016). Detection
limits for iAs, MMA, and DMA were 0.1, 0.02 and 0.02 pg/L. The spiked recovery rates
averaged 82% for iAs, 91% for MMA, 89% for DMA and 94% for AsB.

Stool Collection

Infant diapers containing stool were collected at home by caregivers, stored in a home
freezer, and then brought frozen to the 6-week postpartum visit in thermal transport bags on
ice packs or transported directly on ice packs. Upon receipt, diapers were stored at — 80 °C
until processing. Following an overnight thaw at 4 °C, the stool was aliquoted and frozen

at — 80 °C. Stool samples aliquoted into tubes certified as trace element free were used for
metabolomic analysis.
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Sample Preparation and Data Acquisition

De-identified aliquots of infant stool samples, along with replicates for quality control (QC),
were shipped to the NIH Eastern Regional Comprehensive Metabolomics Research Core on
dry ice and immediately stored at — 80 °C after being logged in for metabolomics analysis.
The metabolomics analysis were adapted from previously described procedures (Brim et

al. 2012, 2017; Livanos et al. 2016). Briefly, samples were randomized into batches. In

each batch, samples were thawed, and ~150 mg of stool was transferred to MagNA Lyser
tubes after recording the weight; samples were then homogenized with 50% acetonitrile

in water by using a bead homogenizer (100 mg fecal mass/mL). Homogenized samples
were centrifuged at 16,000 rcf, and the supernatant was separated into another tube. An
aliquot (1000 pL, 100 mg equivalent of fecal mass) was transferred into an Eppendorf tube
and lyophilized overnight. The dried extract was reconstituted in 700 uL of NMR master
mix (containing 0.2 M phosphate, 0.5 mM DSS-d6, and 0.2% sodium azide), vortexed

on a multitube vortexer at speed 5 for 2 min, and centrifuged at 16,000 rcf for 5 min.

A 600 pL aliquot of the supernatant was transferred into a pre-labeled 5 mm NMR tube

for data acquisition on a 700 MHz spectrometer. Additionally, pooled QC samples (study
pools created from randomly selected study samples and batch pools) were generated

from supernatants of study samples, and aliquots of pooled QC samples were dried and
reconstituted similar to study samples described above and used for further QC purposes.
1H NMR spectra of feces samples were acquired on a Bruker 700 MHz NMR spectrometer
using a 5 mm cryogenically cooled ATMA inverse probe and ambient temperature of 25 °C.
A 1D NOESY presaturation pulse sequence (noesygpprld, [recycle delay, RD]-90°-f1-90°-
fm-90°-acquire free induction decay (FID)]) was used for data acquisition (Beckonert et

al. 2007; Dona et al. 2014). For each sample, 64 transients were collected into 64k data
points using a spectral width of 12.02 ppm, 2 s relaxation delay, 10 ms mixing time, and an
acquisition time of 3.899 s per FID. The water resonance was suppressed using resonance
irradiation during the relaxation delay and mixing time. NMR spectra were processed using
TopSpin 3.5 software (Bruker-Biospin, Germany). Spectra were zero-filled, and Fourier
transformed after exponential multiplication with a line broadening factor of 0.5. Phase and
baseline of the spectra were manually corrected for each spectrum. Spectra were referenced
internally to the DSS-d6 signal (¢=0 ppm). The quality of each NMR spectrum was assessed
for the level of noise and alignment of identified markers. Spectra were assessed for missing
data and underwent quality checks. NMR bins (0.5-9.0 ppm) were created excluding water
(4.73-4.85 ppm) using intelligent bucket integration of 0.04 ppm bucket width with 50%
looseness using ACD Spectrus Processor (ACD Labs, Inc., Toronto, Canada). Integrals of
each of the bins were normalized to the total integral of each of the spectra. Chenomx

NMR Suite 8.1 Professional (Chenomx, Inc., Edmonton, AB, Canada) (Weljie et al. 2006)
was used to determine the relative concentrations of library-matched metabolites previously
identified as associating with host and gut microbes co-metabolism (Li et al. 2008; Zheng et
al. 2011; Nicholson et al. 2012).

Statistical Analyses

Statistical analyses were conducted using data from infants at approximately 6 weeks
who had fecal metabolomics data and complete covariate data. Descriptive statistics were
calculated for the participant characteristics, As concentrations, and relative concentration
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of metabolites. The masked QC replicates were used to calculate the intra-class correlation
(ICC) for each metabolite with a detectable relative concentration. Any metabolite with an
ICC < 0.2 was excluded from the analysis.

Normalized binned NMR data were Pareto-scaled and centered prior to multivariate analysis
using SIMCA 14 (Sartorius Data Analytics, Umed, Sweden). The scores plot from the
principal component analysis (PCA) was inspected to ensure that the laboratory QC pool
samples were clustered in the center of study samples used to create the pools, a method
widely applied to metabolomic studies (Chan et al. 2011; Masson et al. 2011; Broadhurst et
al. 2018).

Spearman correlations were calculated for each metabolite’s relative concentration with
urinary total As (utAs). Metabolites with p-value < 0.1 were used as the outcome

in multivariable linear regression models to determine the associations between log,
transform of urinary As concentration (maternal and infant utAs separately). Models

with infant urinary As concentrations were adjusted for infant age, sex, feeding method
(exclusive breastfeeding or formula/mixed feeding at 6 weeks of age), urine-specific
gravity, and delivery mode (vaginal or cesarean section). Models with maternal urinary As
concentrations were adjusted for urine-specific gravity, infant age, sex, feeding method, and
delivery mode. Continuous variables were centered prior to modeling. We also performed
the analysis stratified by below or equal to or above the median infant urinary PMI (0.35)
and SMI (8.06).

SAS 9.4 (SAS Institute, Inc., Cary, NC) was used for calculating descriptive statistics,
hypothesis tests, correlations, and linear regression, and ICC coefficients of replicate
samples. For this exploratory study, p-values < 0.05 were considered to be statistically
significant and were not adjusted for multiple testing (Bender and Lange 2001; Xi et al.
2014).

Pathway Enrichment Analysis

Results

GeneGo MetaCore (Clarivate Analytics, PA) was used to assess the enrichment of perturbed
metabolic pathways derived from the concentration data. MetaCore uses the hypergeometric
test, which represents the enrichment of certain metabolites in a pathway, together with

the false discovery rate (FDR). A g-value < 0.05 is considered indicative of significant
enrichment in pathways.

Study Population

A total of 83 infants with NMR metabolomics data acquired from infant stool samples
also had maternal urinary As species measured at approximately 24 to 28 weeks gestation
and complete data for model covariates. Eighty-one infants with NMR metabolomics data
also had an analyzed postnatal, approximately 6-week urine sample for As species and
complete data for model covariates. The mean age of the 81 infants at stool and urine
sample collection was 46 days, 62% were boys, 26% were delivered by cesarean section,
and 42% were exclusively breast-fed (Table 1). The utAs concentration during pregnancy
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was on average 4.1 mg/L, with a range of 0.2 to 21.0 mg/L (Table 1). Among infants at
approximately 6 weeks of age, the average utAs concentration was 0.6 pg/L with a range
of 0.1 to 5.2 pg/L (Table 1). The mean (range) of the individual As species were 0.1 pg/L
(undetectable to 1.0 pg/L) for iAs, 0.1 ug/L (undetectable to 0.4 pg/L) for MMA, 0.4 pg/L
for DMA (undetectable to 4.5 pg/L) and 0.1 pg/L for AsB (undetectable to 1.2 ug/L).
Maternal utAs concentrations averaged 4.1 pg/L, with a range of 0.2 to 21.0 pg/L (Table
1). Urinary specific gravity was within a narrow range in both maternal and infant samples
(mean = 1.01; range 1.00, 1.03 and mean 1.00; range 1.00, 1.02, respectively).

Quality Control

ICCs for formate and fumarate fell below 0.2 and thus were excluded from further

analyses. The average ICC coefficients for the remaining 34 metabolites ranged from 0.2
for isobutyrate to 0.99 for succinate (Supplemental Table 1) and averaged 0.75 for those
metabolites used in the analysis. Laboratory QC pools were centered in the PCA plots of the
samples from which the pools were created, further indicating that the NMR data were of
high quality (data not shown).

Linear Regression

Eighteen of the 34 concentration fitted metabolites with ICC = 0.2 had p-values <

0.1 for Spearman correlations with utAs (Supplemental Table 2). These 18 metabolites
measured from infant fecal samples were used as the dependent variables in multivariable
linear regression models to examine the associations between maternal and infant urinary
utAs (independent variables) after adjusting for covariates. A doubling of infant utAs
concentrations was associated with statistically significant increases (p < 0.05) in the relative
concentrations of infant fecal short-chain fatty acids (SCFAS) butyrate (6= 214.24) and
propionate (6= 518.33); the bile acid cholate (6 = 8.79); the amino acids asparagine

(b= 28.80), isoleucine (b= 65.58), leucine (6= 95.91); and tryptophan (4= 14.23), the
pyrimidine uracil (6= 36.13), and the organic acid malonate (6= 50.43, Table 2). Positive
associations tended to occur among infants fed formula, with negative associations for
certain metabolites among exclusively breast-fed infants (Supplemental Table 3). Additional
interactions were observed with phenylalanine and proline (Supplemental Table 3). Maternal
urinary As was related only to infant fecal acetate concentration in unadjusted models (/5=

- 0.24, p=0.031) but was no longer statistically significant after adjustment (6= — 847.51,
p=0.115). Associations with infant urinary As and tryptophan were largely among those
with high PMI (p for interaction = 0.0228, Supplemental Table 4), and those for cholate
were largely among those with low SMI (p for interaction = 0.0037, Supplemental Table 5).
However, most interaction terms did not reach statistical significance.

Pathway Analysis of Concentration Data

MetaCore pathway enrichment analysis using the metabolites associated with utAs in infant
urine by Spearman correlation (o < 0.1, Supplemental Table 6). Top enriched pathways
identified included aminoacyl-t-RNA biosynthesis, amino acid dependent mTORC1
activation (signal transduction), amino acid metabolism (lysine, branched chain amino acids,
BCAA:s (isoleucine, leucine, valine), and methionine), saturated fatty acid synthesis to
hexadecenoic acid, regulation of lipid metabolism (by niacin and isoprenaline), immune
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responses [through myeloid-derived suppressor cells (MDSC), M2 macrophages, and Treg
cell-mediated modulation of antigen-presenting cell (APC) functions] were among the top
enriched pathways (Fig. 1).

Discussion

As exposure remains a major public health concern problem worldwide. The gut microbiota
biochemically transforms As compounds (Coryell et al. 2019; McDermott et al. 2020) and
at the same time may be affected by As exposure (Chi et al. 2018; McDermott et al. 2020).
In our prospective pregnhancy cohort study, we observed positive associations between infant
urinary As concentrations and the relative concentration of nine infant fecal metabolites
(asparagine, butyrate, cholate, isoleucine, leucine, malonate, propionate, tryptophan, and
uracil) in multivariable regression analyses. Maternal urinary As concentrations during
pregnancy were unrelated to infant fecal metabolites overall. Only a weakly negative
association (adjusted p= 0.115) was observed between maternal urinary As concentrations
and infant fecal acetate concentrations. However, as As concentrations change over the
course of pregnancy (Hopenhayn et al. 2003; Tseng 2009; Gardner et al. 2011; Gao et

al. 2019a, b; Gao et al. 20194, b), it is conceivable that our sampling of ~ 24-28 weeks
gestation did not capture the relevant time window to influence maternal-fetal transfer of
the microbiome during delivery or otherwise influence either microbe or host metabolic
products. We found concentrations of SCFAs, bile acids, amino acids, organic acids, and
pyrimidines associated with infant urinary As concentrations. These changes may reflect
impacts on the microbial composition of the gut or activation or detoxification pathways
of either the host or microbes, epigenetic effects or other mechanisms. Thus, alterations

in the metabolic pathways associated with these metabolites by As may provide insights
on the mechanistic interplay between As and the gut microbiota with functional health
consequences.

We previously identified associations between infant urinary As concentration and the gut
microbiota at about 6 weeks of age (Hoen et al. 2018). Findings were especially evident
among those receiving formula, as in the current study. Based on earlier work of our
study and others (Carignan et al. 2016), formula results in higher As exposure due to

both the formula powder and the water used to mix the formula. Household tap water

can contain high levels of As in our rural cohort which whose households were served by
private unregulated water systems such as bedrock wells as an eligibility criterion (Hoen et
al. 2018). Eight genera, six within the phylum Firmicutes, were enriched with higher As
exposure. This is consistent with our current results of a positive relationship with fecal
butyrate and propionate concentrations which are produced by anaerobic fermentation of
dietary carbohydrates by Firmicutes (Louis and Flint 2017; Appert et al. 2020).

SCFAs, succinate, formate, acetate, butyrate, and propionate. are important energy sources
for intestinal epithelial cells, have diverse regulatory functions, and impact host physiology
and immunity (Louis and Flint 2017; Appert et al. 2020). Of these, acetate has the highest
systemic concentrations, as they can be produced by most gut anaerobes, whereas propionate
and butyrate are products of only a select group of gut microbiota (Louis and Flint 2017).
Butyrate, a SCFA produced by bacterial fermentation of dietary fiber, is considered a
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key metabolite during infant gut development in part for its immunoregulatory effects
(Roduit et al. 2019). Microbial metabolites, including butyrate, also are hypothesized

to play an important role in the gut-brain axis by modulating the functional and

signaling activity of brains cells and the blood—brain barrier and influence risk of
neurodevelopmental outcomes such as autism (Smith 2015; Liu et al. 2019; Silva et al.
2020). There is evidence of functional redundancy of butyrate producers with co-occurrence
of Clostridiaceae, Ruminococcaceae, and Lachnospiraceae, dominated by the endospore-
forming Clostridiaceae (Appert et al. 2020). Further, proteolytic microbiota in the gut
produce butyrate and propionate from peptide and amino acid fermentation (Louis and Flint
2017).

Propionate is a metabolite produced by genera in both Firmicutes and Bacteroidetes,
including Bacteroides and Clostridium G2 (Gonzalez-Garcia et al. 2017; Louis and Flint
2017). Like propionate, malonate, which also was increased in relation to higher As
exposures, plays a role in tricarboxylic acid cycle and other bacterial metabolic processes
(Suvorova et al. 2012). In addition, malonate competitive inhibits succinate dehydrogenase
and is involved in the metabolism of propionate (Suvorova et al. 2012). Thus, perturbations
in either gut microbes that produce propionate, or in Krebs cycle metabolism that produces
malonate, could in part explain the observed differences in propionate and malonate
metabolism. However, our results need to be replicated in further studies.

In pathway analyses, we found alterations in metabolites enriched in MDSCs and M2
macrophages in cancer, and immune response, Treg cell-mediated modulation of APC
functions) in relation to infant urinary As concentrations. MDSCs inhibit T cell function.
T cell alterations occur with leukemia treatment with As (Gao et al. 2017) and have been
observed both in highly drinking water-exposed populations (Burchiel et al. 2020), and
in our own US cohort of infants exposed prenatally (Nygaard et al. 2017), we observed
decreased cord blood naive T-cells in relation to utAs concentrations during pregnancy.

Enriched pathways identified in our analyses included aminoacyl-tRNA biosynthesis and
amino acid metabolism [lysine, BCAAs (isoleucine, leucine, valine), and methionine].
Martin and colleagues likewise found urinary As concentrations associated with differences
in aminoacyl-tRNA-biosynthesis in plasma of adult diabetics from the Chihuahua cohort
(Martin et al. 2015). In an As-exposed pregnancy cohort from Durango, Mexico, Laine, and
colleagues found that maternal urinary iAs% and MMA% related to newborn cord blood
aminoacyl-tRNA biosynthesis. Thus, our findings based on fecal metabolites likely reflect
host as well as microbial metabolism.

In humans, As undergoes methyl metabolism, and methionine is involved in producing
S-adenosylmethionine, the major methyl donor. Interestingly, methionine metabolism was
among the top pathways enriched in our study. Both laboratory and population-based studies
report changes in DNA methylation as well as H3 lysine 9 dimethylation (Howe and Gamble
2016) in relation to As exposure, which in turn could influence gene expression and cell

fate (Tollervey and Lunyak 2012). Seventeen different types of PTMs on more than 30
amino acids have been identified for human H3 alone including the acetylation (ac) and
methylation (me) of lysine residues (K) (Howe et al. 2017). Rats deprived of methionine
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lived longer and had attenuated age-related T cell changes (Miller et al. 2005). Thus,

higher fecal methionine concentrations could affect immune function and downstream gut
microbiota composition. We observed few differences in our associations by primary or
secondary methylation status; and not for methionine as found in a prior study of prenatal
urinary As in relation to cord blood metabolites (Laine et al. 2017). Further, in our study,
higher infant urinary As associated with higher fecal uracil. Arsenic trioxide was found to
perturb SUMO- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis,
which can lead to misincorporation of uracil into DNA and genome instability (Kamynina et
al. 2017).

We also found increases in isoleucine and leucine concentrations in relation to an infant’s
urinary As concentrations. In a Caenorhabditis elegans model, response to As toxicity was
in part driven by genetic variation in gbt-1 (Zdraljevic et al. 2019), which encodes the

E2 subunit of the branched-chain keto acid dehydrogenase (BCKDH) complex involved

in BCAA metabolism. BCAA changes following As treatment further suggested BCAA
metabolism as a target of As toxicity. This is consistent with our findings that isoleucine and
leucine may be altered in infants with higher As exposure, although additional mechanistic
and epidemiologic studies are needed.

We found that tryptophan, which is converted by gut bacteria to indole (Lu et al. 2014)

was positively associated with As concentrations, especially among those with higher PMIs;
this suggests a possible reduction in gut microbial conversion of tryptophan into indole
containing metabolites. Cholate is a primary bile acid synthesized in the liver from the
oxidation of cholesterol. Bile acids further undergo deconjugation and dihydroxylation by
gut microbes (Tian et al. 2020). In our study, the positive association with fecal cholate was
stronger among those with lower SMIs. Metabolism of iAs, and accumulation of MMA, in
particular, has been associated with a myriad of health outcomes (Abuawad et al. 2021).
Whether fecal metabolic differences exist by As metabolic capacity (measured by urinary
metabolites or genetic characterization) and whether these differences influence children’s
later risk of disease merits further investigation. Thus, while preliminary, our findings align
with known processes and may inform new avenues of mechanistic exploration.

In summary, our exploratory study indicates that As exposure in infants may have
functional perturbations in the infant gut microbiota—host interactions consistent with our
previous microbiota analysis. These perturbations could be attributed primarily to bile acid
metabolism, SCFA and organic acid metabolism, amino acid metabolism, and pyrimidine
metabolism. Our findings further support earlier findings that As exposure in infants affects
the developing infant gut microbiota.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Changes in microbe related metabolite concentrations with a doubling (logy) of infant urinary arsenic
concentrations (7= 81) from multivariable linear regression models

Metabolite B(95% Q) p-value
Short-chain fatty acids
Butyrate 214.24 (83.78, 344.70) 0.0016
Propionate 518.33 (94.39,942.28) 0.0172
Isobutyrate 2.61(-0.86,6.07) 0.1378
Lipids
Glycerol -67.89 (-139.16,3.38)  0.0616
Bile acid
Cholate 8.79(4.21, 13.36) 0.0003
Amino acids
Tryptophan 14.23 (3.71,24.74) 0.0087
Lysine 63.29 (-42.79, 169.36) 0.2383
Asparagine 28.80(10.27,47.33) 0.0028
Methionine 16.91 (-5.32, 39.14) 0.1338
Proline 17.09 (-28.28, 62.46) 0.4553
Isoleucine 65.58 (10.56, 120.60) 0.0201
Leucine 95.91 (8.88, 182.95) 0.0312
Glutamate 119.69 (-22.02,261.40)  0.0966
Phenylalanine 18.38 (-12.46,49.23) 0.2388
Sugars
Fucose -126.31 (-307.21,54.59)  0.1683
Organic acid
Malonate 50.43 (3.14,97.72) 0.0369
Pyrimidine
Uracil 36.13 (2.74,69.52) 0.0343
Other
Propylene glycol — -62.58 (-128.62, 3.46) 0.0629

Adjusted for infant sex, age, type of delivery (vaginal vs. C-section), feeding mode (breast milk vs. any formula), and specific gravity
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Data currently generated in the field of nutrition are becoming increasingly complex and high-dimensional, bringing with them new methods
of data analysis. The characteristics of machine learning (ML) make it suitable for such analysis and thus lend itself as an alternative tool to deal
with data of this nature. ML has already been applied in important problem areas in nutrition, such as obesity, metabolic health, and malnutrition.
Despite this, experts in nutrition are often without an understanding of ML, which limits its application and therefore potential to solve currently
open questions. The current article aims to bridge this knowledge gap by supplying nutrition researchers with a resource to facilitate the use of
ML in their research. ML is first explained and distinguished from existing solutions, with key examples of applications in the nutrition literature
provided. Two case studies of domains in which ML is particularly applicable, precision nutrition and metabolomics, are then presented. Finally, a
framework is outlined to guide interested researchers in integrating ML into their work. By acting as a resource to which researchers can refer, we
hope to support the integration of ML in the field of nutrition to facilitate modern research. Adv Nutr 2022;13:2573-2589.

Statement of Significance: Many problems in nutrition are complex, multifactorial, and unlikely to be solved with data analysis methods
that have been used traditionally; however, the capabilities of machine learning may be able to. For nutrition researchers to fully capitalize on
the types of data that will be generated in the coming years, we provide a guide to machine learning in nutrition for nutrition researchers.

Keywords: machine learning, personalized nutrition, omics, obesity, diabetes, cardiovascular disease, models, random forest, XGBoost

Introduction

There is a high prevalence of nutritionally mediated chronic
diseases that have multifaceted origins and require com-
plex and diverse data to be solved. Traditional research
applications have approached these questions with focused
and mechanistic techniques that may not fully capture
the complexity of the interaction between nutrition and
disease. Technological and computational advances have
recently allowed investigators to utilize high-dimensional
data approaches to better understand these diseases and
other complex questions. Topical themes, such as obesity (1,
2), omics (3, 4), and the microbiome (5-7), as well as older
subjects such as epidemiology, are deriving benefits from
these developments (8-10). Due to the increasing complexity
of the data generated, new trends in nutrition research, such
as precision nutrition (PN) (11) and data-driven disease
modeling (12, 13), require an increasing complexity in
algorithms to make sense of these data; artificial intelligence
(AI) and its subdivision, machine learning (ML), have been
important for this.

The terms AI and ML are used interchangeably in some
of the literature (13), exposing some of the conceptual con-
fusion that surrounds these topics. The overall goal of Al is to
simulate human-like intelligence in a computer system (14).
ML is the overarching term used for a subset of algorithms
that help achieve this goal. These algorithms are self-learning
from the data with which they are presented and can identify
complex underlying patterns in data; they are also capable
of processing unstructured types of data that traditional
statistical techniques are incapable of doing, such as free text,
images, video, and audio. Making such unstructured data
available for use by ML algorithms increases the amount and
potentially the quality of information available, which can
lead to better predictive capacity.

By using ML algorithms, the work in the field of AI so
far has been able to build systems that are performing well
in a specific task. However, outside the scope of that task,
most of these systems perform poorly, meaning that true
intelligence has yet to be achieved (14). For nutritionists,
the application of ML algorithms to their data is not
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to approximate human intelligence but rather to process
complex data to generate results relevant to health and
disease or to process large volumes of complex data—in other
words, to apply these algorithms to a very specific scope of
the task. Within the field of nutrition, specific tasks that have
already benefited from ML algorithms are related to finding
causes and potential solutions for many nutrition-related
noncommunicable diseases, such as obesity, diabetes, cancer,
and CVD, all of which have a complex and multifactorial
etiology (3, 4, 14-19). These works have shown promise to
the application of ML in solving the biggest challenges in
nutrition and to the opportunities before us.

The direction of research in the discipline of nutrition
science is going increasingly toward one that would benefit
from the use of advanced tools, from data generation through
to explanation and prediction. ML has the potential to
supplement existing techniques to generate and analyze
complex data, but to do so, it must be applied appropriately.
Although the use of Al and ML does not require extensive
background knowledge in computer science or mathematics,
the application of ML without appropriate understanding can
lead to biased models and results that do not represent real-
world representative. For a nutritionist without prior ML ex-
perience, approaching the subject area can be overwhelming,
which subsequently hampers adoption of its use by interested
researchers.

This article aims to deal with this by providing a resource
to which nutrition researchers can refer to guide their efforts.
First, ML itself and its distinction from traditional techniques
are explained. Next, an overview of ML is provided, and key
concepts are elucidated. This covers core ideas in ML, such as
ML types, tasks, data types, common algorithms, explainable
Al (xAI), and ML performance evaluation. Throughout
the aforementioned sections, application examples from the
literature are provided. Related terminology can be found
in Supplemental Table 1. Following this, a short review of
nutrition-orientated literature utilizing ML is elaborated in
the form of case studies of areas in nutrition science that
are currently employing ML. Finally, practical application
is supported by providing a framework for implementing
ML in nutrition research. By providing a key reference,
we enable the continuation of groundbreaking research
by circumventing the problem that ML-naive researchers
encounter when dealing with complex problems.
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Machine Learning Capabilities

ML is a subdivision of AI that employs algorithms to
complete a task by learning from patterns in the data, rather
than being explicitly programmed to do so. This is achieved
by defining an objective (e.g., predicting a numerical value),
evaluating performance, and then performing experiments
recursively to optimize the model. Whereas Al falls short of
replicating the complexity of human thinking, it excels in
certain aspects of learning, making it faster, able to deal with
high-dimensional data, and able to learn abstract patterns
(15, 16). These aspects of ML make it more suitable for tasks
than traditional statistical techniques and certain domain-
specific techniques and so gift ML with practical advantages
that make it attractive, as discussed throughout.

Whereas the current section focuses on situations in
which ML may be advantageous over traditionally used
methods, researchers should be encouraged to consider each
option as another tool in the box rather than using one or
the other. Understanding the advantages and disadvantages
of various methods and learning when and how to apply each
one can lead to synergy and more fruitful results by allowing
methods to complement one another. Researchers should
be encouraged to think deeply about their problem and the
research questions that they would like to answer and to
select the appropriate techniques that best do this. Whenever
possible, researchers should also consider experimenting
with multiple options and selecting those most suitable. The
idea of selecting the pool of solutions to suit the problem at
hand is discussed in detail in the Framework for Applying
ML in Nutrition Science section.

Machine Learning and Traditional Statistical Methods
When the goal is inference; interpretability is paramount;
and the features are well established, simple, known a priori,
and low-dimensional, traditional statistical techniques such
as regression methods may suffice (1). However, researchers
often choose these approaches due to familiarity, despite
that ML techniques can be more suitable and efficacious in
certain circumstances. ML is suited for high-dimensional
data and when the goal is predictive performance (17).
The capability of ML to learn from patterns in the data
means that precise and premeditated variable selection is
not a necessity; instead, many variables can be trialed, and
repeated experimentation can quickly identify those of most
relevance. That is, ML can be applied exploratively (17),
which may lead to the discovery of novel predictive features,
sometimes serendipitously (18-24).

By perceiving data to have been generated by a stochastic
model, traditional statistics is limited by the assumptions
that it makes: assumptions that are increasingly unjust
as data are increasingly complex in domains relevant to
nutrition such as health (25). When predicting mortal-
ity with epidemiologic data sets, Song et al. (26) noted
that the nonlinear capabilities of more sophisticated ML
techniques explain their consistently superior performance.
Stolfi and Castiglione (27) integrated metabolic, nutritional,
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and lifestyle data in an emulator for a handheld device
application in the context of precision medicine that predicts
processes in the development of type 2 diabetes (T2D). They
noted that such a dynamic and high-dimensional system
is too computationally demanding for statistical methods
traditionally used for emulation. Compared with classifiers
or regressors that assume linearity, ensemble predictors
(seeSupplemental Figure S1, for example) applied to medical
data consistently perform better (1, 21, 25, 28). Whereas
ensemble predictors are considered uninterpretable, Breiman
(25) made the interesting case that although the mechanism
by which outputs are generated is not entirely transparent,
this is counterbalanced with the advantage of making a more
accurate prediction and in this way better represents the true
process of data generation than do white box models. Other
authors noted the inadequacy of statistical techniques for
dealing with complex data derived from such subject areas
as obesity (1), omics (29), and the microbiota (5). Ultimately,
as data become more complex, the advantage of presenting
a simplified representation of the data comes at a cost, a
characteristic of classic statistical techniques from which ML
suffers less.

Machine Learning and Traditional Statistical Methods
ML can be used to supplement domain-specific data analysis
techniques. Gou et al. (20) linked 2 domains suitable for
ML application—diabetes and the microbiome—by using
ML to generate risk scores for T2D development based on
microbiome composition. After pointing out that analysis
of microbiota data is beyond the capabilities of classical
statistical tools, they proceeded with ML to predict T2D
better than traditional, domain-specific diabetes risk factors
while identifying 11 novel microbial taxa predictive for
T2D risk. Tap et al. (22) showed that conventional ecologic
approaches did not find differences in microbiota signatures
between patients with irritable bowel syndrome (IBS) and
controls, whereas their ML approach (Lasso) was able to
link intestinal microbiota signatures with IBS symptom
severity.

Activity tracking utilizes unstructured data of movement
generated from wearable devices to predict activity types and
calorie expenditure, making it suitable for ML applications.
Compared with domain-specific cut points, classification
via ML techniques reduces misclassification rate, increases
generalizability, allows grading of movement quality, and
simplifies experimental design (30-32). Energy expenditure
estimation traditionally uses methods that are expensive
(e.g., doubly labeled water), impractical (e.g., indirect
calorimetry with breathing masks), or non-free-living (e.g.,
direct calorimetry). Systems that analyze accelerometer data,
with or without other physiologic data, can be adequate
alternatives for the prediction of energy expenditure in a free-
living, practical, and cost-effective manner (33, 34). In CVD
research, CVD risk scores may be generated by using various
biomarkers and are deployed in clinical practice; here too,
ML techniques outperform traditional risk scores, making
use of and identifying novel biomarkers in the process (19,

23, 35-38). ML is also a promising alternative for domain-
specific techniques that are expensive, invasive, or both, as
with nonalcoholic fatty liver disease (NAFLD) (39-41) and
cancer (42-47).

Machine Learning: Practical Advantages

There are practical advantages of ML. Since the computer
learns itself to complete a task, time and effort need not be
invested in instructing the computer on what to do. This not
only saves time and effort that would otherwise be spent on
programming but also increases adaptability to solve various
problems. That is, the same algorithm can be retrained on
various data sets and problems. On a similar note, ML accepts
various data types as input, including structured (e.g., tabular
data) and unstructured (e.g., image based). In some cases, the
same ML algorithms can be applied to different problems,
perform different tasks, and take as input different data types;
neural networks and k-nearest neighbors (kNN) are such
examples.

By predicting an outcome based on existing data, ML
algorithms can save on the time and cost of having to
verify such outcomes experimentally. For example, Sorino
et al. (48) concluded that incorporating ML algorithms
into the analysis of noninvasive and comparatively cheaper
variables could avoid 81.9% of unnecessary ultrasound scans
in NAFLD, which are expensive and have long waiting times
for results.

The tools required for performing ML experiments are
minimal; other than a computer and a virtual environment
to work in, all that is needed is a data set. To this end,
data are being increasingly generated, and recent pushes
for data sharing are meaning that more and more data sets
are publicly available, suggesting that researchers across the
world are able to run experiments and derive meaningful
results in their field without the need for grants, research
equipment, or generation of the data themselves. This is an
extremely empowering aspect of ML, and if more researchers
were better able to mine their own and others’ data, more
scientific progress could be expected.

Machine Learning Overview

Types

Four types of ML exist, each differing in the way that it learns,
the algorithms that it employs, and its uses. A graphical
depiction of each learning type is provided in Figure 1.

Supervised learning.

In supervised learning, the data come with labels in which
the value or class being predicted by the algorithm is known,
meaning that performance can be objectively verified. This is
commonly observed in predictive models utilizing data sets
with health variables and a disease outcome, such as CVD,
T2D, and plasma nutrient prediction (49, 50). Since the labels
of the data are required, human intervention plays a larger
role than in other ML types, which can increase costs and
time (51).
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FIGURE 1

Four types of machine learning. In supervised learning, labels are provided in the data for objective evaluation of algorithm

performance, whereas in unsupervised learning, the algorithm partitions the data based on similarity. In semi-supervised, only a portion
of the data comes with labels, although all data are eventually classified. Reinforcement learning makes use of penalties and rewards in a

dynamic environment to train the algorithm.

Unsupervised learning.

Unsupervised learning occurs without labels; instead, the
algorithms seek to find patterns in the data and partition
them based on similarity. This reduces human interven-
tion, saving time on feature engineering and labeling. The
most common use of unsupervised learning is clustering,
dimensionality reduction and anomaly detection are also
unsupervised. Unsupervised learning has been applied ex-
tensively in phenotyping, such as grouping individuals for
PN (11). Unsupervised learning can also be used as a
processing step before a supervised task to homogenize the
data, as evidenced by Ramyaa et al. (52), who predicted
BMI in women more accurately after phenotyping than
when using the data as a whole. Another attractive use of
unsupervised learning is hypothesis generation; because this
type of learning works on the detection of patterns, this may
lead to the formation of previously unidentified groups in
the data.

Semi-supervised learning.

Semi-supervised is somewhat in between the 2 previously
defined learning types in that labels are partially present
but usually mostly absent. Providing labels on a subset of
the data has the advantages of improving accuracy and
generalizability while sparing the time and financial costs
of labeling an entire data set (53). Consequently, semi-
supervised learning has been used to study the influence of
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genes on disease outcomes when the known genes (i.e., the
labeled data) are few (54).

Another example of semi-supervised learning is con-
strained clustering, which expects that certain criteria are
satisfied during cluster formation, such as given data points
being necessarily in the same or different clusters (55). This
can be a way to circumvent potential issues that can arise
when dealing with biological or health data in unsupervised
learning, such as the grouping or separation of data points
that violate plausibility—for example, the clustering of data
of one biological sex with another in a system where this is
not possible. However, it should be kept in mind that such
findings may also provide interesting information about the
data and adding such constraints may mask this.

Reinforcement learning.

In reinforcement learning, the algorithm exists in a dynamic
environment and is penalized or rewarded for the deci-
sions that it makes within the environment. The algorithm
then updates its behavior to maximize reward, minimize
penalization, or both. This allows the algorithm to become
proficient in a task without being explicitly programmed to
behave in a certain way. A famous example of reinforcement
learning is Alpha Go Zero, which was able to achieve
superhuman performance playing Go (Weiqi) with only a few
hours of training by playing against itself (56). The complex
nature of reinforcement learning limits application in simple
classification or regression tasks and is instead used where the



integration of complex and varied data is concerned, such as
recommender systems (57) or mobile-based fitness apps (58).

Tasks

ML algorithms are employed to complete tasks, which are
distinguished into various categories. To complete these
tasks, algorithms are used. Various of these are mentioned
throughout the current subsection; for a more detailed
description of each algorithm, see the Supplemental Material.

Regression.

Regression involves the prediction of a continuous variable
based on one or more input variables. In the case of linear
regression, a linear relationship between the input variables
and the dependent variable is assumed, whereas in nonlinear
regression, relationships can be more complex. As well as
basic linear regression and its variants (e.g., Ridge, Lasso),
more complex algorithms can be used, including some that
are more often associated with classification, such as random
forest (RF) and support vector machines (SVMs) (59, 60).

Classification.
Classification tasks aim to predict the class labels of data
based on their independent variables. Data of the same class
will likely have similar characteristics, at least for variables
that contribute most to the classification decision; this forms
the basis for how an algorithm learns to assign classes to a
data point. In binary classification, there are only 2 labels,
whereas with multiclass classification, there can be many.
Sample uses of classification include predicting adherence
to exercise regimes (61) and image-based food recognition
for dietary intake monitoring (11). Classification has signif-
icant overlap with regression in that oftentimes a regression
problem can be converted to a classification task with only
slight modifications and vice versa. This is reflected in the
algorithms that can do both, such as SVM, RE, decision trees,
and kNN.

Clustering.

Similar to classification, algorithms in clustering split the data
based on similar characteristics, but clustering differs in that
it is unsupervised, meaning that there is no ground truth or
class labels to which the data points should belong. Thus,
the goal is to obtain clusters that are more homogeneous
than the data as a whole. Because it is typically unsupervised,
clustering can be performed with or without expectations,
leading to new discoveries and hypothesis generation. A well-
known and popular application of clustering in nutrition
and health research is that of phenotyping individuals
based on shared characteristics, such as microbiome pro-
files (62) or identifying activity patterns (63). The most
common clustering algorithm is k-means (for numerical
data), with adaptations including k-modes (for categorical
data) and k-prototypes (for mixed data). Other examples
include density-based spatial clustering and mean-shift
clustering (51).

Recommendation.

Recommender systems use data to generate a recommenda-
tion on a decision to be taken and have been used in nutrition
to suggest meals to help manage chronic diseases (64-67).
Recommender systems can be further classified into subtypes
such as collaborative filtering, content based, and popularity
based, as well as hybridizations of each. Recommender
systems can be complex and may require the integration of
multiple components, each of which may involve different
ML tasks and algorithms. For example, Baek et al. (68)
described a recommender method that clusters individuals
based on chronic disease status, suggests suitable foods for
each cluster, and considers the preferences of the individual
and on the universal level. Because recommendation systems
can involve lots of data, deep neural networks are often
utilized.

Dimensionality reduction.

When working with data sets with many features, dimension-
ality can be problematic; it slows computation, may reduce
accuracy, and can cause overfitting (69). This is particularly
relevant in the modern age where high-dimensional data are
being generated (70). Dimensionality reduction techniques
aim to reduce dimensionality while maintaining the most
important characteristics of the data or the variance. Whereas
at times this may cause a small reduction in predictive
capability, it may be preferred in exchange for data with
drastically fewer (irrelevant) features, which can enhance
computational efficiency and interpretability. Conversely,
by reducing noise and simplifying learning for the model,
dimensionality reduction may sometimes even improve
performance.

Modern techniques such as microarrays can generate
high-dimensional data with few samples and thus benefit
from dimensionality reduction techniques (69, 71). Princi-
pal component analysis (PCA) and t-distributed stochastic
neighborhood embedding are linear and nonlinear dimen-
sionality reduction techniques, respectively. Because of its
capacity to eliminate redundant features, Lasso regression
can also be used as a dimensionality reduction technique.

Explainable Al
The concept of XAl is concerned with not only generating an
output but also how it was generated. Technological develop-
ments have enabled the creation of sophisticated algorithms
such as ensemble methods and deep neural networks that,
although usually superior, are not interpretable. If predictive
ability is most relevant to the problem being solved, then this
may not be an issue; however, in some practical applications
of ML, it is important to know how the output was generated.
This is understandable in medical situations where the
predicting output can have serious consequences for, say,
patient lifestyle or treatment avenues. The results of XAl can
be informative in that they reveal which features contributed
most to the algorithm output (72).

In certain situations, interpretable algorithms are pre-
ferred over ensemble methods, despite better performance
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in the latter, as is the case with nutrition care by Maduri
et al. (73) and in the prediction of nutrient content in
infant milk by Wong et al. (74). However, methods exist that
facilitate interpretability without sacrificing performance.
xATItechniques such as Shapley additive explanations (SHAP)
and Shapley values (75), partial dependence plots (76), and
local interpretable model-agnostic explanations (LIME) (77)
exist to make transparent black box models. Choi et al. (28)
emphasized the importance of being able to capture complex
nonlinear interactions when predicting refeeding hypophos-
phatemia and thus chose to opt for XGBoost in place of
linear models, especially since classification was much better
in the former. Instead, they used SHAP values to elucidate
the features most influential for classification decision by
XGBoost. Zeevi et al. (78) used partial dependence plots
to extract the relative contribution of their features for the
prediction of postprandial glucose response (PPGR). This
enabled the use of a gradient-boosting RF that, although
black box, was able to capture the nonlinear relationships
inherent to their complex feature set. Davagdorj et al. (79)
made use of LIME to explain predictions of artificial neural
networks and XGBoost, the best performers, when predicting
hypertension in the Korean population. They emphasized
the importance not only of prediction quality but also
explainability for decision making in public health.

In conclusion, not only is the eventual output of ML
relevant but so is the means by which it was produced.
After the proof-of-principle stages of model development,
researchers can further their fields by incorporating xAl into
their work, therein providing transparency and encouraging
public understanding.

Evaluating Performance
Metrics for evaluating ML algorithms are broad and can be
task, type, or model specific (Supplemental Table 2). For
example, evaluation approaches of supervised algorithms
are often not suitable for unsupervised techniques since
the data might be without labels. In clustering, metrics are
instead used that focus on the purity of the data partitioning
or similarity of the data after grouping (80). For PCA
for dimensionality reduction, cumulative variance with a
predetermined, arbitrary cutoff point is used (e.g., 95%).
Additionally, although some evaluation metrics reflect
model performance similarly, the specification of evaluation
metrics should not be made arbitrarily. For example, where
higher accuracy at the cost of specificity might be less prob-
lematic in applications categorizing food for dietary intake
purposes, the same trade-off can have serious consequences
in disease prediction, as in the incorrect assignment of a
serious disease (false positives) such as cancer (81). Accuracy
is the most common classification metric but too often it is
presented or interpreted at face value, whilst other metrics are
neglected. The consequences of this can be easily witnessed
in data sets with class imbalances in the target variable, as is
common in health data. For example, a classifier that predicts
negative for all data points on a given NHANES data set
where the target variable is undiagnosed T2D would have an
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accuracy of approximately 97% (82), without actually having
real predictive power. For these reasons, multiple metrics or
meta-metrics, such as F1 score or area under the receiver
operating characteristic curve (AUROC) (83), should be
considered.

Evaluation metrics should be specific to the problem
at hand. For example, the coefficient of determination R?
measures how well a continuous target variable is estimated
by a set of predictors and is thus generalizable across
problems, models, and data sets. However, at times it may be
more relevant to know how well the model performs for a
specific problem, such as mean error in prediction of plasma
cholesterol or cost of meeting a healthy diet; in such cases,
a metric such as mean absolute error would be preferred.
Likewise, in circumstances where the consequences of the
model output are less severe and the treatment response is
risk-free, the emphasis would be on accuracy rather than
specificity. An example of such a case could be the prediction
of risk for overweight, with the treatment response being
free admission to an education healthy eating course. These
examples demonstrate the influence that the problem has on
metric selection.

In sum, many methods exist for evaluating the perfor-
mance of ML models. Metrics should be chosen thoughtfully,
keeping in mind the task, the model being used, and the
specific problem trying to be solved.

Validation

ML models will most likely perform better on the training
data on which they were trained than on unseen data. Whilst
this is to be expected, it can give a deceptive reflection of
how well the algorithm has learned a task. If performance
drops substantially when going from the training to unseen
data, overfitting has occurred, and the model is therefore
not generalizable or useful in real applications. Overfitting
is a widespread problem and often unaccounted for in the
literature. Whereas virtually all supervised techniques suffer
from overfitting, the degree to which they do so can be
lessened with validation techniques such as data splitting,
cross-validation (CV), external validation, and combinations
of these, as discussed later and shown in Figure 2. It is
imperative that robust methods of validation are used to
preserve generalizable model conclusions.

Data split.

Also known as the holdout method, the data split method
splits the data into a training set and a test set, where the
model is first trained on the training data and then applied
to the test set to gauge generalizability. In this way, the test
data act as the “unseen” data, although, since the data set
came from the same source and was processed in the same
way, it is not truly unseen. Splitting the data like this can
be problematic in small data sets by reducing the instances
from which the model has to learn. It can also increase
vulnerability to outliers. Finally, unless data are sufficiently
large, there can be large variations in results between different
splits of the data. In most circumstances, a simple data split is
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FIGURE 2 Various validation techniques. Data split simply consists of excluding a portion of the data for testing after training. In k-fold
cross-validation, the data are split into k number of folds, and each fold is used once for training and k — 1 times for training. Leave-one-out
cross-validation uses the same concept except that k is equal to the number of data samples, so each individual sample is used once for
testing and n — 1 times for training. Stratified cross-validation ensures that the proportions of classes remain the same in each split
(training and test) and each fold. Finally, external validation consists of using data different from those on which the algorithm was trained.

not a sufficiently powerful tool for assessing the generalizable
performance of ML models.

Cross-validation.

CV and its variations run the model multiple times with
different splits in the data so that every split is used for
training and once for testing. This is most often achieved
with k-fold CV, where k is an arbitrarily selected value by
which to split the data, with a minimum value of 2 and
a maximum value of n — 1. In the case of the latter, this
represents another CV variation known as leave-one-out
CV, where all instances but 1 are used to train the model,
with the remaining data point representing the test data.
The aforementioned instances use random sampling to split
the data; in another variation, stratified CV, the data are
split in a way that maintains the proportions of classes of
the original data. This is useful in preventing issues arising
when certain classes are particularly low since otherwise the
model might be left with too few instances from which to
learn. Eventually, results from each fold after performing CV
should be averaged to give a balanced CV score, although
examining the scores of each fold can also be informative; if
they differ wildly, this can be indicative of problems such as

outliers or class imbalances. CV provides a more robust way
to validate a model and should be selected over a simple data
split whenever possible.

Despite these advantages, biased models can still occur
when the same CV scheme is used for hyperparameter
tuning and model evaluation. Hyperparameter optimization
schemes such as those discussed in the Supplemental
Material (Hyperparameter Optimization section) often use
CV, and although overfitting is reduced, the model is still
yet to be tested on a pristine test sample that was not
involved in either model training or hyperparameter tuning
(84). Nested CV aims to overcome this by splitting the data
into an outer loop, which itself is split into training and
testing, and an inner loop, which is composed of the training
folds of the outer loop. CV is used on the inner folds to
select model hyperparameters; then, the outer loop is run
by the optimal model identified in the inner loop. This is
repeated k times, where k represents the number of folds of
the outer loop. This prevents that all of the data are used
for model selection, evaluation, and feature selection and
maintains the ability to evaluate cross-validated performance
on unseen data. Although this increases computational
demands substantially, it provides a much more honest
representation of model performance.
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External validation.

For an even truer representation of model generalizability,
a different data set from that used to train and test the
model can be used. For example, a model predicting glycemic
response trained on an Israeli cohort was tested in an
American cohort, meaning that different dietary elements,
societal influences, and genetics are introduced (85). Captur-
ing the effect of intercohort variation in this way informs the
degree to which the model can perform its task in different
populations. This is a common approach in health studies
deploying ML that use cohorts (22, 36, 37, 40, 42, 78, 86, 87).

Case Studies: Applications of Machine Learning
in Nutrition Domains

The current section briefly presents two case studies within
the discipline of nutrition that are suitable for the application
of ML techniques. It is hoped that readers will derive ideas
and inspiration from the case studies, which they can then
apply to their own research domains.

Precision Nutrition

PN concerns the use of personal information to generate
nutritional advice that, in theory, leads to superior health
outcomes than generic advice (11, 88). It rests on the basis
that differences in a myriad of factors among individuals
ultimately necessitate specific nutritional requirements that
population-level guidelines cannot capture. The diversity,
complexity, and, at times, high dimensionality of the data
that represent these factors have created expectations for
ML in PN. Such expectation is reflected in the commitment
of the National Institutes of Health to supply $170 million
in funding algorithm development in PN over the next 5
years (89). A detailed systematic review of ML in PN is
provided by Kirk et al. (11); here, a short overview and recent
developments are provided.

A model example of the application of ML in PN was
in the high-impact study of Zeevi et al. (78), which made
use of a gradient-boosting RF model to integrate plasma,
microbiome, anthropometric, personal, and dietary data to
predict PPGR to the challenge meal, with accuracy com-
fortably exceeding established methods. A striking finding
was the remarkable interindividual variation in PPGR seen
in response to the same foods, substantiating the claims of
PN for improving health. Berry et al. (90) used a similar
design to predict not only postprandial glucose but also
triglyceride and C-peptide with an RF regressor. In both
studies, the features most relevant to the decision outcomes
were estimated, and the contribution of modifiable factors
was shown to be large. These studies show not only that the
influence of specific foods on metabolic parameters in an
individual can be known but also the main factors that can be
modified to change this. Such information is of great value to
those attempting to manage metabolic health.

Obesity and overweight constitute another important
subject area in nutrition, thus attracting attention in PN.
Ramyaa et al. (52) found homogeneous phenotypes within
a population of women and then proceeded to predict their
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body weight. The clusters associated with different dietary
and physical activity variables suggested that the women
responded differently to macronutrients and exercise in their
propensity to gain weight and thus that personalized diets
and exercise regimes would be effective. Zellerbach and
Ruiz (91) aimed to predict instances of overeating based on
macronutrient composition of an individual’s diet. Although
they were unsuccessful, the concept may have merit with
the inclusion of other relevant variables (e.g., stress, sleep,
and alcohol or drug use) and with higher-quality diet data
than the self-recorded publicly available food logs used in
their study, where data were collected outside a scientifically
controlled setting and liable to bias. That Wang et al. (5)
could predict obesity using gut flora data is interesting
to PN because of the known relationship between diet
and microbiota composition. Because the microbiota is
involved in various health conditions (92), its targeting by PN
interventions could be fruitful in subsets of individuals.

Malnutrition has been targeted by PN in various ways.
Current screening tools for malnutrition in inpatients, for
example, suffer a lack of agreement and poor adherence from
hospital staff, suggesting that automatized approaches may be
appreciated (93). The decision system of Yin et al. (94) sought
to realize this by applying k-means to hospital record data to
separate patients based on nutritional status. Well-nourished
and mild, moderate, and severely malnourished clusters were
identified, the characteristics of which formed the basis for a
logistic regression classifier to assign unseen data points to
1 of the 4 clusters with perfect performance (AUROC: 1).
Subramanian et al. (95) characterized a “healthy” microbiota
index in children, from which RF could predict chronological
age (AUROC: 0.73). Severe acute malnutrition could subse-
quently be predicted by deviation from the index for a given
age, since malnourished children have a relatively immature
microbiota when compared with healthy children of the same
age. This approach allows targeted intervention in children at
risk of malnutrition-induced growth stunting. Malnutrition
can also be predicted with ML from demographic data in
developing countries, which is attractive since such data are
routinely collected and available to health organizations (96—
98).

ML is helpful not only for generating PN outcomes but
also for collecting PN data. Current dietary assessment
methods have serious limitations such that estimated intakes
can vary wildly from true intakes (99, 100). However,
ML-assisted dietary intake monitoring could make more
convenient and accurate the process of collecting intake data,
the benefits of which would extend beyond PN to the broader
nutrition domain. Indeed, examples in which ML has been
used in dietary assessment include image-, smart watch-,
piezoelectric-, and audio-based methods [see Table 4 in Kirk
et al. (11)]. Although some of these instances are relatively
primitive and often confined to controlled settings, it can be
imagined that their successors will be refined and convenient
in real-world settings. Natural language processing (NLP)
can also be valuable in dietary assessment. NLP is a specific
field in computer and linguistic sciences that has the goal



to interpret written and spoken text in such a way that
its meaning is understandable by a computer. In PN, this
can automate the processing of food diaries (101) and
consolidate multiple data sets (data integration) and food
tables (102). Eventually, NLP can communicate messages to
users of health-tracking apps to offer personalized advice and
provide support, omitting the need for such advice to come
exclusively from health professionals, which is expensive
and time-consuming. Activity tracking is relevant to PN
outcomes by providing information on the exercise and
sedentarism of individuals. ML has been used to classify
activity patterns (103-106) and estimate energy expenditure
(33, 34,107) based on accelerometer data, which can improve
the quality of activity data acquisition, thus increasing its
value as a feature in PN approaches.

Omics is a discipline that derives its name from the
suffix of components from which it is composed: genomics,
transcriptomics, epigenomics, proteomics, metabolomics,
and occasionally others (microbiome, lipidomics, etc.)
(108). Figure 3 shows the main omics components and their
proximity to the genotype and phenotype. Data captured on
any of these levels can be valuable in PN, and integrating
their data (i.e., multi-omics) can provide a systems-level view
capable of providing more information than the constituent
parts independently (109). Genetic information has been
used in tandem with ML for predicting obesity (110-112)
and diabetes (113, 114), although, despite the wealth of infor-
mation within the human genome, genetic information often
explains little of the variance in complex health outcomes
(115). Gene expression, transcripts, and the proteins that they
encode can all be modified by environmental factors such as
food, which can make the genetic sequence encoding them
effectively redundant; hence, epigenomics, transcriptomics,
and proteomics, respectively, exist in response to this. Further
still, the microbiome is increasingly recognized as a key
player in health and disease, at times being responsible for a
significant portion of the variance in predictive health models
(5, 20, 87, 90, 116, 117). The microbiome is of particular
interest to PN because it can act as an input variable and a
target variable to be modified in PN.

It should be emphasized that studies need not be designed
with PN in mind to realize how responses can differ among
individuals within a study. A prime example of this is seen
in the weight loss study of Gardener et al. (118), where
participants followed either a low-carbohydrate or low-fat
diet for 12 months. Whereas the group means suggested that
weight loss was similar, analyzing the data on an individual
basis within the groups told a different story: although some
lost a great deal of weight, others failed to lose or even gained
weight. This highlights a pitfall of research in health sciences
in that, although comparing groups means is convenient,
it can mask individual differences that can be much more
informative.

Despite its potential, ML in PN must still prove itself
able to reduce disease burden when applied in real-world
situations. Most of the aforementioned studies are descrip-
tive, and indeed more experimental studies are required
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FIGURE 3 The major components of the omics field and their
proximity to the phenotype.

to prove that PN is more effective than generic healthy
eating recommendations when both are adhered to. Even
it experimental studies can prove a theoretical role for PN
in improving health, PN approaches must be practical. If
the suggested dietary alterations are restrictive or infeasible,
it is unlikely that they will be adhered to in the long
term. For example, although the large-scale study Food4Me
found that personalized advice favorably altered dietary
habits in participants (119), there is insufficient evidence that
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personalized approaches will lead to sufficient adherence to
reap the potential benefits of PN. This was demonstrated
in a recent Korean study where only those in the highest
adherence group saw improvements in the markers of
health that were measured, and in fact, the same markers
deteriorated in the group of lowest adherence (120). Whereas
ML has much potential to help with data generation and
analysis in PN, these approaches must be able to demonstrate
practical application and ultimately a reduction in clinical
burden, both of which require many more studies for their
verification.

Metabolomics

One area of nutrition that has received much attention
in recent times is metabolomics. Metabolomics is closely
related to PN, as a predictor of health outcomes and for
data collection (11), though it also has functions that do
not necessarily relate to PN. Modern technologies are now
enabling the profiling of many metabolites all at once,
within one or a few samples, followed by analysis of their
interactions (121). The profiling of thousands of metabolites
makes for noisy raw data, which requires preprocessing and
analysis, two tasks for which ML is highly suited. Some
examples of metabolomics research using ML in nutrition are
presented in turn.

A popular application of metabolomics is phenotyping,
which overlaps significantly with PN. Metabolites are gener-
ally considered to give a much more representative picture
of a phenotype than other omics varieties since they more
closely reflect the reactions that actually occur in a system
(122). The simultaneous assessment of many metabolites
in an individual enables a form of phenotyping specific to
shared metabolite characteristics known as metabotyping
(115). A randomized controlled trial found no effect of
15 pg of vitamin D supplementation on markers of metabolic
syndrome (123). However, after metabotyping via k-means
clustering, a vitamin D-responsive cluster was found where,
in contrast to the population as a whole, vitamin D sup-
plementation did improve markers of metabolic syndrome.
Also utilizing k-means, O’Donovan et al. (124, 125) used
a range of metabolites to identify healthy and unhealthy
clusters in 2 cohorts, and on both occasions targeted advice
was given based on the defining characteristics of the clusters.
For example, a cluster composed of individuals with elevated
cholesterol was administered personalized advice oriented
toward lowering cholesterol (125). Given the diversity of
metabolic alterations that people can experience despite hav-
ing similar demographic or anthropometric characteristics,
tailoring nutritional recommendations to the individual is a
logical approach.

The concept of “metabolically healthy obese” and whether
it actually exists is another example of phenotyping. It is
indeed curious that approximately 1 in 3 obese individuals
does not show metabolic alterations on commonly investi-
gated clinical parameters (126) and that the exact metabolic
consequences of the remaining two-thirds vary greatly
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among individuals (127). The drivers of this divergence re-
main unknown; hence, investigating metabolomic signature
differences between the phenotypes may be revealing. Studies
using ML techniques have found key differences between the
metabolite profiles of healthy and unhealthy obese subjects
(128-130). In a systematic review, BCAAs, aromatic amino
acids, lipids, and acylcarnitines were all found to be elevated
in the unhealthy obese phenotype as compared with the
healthy (131). Due to the high dimensionality of the data sets
in metabolomics, PCA is typically opted for. PCA-reduced
feature sets can then be used to identify differences in
metabolites, amino acids, and lipid patterns (132, 133). Using
ML to understand how and which metabolic aberrations
could develop among obese phenotypes can inform targeted
treatment to minimize obesity-imposed harm.

ML has been applied in metabolomics when studying the
microbiota. Microbiota-derived metabolomics data are com-
plex and high-dimensional, which has motivated researchers
to consider applying ML. Some notable examples include
distinguishing healthy and unhealthy metabolite signatures
following a red wine intervention (134), distinguishing
women with and without food addiction from fecal samples
alone (135), identitying pediatric IBS (136), and comparing
metabolic activity of the microbiota between vegans and om-
nivores (137). The last of these studies is particularly relevant
to the metabolomics field because, although differences in
microbiota composition were minimal, metabolic activity
differed significantly, and an RF classifier could distinguish
the groups with 91.7% accuracy. This shows the importance
of not only the composition but also the metabolic activity of
the microbiota.

Metabolomics is interesting to the nutrition community
as a free-living, objective dietary assessment tool (138,
139). Biomarkers of intake have been found for various
foods, such as bread (140), coffee (141), citrus consump-
tion (142), and meat and fish (143), as well as dietary
components such as polyphenols (144, 145) and fermented
foods (146). Such information can be used not only for
simply monitoring food intake but also for associations
with health and disease outcomes (141, 142, 147). This
function of metabolomics permits estimating adherence to
dietary patterns. Acar et al. (139) used metabolite profiles to
identify participants potentially noncompliant to a particular
dietary pattern through partial least squares discriminant
analysis with a reduced feature set. Aside from identifying
regular noncompliers, they observed that at any given
time approximately 10% of the participants may have been
deviating from their prescribed diets, which, if generalizable,
has clear implications for nutrition intervention studies. The
capabilities of ML make it suitable for finding associations
in metabolomics, as well as identifying new phenotypes or
markers of intake in untargeted approaches. Many processing
steps are required to transform raw metabolomics data into a
form from which information can be derived. This, however,
is essentially feature selection and pattern recognition. To this
end, the competency of deep artificial neural networks, such
as convolutional neural networks in feature selection, could



be particularly useful, especially given the complexity of data
used in metabolomics (148). Research investigating this in
nutrition, though, is lacking but would be valuable.

In sum, ML can be a useful tool in the data preprocessing
stages of metabolomics and in generating predictive models
on the prepared data. Through clustering and classification,
ML can analyze processed metabolomics data for applica-
tions such as disease prediction and understanding disease
mechanisms, phenotyping, characterizing the metabolic en-
vironment, identifying biomarkers, and dietary assessment.

Framework for Applying Machine Learning in
Nutrition Science

After understanding the advantages of using ML in research,
researchers should be able to know when and how ML can
be applied to a problem. The present section aims to support
decision making in this process by providing a framework
to guide researchers interested in using ML in their work.
The framework takes inspiration from the concept of method
engineering (149), though is adapted with nutrition research
in mind.

Understanding the problem and the data

Whether ML can be used to solve a problem depends
primarily on the problem itself and the data involved. If the
problem is one concerned with predicting an outcome based
on a given data set, ML can be considered. Data sets with
many features and complex, nonlinear interactions suggest
themselves suitable for application with ML because of its
ability to identify patterns among the input variables that
can then map the output variable, thus producing results that
would otherwise go amiss. This is exemplified in cases where
data are clustered without expectation yet new findings are
discovered (52, 123).

ML could be considered in data preprocessing. This
function of ML was evidenced on various occasions in the
present article, such as the use of PCA for dimensionality
reduction, deep learning for feature extraction, and ML
approaches for data collection in PN and for processing
noisy and complicated metabolomics data. “Missing data”
is the often colloquial term denoting a data set in which
not all the data entries that should have values are filled,
regardless of the reason why. In nutrition, due to the
practical challenges of longitudinal data gathering, missing
data are a common issue. It is up to the researcher to
understand the impact of values that are missing in the
data set and how they are to be dealt with. Techniques
exist for their imputation, and sometimes it is appropriate
to remove entire variables or data entries (150). Since each
of these approaches has advantages and disadvantages, the
decision ultimately taken by the researcher should be done
so after deliberation. Resources describing the missing data
problem and its solutions exist (150-154). ML techniques
can also be considered for imputation (155-158). The extent
of the missing data can influence the modeling approach.
Certain approaches in traditional statistics and ML can
handle missing data well, including linear mixed models,

decision trees, kNN, and XGBoost, sometimes even when
missing data are as high as 20% (159, 160). Regardless of
how this is done, the method of handling missing data
should be explained and reported (161). Understanding
the data will provide insight into how exactly ML can be
applied.

Background research and existing solutions.

An understanding of the existing solutions to the problem
at hand is crucial to knowing exactly how ML can be
applied. If existing solutions are already suitable, additional
benefits from ML may be marginal. ML is also incapable
of replacing the human aspect involved in managing health
and nutrition. For example, although an algorithm may
make accurate personalized nutritional recommendations, it
cannot deliver the same information in a way that a trained
professional would, and this aspect may be important for
inducing behavior change.

ML, instead, is better applied when existing methods are
insufficient. This is observed in data with complex relation-
ships where classical statistical methods are incapable or in
situations where domain-specific techniques are inadequate.
Examples of the latter include the prediction of PPGR
(78, 90), for which existing methods have low accuracy.
It may be that current solutions, although accurate, have
other limitations, such as invasiveness, as is the case for
NAFLD detection (39-41). Further still, existing solutions
that have a higher human element naturally suffer from
human limitations such as fatigue or calculation mistakes.
This was exemplified by Kondrup et al. (162), who found
that a major reason why patients in clinical care were not
screened for nutritional assessment was that nurses “just
forgot.” ML in these cases can increase predictive capacity,
improve efliciency, reduce patient risk, and mitigate human
error.

Possible solutions

Of the options within the domain of ML, the eventual
candidate solutions should be tailored to the needs of the
problem, the data, and the ultimate goal of the project.
Primarily, one must think about the task required, as this will
naturally limit the options available since certain algorithms
are capable of only certain tasks. Also important is the
algorithm in relation to the data. For example, naive Bayes
would be an unsuitable choice in data sets with classes that
contain certain values of very low frequency due to the
zero-frequency problem (see Supplemental Material) (163).
Likewise, applying estimators that assume linearity to a data
set that has predictors with nonlinear relationships with the
dependent variable would lead to suboptimal performance.
In this case, performing transformations on the data or
choosing a model with nonlinear capabilities, such as RF or
SVM with a nonlinear kernel, would be preferred.

Another possible solution might be to use dimensionality
reduction techniques. Feature selection and engineering are
valuable methods in ML and can be specifically helpful to
nutrition data sets where collinearity is often present. Such
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techniques must be chosen with care as their improper use
can affect performance, but due to the breadth of their
possible applications, it is not possible to state which should
be used; instead, they should be tailored to the problem.
On a general level, if dimensionality reduction is applied
with collinearity in mind, then the method should be chosen
and applied in a way that preserves or increases the score
on the test set. When dimensionality is applied to reduce
computational strain, one must have preconceptions about
the degree to which error is allowed to increase to enable
decreases in computational time.

The end goal must be kept in mind, which too will dictate
the pool of candidate solutions. For example, if predictive
performance was the primary goal in the detection of cancer
based on medical images, high-performance convolutional
neural networks could be used. Alternatively, when inter-
pretability is needed, algorithms can be selected that provide
coeflicients (e.g., regression) or can be easily understood
(e.g., decision trees). Black box models (e.g., RE, XGBoost,
artificial neural networks) can be understood through xAI
techniques (e.g., SHAP, LIME, partial dependence plots), but
such techniques have their pros and cons and should be
considered in the context of the entire problem scope. When
ML approaches are to be deployed or incorporated into an
application, such as using ML for food tracking on a mobile
device, pragmatic factors such as computational time are
relevant. For example, whereas RF would usually outperform
naive Bayes on a classification test, naive Bayes is much faster.
These practicalities must be kept in mind.

Testing the available solutions

One of the advantages of using ML in research is the
capacity to test multiple options in multiple configurations
and converge on an optimal one. This capacity should be
exercised by trying various, if not all, candidate models.
The interpretation of the test data results should be given
more importance than the training data to reduce overfitting.
If possible, hyperparameters of each algorithm should be
optimized with techniques such as grid or random search
(see Hyperparameter Optimization section in Supplemental
Material), and nested CV should always be considered.
Although this can be time-consuming, it will give a fairer
representation of the quality of the possible solutions since
some models perform better in their default parameters than
others.

Trying many solutions is always advisable, even when
the choice might seem obvious beforehand. For example,
although ensemble methods consistently outperform logistic
regression in classification, this is not always the case
(164).

Indeed, one example of this was by Yin et al. (94), where
logistic regression achieved perfect performance predicting
malnutrition in a data set of 14, 000 patients with cancer,
outperforming ensemble and deep learning techniques (94).
Additionally, techniques such as stacking, which involve
combining multiple learners into 1 meta-learner, should
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be explored. Packages such as SuperLearner (165) exist to
facilitate this, but it can also be done manually. The process
ensures a result at least as good as, if not better than, the best
single learner alone. Stacking has been used in some nutrition
research (166-168) but is typically underutilized.

Understanding and communicating the results

The evaluation process must be undertaken in the context
of the solution (i.e., the algorithm) and the problem (see
Evaluating Performance). Comparisons of the possible so-
lutions should be made by the most suitable metrics to
enable the optimal solution to be chosen. It is common to
visualize results in various plots, such as AUROC plots for
classification, R? for regression, silhouette score and cluster
plots for clustering, PCA score plots for PCA, and heat
plots for correlations, among others. Common libraries for
achieving this include ggplot in R and Matplotlib, Seaborn,
and Yellowbrick in Python. If xAI techniques are used, these
results too can be communicated. Feature importance plots,
plots of the SHAP library (waterfall, force plots, bee swarm,
etc.), and partial dependence plots, among others, can allow
visualization of the features most relevant to a decision.

Limitations of Machine Learning in Nutrition
Research

Although the present article has focused on the promise that
ML is demonstrating, it does not come without limitations.
There is an apparent overoptimism in ML research that exists
due to nonrigorous methodologies. Although we described
methods for detecting this, such as CV; it is not uncommon
to see circumstances where these are not made use of.
For example, unless a data set is sufficiently large, different
training-test splits can lead to different results when using
a simple data split for validation. This opens the possibility
to the generation of interesting results based solely on
how the data were split. Further still, it is rare to see
nested CV used in nutrition literature, the consequences
of which were discussed in the Validation section. Another
consideration is that ML algorithms are generally evaluated
on homogeneous data collected in affluent societies; the
performance of these models in distinct populations and with
different data generation techniques is not guaranteed. Both
these considerations compromise generalizability, meaning
that if such models cannot be applied outside the setting
in which they were tested, ultimately their utility is greatly
diminished. Another often overlooked issue is flawed feature
selection and derivation of importance. For example, feature
importances from algorithms such as RF and XGBoost are
readily available and often reported in studies that utilize
them. However, the mechanism by which such methods
estimate importance means that correlated features, though
scoring similarly, appear less important than they are. This,
relatively speaking, also means that the importance of less
important features are inflated. Such similar phenomena
occur with other algorithms and xAI techniques but are
often not checked, for example, by corresponding with



other feature importance techniques for corroboration and,
instead, are reported as is.

Finally, the application of ML in certain circumstances
has practical drawbacks. There can be substantial costs
for data collection, hardware, ML engineers, infrastructures
(data storage, cloud computing), integration (pipeline devel-
opment and documentation), and maintenance. In certain
applications, data are generated from different sources by
using different programming languages and arriving in
different forms. Unifying this in a multimodal approach can
be very challenging. Similarly, although the ability of ML
to transform unstructured data into data suitable for use in
models represents a stark advantage for ML over traditional
methods, such techniques can be challenging even for those
specialized in the area and thus may not be fruitful for
researchers specialized in nutrition at the time of writing.
In closing, ML is showing much potential in research in
nutrition but still has much to prove to reduce the burden
of nutrition-related ill-health in society.

Conclusion

In conclusion, there is much potential for ML to make
progress in nutrition science. ML can capture the complex
interactions that exist and are increasingly generated with
modern technologies in nutrition and health data. The failure
to be able to use techniques that can analyze complex data,
such as ML, represents an unnecessary barrier to scientific
progress. Although still relatively new, it is evident that
AT approaches have much potential to supplant traditional
and domain-specific methods in predictive capabilities,
efficiency, costs, and convenience. ML can also be helpful in
the data collection and data preprocessing stages in various
fields of nutrition. To realize this potential, researchers must
be familiar with ML concepts, be knowledgeable on when Al
can be suitably applied to a problem and how to use it, and
be willing to branch out of the techniques historically used
in their disciplines. We hope that the intuitive explanation of
ML and the examples of its application in nutrition science in
the current article will facilitate this and be a useful reference
guide to researchers of health and nutrition who would like
to make use of ML in answering their research questions.
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ABSTRACT

Background: The Administrative Procedure Act of 1946 guarantees
the public an opportunity to view and comment on the 2020
Dietary Guidelines as part of the policymaking process. In the
past, public comments were submitted by postal mail or public
hearings. The convenience of public comment through the Internet
has generated increased comment volume, making manual analysis
challenging.

Objectives: To apply natural language processing (NLP NLP is
natural language processing.) to identify sentiment, emotion, and
themes in the 2020 Dietary Guidelines public comments.

Methods: Written comments to the Scientific Report of the 2020
Dietary Guidelines Advisory Committee that were uploaded and
visible at https://beta.regulations.gov/docket/FNS-2020-0015 were
extracted using a computer program and retained for analysis. All
comments were filtered, and duplicates were removed. A 2-round
latent Dirichlet analysis (LDA) was used to identify 3 overarching
topics as well as subtopics addressed in the comments. Sentiment
analysis was applied to categorize emotion and overall positive and
negative sentiment within each topic.

Results: Three different topics were identified by LDA. The first
topic involved negative sentiment surrounding removing dairy from
the guidelines because the commenters felt dairy is unnecessary. The
second topic focused on positive sentiment involved in restricting
added sugars. The third topic was too diverse to characterize
under 1 theme. A second LDA within the third topic had 3
subtopics containing positive sentiment. The first subtopic valued the
inclusion of dairy in the recommendations, the second involved the
health benefits of consuming beef, and the third indicated that the
recommendations lead to overall good health outcomes.
Conclusions: Public comments were diverse, held conflicting
viewpoints, and often did not base comments on personal anecdotes
or opinions without citing scientific evidence. Because the volume of
public comments has grown dramatically, NLP has promise to assist
in objective analysis of public comment input. ~ Am J Clin Nutr
2021;114:713-720.

Keywords: 2020 Dietary Guidelines, natural language processing,
machine learning, public comments, sentiment, emotion, topic
modeling, latent Dirichlet allocation

Introduction

The 1946 Administrative Procedures Act gave the American
public the right to be involved in the federal regulatory process
by mandating public notice of proposed regulations by federal
agencies and providing opportunities to receive public comment
on the proposed regulations (1). Public notice and comment
were primarily achieved through public hearings and mail-in
comments. More than 50 y later, the E-Government Act of 2002
(2) sparked much greater public engagement because it supported
the application of the Internet to provide more opportunities
for participation. Nowhere is this increase more apparent than
with the Dietary Guidelines for Americans. The 2010 Dietary
Guidelines Scientific Report received 2000 comments (3),
whereas the 2015 Dietary Guidelines for Americans received
more than 29,000 comments (4). After publication of the 2015
Dietary Guidelines for Americans (5), significant questions arose
about underlying process for developing the guidelines, including
questions about public input and transparency (6). One reason for
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those questions was the sheer volume of public comments on the
scientific report that supported the final guidelines.

On the basis of the number of public comments, the US
Congress requested a consensus report from the National
Academies of Sciences, Engineering, and Medicine on making
the process for producing the 2020 report more transparent,
inclusive, and science driven (6). Despite this, the report did
not address transparency involving the analysis of the public
comments.

USDA and Department of Health and Human Services (HHS)
staff process public comments by reviewing, categorizing, and
summarizing them. Those summaries are not available to the
public until after the final guidelines are published. The 2015
review of comments was performed manually by senior staff at
USDA with expertise in nutrition science and dietary guidelines
(4). Although it is unclear exactly how duplicates were managed
and how topics and themes were classified (4), manual review of
comments largely involves subjective analysis.

Once again, the Scientific Report of the 2020 Dietary
Guidelines Advisory Committee has stimulated a large number
(38,368) of public comments. Here, we applied a web scraping
script to collect the comments from the USDA website and
apply natural language processing (NLP) methods to produce an
objective summary of the themes and sentiment reflected in this
large volume of content.

Materials and Methods

Dietary Guidelines comment extraction

The USDA and HHS solicited public comments on the
Scientific Report of the 2020 Dietary Guidelines Advisory
Committee, and they were uploaded to https://www.dietarygui
delines.gov/work-under-way/get-involved/submit-comment and
visible at https://beta.regulations.gov/docket/FNS-2020-0015. A
total of 38,368 comments were scraped from the site using the
RSelenium (7) package in the statistical software R (Version
4.0.3; R Core Team).

Delineating unique comments

Because many of the comments were duplicates or nearly
duplicates, a program was written in R (Version 4.0.3; R Core
Team) to flag comments that had identical first sentences. These
were then grouped and evaluated by whether the comments that
had identical first sentences were truly identical, differed only
because of signatures, or had some sentences at the end of the
comment that personalized the duplication. Only the first of
each duplicated comment, combined with the unique comments,
was retained for topic modeling analysis. A workflow diagram
of the process to identify duplicate comments and retain only
one from the group appears in Figure 1. An additional detailed
programming flowchart is also supplied in Supplemental
Figure 1.

Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is an unsupervised method
to identify distinct topics in a set of documents, which in our
case is the set of all comments. Each word in entire data set is
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assigned a probability of belonging to one of k topics, where
k is seeded by the user. The R package “topicmodels” (8) was
used to implement the LDA algorithm in a program written in
R (R Core Team). LDA was performed for k = 2, ..., 4, and a
plot of words with the highest probability of belonging to each
respective topic was evaluated by topic number. The probability
that each comment belonged to topic k was calculated. The
comment was then assigned to topic number k by the maximum
probability.

There were 3 main topics identified by the LDA. Examination
of the third topic revealed high variability in the comments
within. Therefore, we performed a second LDA in the third topic
to classify the different themes within.

Sentiment analysis

The “tidyverse” and “tm” packages for the programming
language R (Version 4.0.3; R Core Team) (9) were applied to
calculate sentiment within each of the topics identified by the
LDA algorithm. Sentiment is calculated by matching words to
a dictionary or lexicon that contains frequently used English
words (9). The words in the lexicon are classified as positive
or negative. Here, we applied the “nrc” lexicon, named for
the National Research Council of Canada, because in addition
to classifying words as positive and negative, the lexicon also
classifies each word by emotions of positive, negative, anger,
anticipation, disgust, fear, joy, sadness, surprise, and trust (10).
Words that are not in the lexicon are assigned the value 0. The
sentiment scores for each comment were calculated in the unique
comments. Sentiment and a count of the words associated with
each emotion within each LDA topic were determined.

Word frequency

Free-text response patterns can be tabulated by the frequency
of words or phrases (n-grams) within a set of free-text
responses. The topmost frequent trigrams (sets of 3 consecutive
words) were tabulated within each LDA topic and plotted
as a bar chart. Stop words such as “the,” “of,” and “to”
were removed from the text (9). In addition, common nouns
that were referencing the committee or the report, such as
“Dietary Guidelines Committee” and “Scientific Report,” were
removed.

Results

Dietary guidelines comment extraction

A total of 38,368 comments were received at the 2020 Dietary
Guidelines Committee Comment website (11). That total count
included petitions with multiple signatures. The petitions with
multiple signatures were counted as a comment. Also, a much
smaller number of vulgar and inappropriate comments were
removed from public view by the USDA. Thus, only 26,510
comments were available for this analysis. Some organizations
submit comments on behalf of their membership (e.g., the
Academy of Nutrition and Dietetics). Other comments represent
the views of a single individual.

After removing comments that were only uploaded files,
14,689 comments were extracted from the comment site. Of


https://www.dietaryguidelines.gov/work-under-way/get-involved/submit-comment
https://beta.regulations.gov/docket/FNS-2020-0015

Public comments of the 2020 Dietary Guidelines 715

Total Number of
Comments received

38,368

URL (11)

Total Number of
Visible Comments

26,510

¢ Total number of comments
that were received at the 2020
Dietary Guidelines Comment

eTotal number of comments that
were received at the 2020 Dietary
Guidelines Comment URL (11)

Comments that were |®Web-scraped stand-alone
scraped

26,481

comments without attached
documents

eThe first instance of a
duplicated comment was
1,645 retained.

Comments after
removing duplicates

FIGURE 1 Workflow diagram describing retainment of final database of 2020 Dietary Guidelines public comments.

these, 13,004 were duplicated. There were 15 distinct groups of
duplicated comments. Table 1 contains information about each
duplicated comment represented by the first sentence. Of the
duplicated comments, 12,710 of the comments were linked to
one duplication.

LDA topics

After visually reviewing words assigned with the highest
probabilities to 2, 3, and 4 topics, 3 topics appeared to be the
most distinct. Figure 2 is a bar plot of the estimated probability
a word belonged to topics 1, 2, and 3.

LDA topic classifications using top word bigrams

The top row of Figure 3 depicts the most frequently appearing
bigrams by topic. Top topic 1 bigrams such as “lactose intolerant”
and “remove dairy” suggest that topic 1 involves comments
associated with removing dairy from the Dietary Guidelines. Top
topic 2 bigrams like “added sugars” and “lower limits” suggest
that topic 2 classifies comments on added sugars. Finally, topic
3 bigrams like “health outcomes,” “cardiovascular disease,” and
“public health” suggest that topic 3 groups together comments
involving health. Because topic 3 had more wide-ranging words
in the bigrams, we reran a LDA on topic 3.

Emotions by LDA topic

The second row of Figure 3 represents the counts of words
classified by emotion in each topic. Emotions of anger were
higher in the dairy (topic 1) group. Emotions of trust were the
lowest and fear was the highest associated with added sugars.
Emotions of anticipation were higher with health outcomes
(topic 3).

Sentiment distribution by LDA topic

The distribution of summed positive and negative by comment
in each LDA topic was plotted in Figure 4. The highest negative
sentiment was observed in topic 1 associated with dairy. There is

a left-skewed distribution for topic 2 associated with added sugar.
Added sugar received positive sentiment because of support for
restriction of added sugars in the Dietary Guidelines. Figure 4
demonstrates a right-skewed distribution for topic 3 associated
with health outcomes.

Description of topic 3

Figure 5 is a bar plot of the estimated probability a word
appeared in 1 of 3 subtopics identified by LDA within topic 3.
The 3 words with the highest probability within each subtopic
were “dairy,” “beef,” and ‘“health,” respectively.

Discussion

These results offer an objective and timely analysis of
voluminous comments on the Scientific Report of the 2020
Dietary Guidelines Advisory Committee. Until 2015, manual
review and summarization of this input to the guidelines process
might have been reasonably complete and effective, but this
situation has clearly changed. The present analysis demonstrates
that NLP techniques can provide a practical means for a complete
and objective summary.

The public feedback on this Scientific Report can be catego-
rized into 3 major topics. The first and largest topic comprises
comments suggesting that including dairy products as a broad
recommendation is unwarranted and potentially harmful. The
highest number of comments classified as angry fall into this
topic. A typical comment in this cluster might say, “It’s time
for the Dietary Guidelines to protect the health of Americans by
making it clear that dairy is unnecessary.” At the same time, it
is worth noting that this sentiment runs counter to the need for
adequate calcium intake. In fact, some analyses suggest that it is
quite difficult or impossible to provide adequate calcium intake
while meeting other nutrient recommendations with dairy-free
diets (12).

The second topic focuses on added sugars. Examples from
this grouping include ‘“added sugars are contributing to an
obesity crisis among our youngest children” and “nearly
60% of infant and toddler food and drink advertising dollars
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TABLE 1 First sentence of duplicate comment, number of times repeated, type of comment, and topic comment was associated with!

First sentence

Number

Type

Content topic

Dear Secretary Sonny Perdue, I call on the US Department of
Agriculture and the US Department of Health and Human Services to
follow the Dietary Guidelines Advisory Committees
recommendations to support the long-term sustainability of the food
system, as well as lowering limits on added sugars in the 2020-2025
Dietary Guidelines for Americans.

Its time for the Dietary Guidelines to protect the health of Americans by
making it clear that dairy is unnecessary.

To the USDA and HHS: For the health of our nation, I urge you to
remove dairy as a recommended food group in the upcoming
2020-2025 Dietary Guidelines.

I’m writing to ask that the Departments of Agriculture and Health and
Human Services ensure Americans get dietary advice based on sound
science and common sense.

Added sugars are contributing to an obesity crisis among our youngest
children.

I am proud to raise cattle and feel good about serving beef to my family
because I know that no other food delivers the same nutrient-rich
package as a three-ounce serving of beef.

I want to commend the Dietary Guidelines Scientific Advisory
Committee for its work on its report highlighting the latest nutrition
science and offering recommendations for healthy diets.

Thank you for the opportunity to comment on the development of the
next dietary guidelines.

Dear Secretary Sonny Perdue, I urge the US Department of Agriculture
and the US Department of Health and Human Services to follow the
Dietary Guidelines Advisory Committees recommendations to
support the long-term sustainability of the food system, as well as
lowering limits on added sugars in the 2020-2025 Dietary Guidelines
for Americans.

To the USDA and HHS: For the health of your nation, I urge you to
remove dairy as a recommended food group in the upcoming
2020-2025 Dietary Guidelines.

I support whole-food, vegan diet not only to end our exploitative
relationship with animals but because of the array of health benefits
they provide for individuals of all ages and lifestyles.

A new report found that the food-related emissions in G20 countries,
which make up two-thirds of the world’s population, account for 75%
of the world’s carbon budget for food.

Dear Secretary Sonny Perdue, We call on the US Department of
Agriculture and the US Department of Health and Human Services to
follow the Dietary Guidelines Advisory Committees
recommendations to support the long-term sustainability of the food
system, as well as lowering limits on added sugars in the 2020-2025
Dietary Guidelines for Americans.

Dear Secretary Sonny Perdue, I ask the US Department of Agriculture
and the US Department of Health and Human Services to follow the
Dietary Guidelines Advisory Committees recommendations to
support the long-term sustainability of the food system, as well as
lowering limits on added sugars in the 2020-2025 Dietary Guidelines
for Americans.

I urge the U.S. Departments of Agriculture and Health and Human
Services to align the 2020 dietary guidelines with the planetary
health diet.

13,109

5029

3062

1571

795

324

73

58

15

11

I

S&P
S&P
P: some duplicates,
some very personalized
S&P

P

P: highly varied

S: signed at end of text
block

P: very few slightly
altered

S: signed at the end of
text block

P: barelyS: signed at
end of text block

P: highly varied

Added sugars and
sustainability

Dairy

Dairy

Alcohol

Added sugar

Beef

Dairy

Dairy

Added sugar

Dairy

Sustainability

Added sugars and
sustainability

Added sugars and
sustainability

Sustainability

THHS, Department of Health and Human Services; I, identical; P, personalized; S, signature.

promoted products not recommended for young children.”
Positive sentiment surrounding added sugars was found in this
topic. The positive sentiment was associated with comments
that viewed the Dietary Guidelines restriction on added sugars

positively.

The third major topic used positive language associated
with healthfulness and sustainability of the food supply. The

comments in this topic were more variable than the other

2 topics. The LDA within topic 3 revealed 3 subtopics that can
be represented as dairy, beef, and health. In contrast to the first
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FIGURE 2 Bar plot of latent Dirichlet allocation estimated probability a word belongs to topic 1, 2, or 3.

topic, many comments in subtopic 1 were positive about the
value of dairy products for health. Emotions of anticipation were
highest in this group, perhaps reflecting a hope for guidelines that
would promote better health. Three excerpts of comments from
each subtopic in topic 3 illustrate the positive sentiment used in
topic 3.

Excerpt 1

I want to commend the Dietary Guidelines Scientific Advisory
Committee for its work on its report highlighting the latest
nutrition science and offering recommendations for healthy
diets. I especially appreciated its many positive findings on
the importance of dairy, including the committee specifically
pointing to the underconsumption of dairy as problematic
when discussing the current landscape of the American
diet.

Excerpt 2

I know that no other food delivers the same nutrient-rich
package as a three-ounce serving of beef. Study after study
shows that beef plays an important role in a balanced, healthy
diet across the lifespan. Beef supports healthy pregnancies,
ensures the healthy growth and development of children,
and helps adults maintain strength and energy throughout
adulthood so they can age vibrantly and have independent and
active lifestyles.

Excerpt 3

The US Department of Agriculture and the US Department of
Health and Human Services have a chance to make a difference
in how Americans can grow healthful food and improve the
health of our people in the future. I encourage you to follow the
Dietary Guidelines Advisory Committees recommendations to
support the long-term sustainability of the food system, as well

as lowering limits on added sugars in the 2020-2025 Dietary
Guidelines for Americans.

The comments supplied here include little or no supporting
evidence, which should serve as an important criterion for
inclusion in the regulatory process (13). With the increase in
public comments, federal agencies could provide education on
how to draft effective comments available at the commenting site
(13).

How can the text analysis help the USDA review comments?

Duplicate comments were removed before the comments were
posted (4). Despite this, the algorithm that identified duplicate
comments found many duplicate comments that were undetected
differed slightly because they contained different signatures or
1 personalized sentence. Our algorithm would be beneficial to the
USDA not only because it pared down the comments to the truly
unique ones but also because it automatically grouped together
the duplicate comments by the level of replication.

As the number of comments increase, it will become more
challenging to manually organize comments. The time involved
to read the comments will be substantial, and classification is
subject to the reviewer’s bias. Moreover, conveying exactly how
the decision was made to move each individual comment into a
classification will be prohibitive. The LDA analysis automates
this process using a well-defined algorithm to group comments.
Once the comments are grouped by LDA, the comments within
each topic can be manually evaluated.

It may be the case that comments are grouped under a
topic that is wide-ranging like the third topic in our analysis.
Understanding why the comments were grouped together will
still require manual reading, but the number of comments in the
topic is substantially less than the entire original set of comments,
making this manual reading more manageable. It only took a few
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FIGURE 3 The top row represents the counts of word bigrams by topic. The second row represents the count of words classified by emotions for each

topic.

minutes for our team to browse topic 3 comments and identify
the overarching reason the comments were grouped together
and the variety within these comments. This variety is what led
to the second LDA within topic 3 to break up topic 3 into 3
further subgroups. Furthermore, applying sentiment analysis is

o5 Topic 1 Sentiment Distribution

o5 Topic 2 Sentiment Distribution

not possible for a large set of comments manually. Using the
precoded “nrc” dictionary in R that had words assigned to be
positive or negative allows a user to compare sentiment across
the topics as we have done here. Although analysis will take
less time due to the NLP algorithms, conveying how the NLP
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FIGURE 4 The distribution of sentiment by topic.
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FIGURE 5 Bar plot of estimated latent Dirichlet allocation performed on topic 3 comments of the probability a word belongs to subtopic 1, 2 or 3 within

topic 3.

algorithms work to a lay public will take more time but is a
worthwhile effort.

A limitation of sentiment analysis is that we are relying on a
general dictionary, namely, the “nrc” package that predetermined
whether a word is positive or negative. The general dictionary is
now being applied to a very specific list of words used to comment
on the Dietary Guidelines. For example, the word “sugar” in
the “nrc” lexicon has been assigned positive sentiment. This
means every time a comment includes the word “sugar,” the
comment gets 1 count in the positive direction. However, it is not
necessarily the case that all references to “sugar” are positive in
the comments. It is possible to tune the lexicon to your specific
analysis, but tuning is problematic because now you are fitting the
lexicon to your data, and your findings may not be objective. We
chose to not tune the lexicon and relied only on the general form
of “nrc” in order to not introduce subjective and biased decisions
into the analysis.

A second limitation is that topics in LDA need to be manually
evaluated. Although the topics and the words that fall within each
topic are determined under a Dirichlet distribution assumption,
the theme of the topic still needs to be determined by a
human.

Despite these limitations, using LDA and sentiment analysis
reduces the burden on the analyst, is equipped to handle
large numbers of comments, and is transparent with algorithms
determining assignments of sentiment and topics.

Conclusions

After issuing the Scientific Report of the Dietary Guidelines
Committee and receiving public comments, USDA and HHS
have developed and issued the final guidelines. This analysis
offers an objective means to enhance the transparency of factoring

public comments into the final guidelines. In addition, the
analysis provides a scalable and feasible method for analysis in
anticipation of even more future public commenting.

The 2020 Dietary Guidelines will reflect a full range of
comments received throughout the yearlong process of analysis,
deliberations, public hearings, input, and review. The final
product must strike a balance between public sentiment and
scientific evidence while being sensitive to the realities of
political factors. Transparency in objectively reviewing these
comments remains both challenging and essential.
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SUMMARY

In this commentary, we put forth the following argument: Anyone conducting machine learning in a
health-related domain should educate themselves about structural racism. We argue that structural racism
is a critical body of knowledge needed for generalizability in almost all domains of health research.
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1. MOTIVATION

In this commentary, we put forth the following argument: anyone conducting machine learning in a
health-related domain should educate themselves about structural racism. As Domingos and others have
argued, “Every learner must embody some knowledge or assumptions beyond the data it is given in order
to generalize beyond it” (Domingos, 2012). We argue here that structural racism is a critical body of
knowledge needed for generalizability in almost all domains of health research. We believe that this is
especially true when inference relies on algorithms (“learners™) to choose statistical models.

We make the recommendation to incorporate structural racism based on our experiences as epidemiol-
ogists. Epidemiologists are fundamentally interested in causing changes that result in improved individual
and population health and that reduce health disparities (Glass and others, 2013). Quantifying statistical
associations are central to these objectives, yet they are not sufficient. As we observe the challenges facing
applied machine learning, we see echoes of debates that epidemiology has encountered. For instance, epi-
demiology’s disease screening literature has imparted the intuition that even highly sensitive and specific
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screening algorithms can produce more false positives (analogous to the high “false discovery rate” in
machine learning terminology) than true positives when an outcome is rare.

In particular, we are inspired by our field’s 1980s- and 1990s-era debates about “black box epidemiol-
ogy” (Weed, 1998). In many respects, this debate mirrors debates in machine learning about the trade-offs
between improved prediction versus greater model interpretability (Seligman and others,2018). The earlier
epidemiology debate contrasted the use of multivariable-adjusted regression models to identify behavioral
risk factors for cancer incidence to target in prevention efforts (“black box”) versus research elucidating
biological pathways of cancer development, particularly at the level of molecular biology (“mechanistic”)
(Weed, 1998). However, the “mechanistic” side’s focus on molecular mechanisms ignored all the parts of
the causal structure that were “above” the molecular level. A key insight of this debate was that, even a
mechanistically oriented research orientation has its blind spots. Specifically, the integration of sociopo-
litical forces with a consideration of biology and behavior was missing in early debates in the field (Weed,
1998). The need to integrate factors from across the full breadth of the causal structure is likely even more
crucial when making causal inference.

2. WHY STRUCTURAL RACISM IS CRITICAL KNOWLEDGE

Structural racism refers to “the totality of ways in which societies foster [racial] discrimination, via
mutually reinforcing [inequitable] systems...(e.g., in housing, education, employment, earnings, benefits,
credit, media, health care, criminal justice, etc.) that in turn reinforce discriminatory beliefs, values, and
distribution of resources,” reflected in history, culture, and interconnected institutions (Bailey and others,
2017). Below we present two reasons why expanding one’s knowledge base of structural racism will
improve the quality of work produced by machine learning applications to health.

First, even when racial categorization is not a topic of interest in an analysis, structural racism will shape
associations of health-related processes. For instance, in a U.S. context, the sociodemographic variable
White/Black race is a variable that is frequently available in health-related datasets and often highly
predictive of health outcomes. For instance, Seligman and others (2018) attempted to predict body mass
index (BMI), blood pressure, and waist circumference in a population of 15,784 longitudinally assessed
participants using four machine learning methods (linear regression, penalized regressions, random forests,
and neural networks). With access to 458 variables, “Black/African-American Race” was one of the top
five variables selected by all four machine learning models Seligman and others (2018). In non-U.S.
contexts, other markers of social stratification, such as caste, ethnicity, religion, social class, country of
birth, home village, gender, or sexual identity, will be similarly predictive in health processes that involves
human agency and social organization. An analyst striving to produce the most predictive and illuminating
models ignores structural racism (and other axes of inequality) at his or her own peril. Ignoring structural
racism is a decision to ignore structures that give rise to many and varied associations with health.

A second motivation for educating oneself about structural racism is the common occurrence of “algo-
rithmic bias.” When “race-neutral” approaches are employed in model development, prediction will tend
to be poorer for racial minority populations. Greater error rates, and even failure of algorithms to per-
form at all, for racial minorities have been widely reported. Examples include facial recognition software
that misidentifies gender and even species when presented with dark-skinned women of African descent
(Buolamwini and Gebru, 2016) and proprietary formulas used in criminal sentencing that misclassify
defendants as high risk for recidivism at a greater rate for Black versus White defendants (Rudin and oth-
ers, 2018). Two explanations for differentially poorer model performance can be addressed by collecting
more data: too few observations of members of racial minority groups and unrepresentative sampling that
can differentially limit generalizability (Kreatsoulas and Subramanian, 2018).

However, an additional cause of algorithmic bias is not well appreciated and cannot be overcome
simply by adding more of the same kind of data to a learner. The problem is the data generation process
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itself. The data generation process “[is] an inherently subjective enterprise in which a discipline’s norms
and conventions help to reinforce existing racial (and other) hierarchies” (Ford and Airhihenbuwa, 2010).
As explicated by the Public Health Critical Race Praxis, without an explicit focus on social equity, the
concerns of the most privileged members of society are overrepresented in data and research (Ford and
Airhihenbuwa, 2010). One empirical demonstration of this phenomenon is Tehranifar and others’ (2009)
investigation of racial disparities in survival ranked by the degree of knowledge that had been gen-
erated about a cancer. Ranked from “nonamenble” (little knowledge, uniformly high mortality rates) to
“mostly amenable” (well-studied, high survival), “the hazard ratios (95% confidence intervals) for African
Americans versus Whites from nonamenable, partly amenable, and mostly amenable cancers were 1.05
(1.03-1.07), 1.38 (1.34-1.41), and 1.41 (1.37-1.46), respectively” (Tehranifar and others, 2009). Absent
much knowledge about prevention or treatment, Blacks and Whites had similar mortality outcomes. The
kind of knowledge that was produced disproportionately benefited the health of the White populations.
One factor is the ability of more privileged groups to access knowledge and leverage financial and med-
ical resources (Phelan and others, 2010). But a more fundamental factor is the research enterprise itself
tends to collect more data and advance more quickly on problems that disproportionately affect those in
society with more power and resources. For instance, over the past decades, medical treatment for the
“triple-negative” subtype of breast cancer that disproportionately affects Black women has advanced much
more slowly than for the hormone-receptor positive subtypes that are disproportionately diagnosed among
White women in the Unites States (Foulkes and others, 2010). Similarly, in the case of multiple myeloma
wherein Black patients make up 20% of all people diagnosed, in a review of 21 clinical trials in patients
with multiple myeloma, the median proportion of Black patients enrolled was only 4.5% (Bhatnagar and
others, 2017).

One solution to algorithmic bias is to follow Doug Weed’s suggestion from the “black box” epidemi-
ology debates: devote special attention to causal structures that act at different levels. A tool that we find
valuable for this effort are directed acyclic graphs, or DAGs. In a DAG, arrows between nodes represent our
beliefs about the presence of causal relationships among factors under study. D-separation, a set of rules
for drawing and analyzing the relationships in the DAG (http://bayes.cs.ucla.edu/BOOK-2K/d-sep.html),
results in concrete guidance for model building and interpretation. For instance, DAG analysis can iden-
tify biases, such as uncontrolled confounding (“omitted variable bias”), unaddressed in an analysis or
even biases introduced when problematic variables are included in the adjustment set (e.g., instruments
or mediators) (Keil and others, 2018; Hernan and others, 2001), which is not the same as, but related to,
the concept of bias from “overfitting” (Seligman and others, 2018).

3. EMPIRICAL EXAMPLE: ALGORITHMS AND LUNG FUNCTION

Here we present an example from the pulmonary health literature. Lung function is typically assessed
using a tool called a spirometer (Braun, 2015). Internationally, most commercially available spirometers
require the operator to “select the race of an individual, as well as indicate their age, sex/gender and
height. These data are fed into an algorithm that “corrects” for each factor, based on the assumption that
normal levels of lung function differ by age, sex, height, and race. The first formulas were produced in
the United States in the 1920s, “during a period when eugenic policies rooted in hereditarianism were
popular” (Braun, 2015). The formulas have been updated over time, most recently based on data from
the 1988—-1994 NHANES exam (Braun, 2015). Today, for example, in the United States, compared to a
“Caucasian” population, correction factors for individuals labeled “black” range from 10% to 15%, on
the assumption that Black people have constitutionally poorer lung function; for people labeled “Asian,”
correction factors are between 4% and 6% (Braun, 2015).

Figure 1 shows a DAG depicting how the spirometer manufacturers and most lung function researchers
tacitly conceptualize the relationship between race and normal lung function. In addition, White workers
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Fig. 1. Directed acyclic graph (DAG) depicting naive conceptualization of causal relationships among race,
occupational exposures, and lung function.
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Fig.2. Directed acyclic graph (DAG) of relationships among race, occupational exposures, and lung function,
incorporating structural racism and theories from the Public Health Critical Race Praxis.

are centered in this conceptualization (Ford and Airhihenbuwa, 2010). Their lung function is considered to
be the norm from which non-White people deviate. Race is being conceptualized here as a characteristic
of a person that independently and innately depresses lung function. In addition, this DAG encodes the
prediction that the effect of harmful occupational exposure on lung function would differ for Black and
White people. Therefore, it would makes sense to correct for race when predicting lung function based
on occupational exposures. The result is that a given level of poor lung function would be considered
abnormally low for a White person but normal for a Black person. The implications are profound: Black
and Asian people must exhibit lower levels of actual lung function than White people to cross clinical
thresholds for qualifying for therapeutic services or disability benefits. Further, the model predictions
could easily justify allowing greater levels of exposures to occupational hazards for Black workers who
do not exhibit the depressed levels of lung function associated with harm.

Figure 2 presents a similar DAG informed by knowledge of structural racism. This DAG explicitly
incorporates possible operator bias, interrogates the source of the “race” variable and its meaning (e.g.,
self-reported forced choice among categories, operator perception). Further, the DAG makes the data
generation process and variations in data quality more explicit. Finally, by acknowledging that observed
associations between race and lung function could be entirely explained by racial disparities in living and
working conditions, the DAG animates the analyst to collect or include additional, more proximally causal,
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and likely more statistically predictive, variables, such as living conditions, for which race is operating
as a surrogate. Crucially, incorporating more proximal and predictive variables into models, rather than
relying on race variables to act as proxies, will improve transportability of algorithms across contexts.

4. CONCLUSION

“The fundamental goal of machine learning is to generalize beyond the algorithm training set” (Kreatsoulas
and Subramanian, 2018). In particular, when applied to health and health care, even models intended only
for prediction will have causal impacts. Model results will be used for decision-making about the allocation
of health care, access to social welfare and disability systems, and acceptable limits of medical exposures
for vulnerable populations. We have argued that grounding one’s work in an understanding of structural
racism will improve model accuracy and help avoid the pitfalls of limited application to racial minority
populations, algorithmic bias, limited transportability and reinforcing racial inequities.
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Stop Explaining Black Box Machine Learning Models for High
Stakes Decisions and Use Interpretable Models Instead

Cynthia Rudin
Duke University

Abstract

1

Black box machine learning models are currently being used for high stakes decision-making
throughout society, causing problems throughout healthcare, criminal justice, and in other
domains. People have hoped that creating methods for explaining these black box models will
alleviate some of these problems, but trying to exp/ain black box models, rather than creating
models that are /nterpretable in the first place, is likely to perpetuate bad practices and can
potentially cause catastrophic harm to society. There is a way forward — it is to design models that
are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes
and using inherently interpretable models, outlines several key reasons why explainable black
boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine
learning, and provides several example applications where interpretable models could potentially
replace black box models in criminal justice, healthcare, and computer vision.

Introduction

There has been an increasing trend in healthcare and criminal justice to leverage machine
learning (ML) for high-stakes prediction applications that deeply impact human lives. Many
of the ML models are black boxes that do not explain their predictions in a way that humans
can understand. The lack of transparency and accountability of predictive models can have
(and has already had) severe consequences; there have been cases of people incorrectly
denied parole [1], poor bail decisions leading to the release of dangerous criminals, ML-
based pollution models stating that highly polluted air was safe to breathe [2], and generally
poor use of limited valuable resources in criminal justice, medicine, energy reliability,
finance, and in other domains [3].

Rather than trying to create models that are inherently interpretable, there has been a recent
explosion of work on “Explainable ML,” where a second (posthoc) model is created to
explain the first black box model. This is problematic. Explanations are often not reliable,
and can be misleading, as we discuss below. If we instead use models that are inherently
interpretable, they provide their own explanations, which are faithful to what the model
actually computes.

cynthia@cs.duke.edu .
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In what follows, we discuss the problems with Explainable ML, followed by the challenges
in Interpretable ML. This document is mainly relevant to high-stakes decision making and
troubleshooting models, which are the main two reasons one might require an interpretable
or explainable model. Interpretability is a domain-specific notion [4, 5, 6, 7], so there
cannot be an all-purpose definition. Usually, however, an interpretable machine learning
model is constrained in model form so that it is either useful to someone, or obeys

structural knowledge of the domain, such as monotonicity [e.g., 8], causality, structural
(generative) constraints, additivity [9], or physical constraints that come from domain
knowledge. Interpretable models could use case-based reasoning for complex domains.
Often for structured data, sparsity is a useful measure of interpretability, since humans

can handle at most 7+2 cognitive entities at once [10, 11]. Sparse models allow a view

of how variables interact jointly rather than individually. We will discuss several forms of
interpretable machine learning models for different applications below, but there can never
be a single definition; e.g., in some domains, sparsity is useful, and in others is it not. There
is a spectrum between fully transparent models (where we understand how all the variables
are jointly related to each other) and models that are lightly constrained in model form (such
as models that are forced to increase as one of the variables increases, or models that, all else
being equal, prefer variables that domain experts have identified as important, see [12]).

A preliminary version of this manuscript appeared at a workshop, entitled “Please Stop
Explaining Black Box Machine Learning Models for High Stakes Decisions” [13].

2 Key Issues with Explainable ML

A black box model could be either (i) a function that is too complicated for any human to
comprehend, or (ii) a function that is proprietary (see Appendix A). Deep learning models,
for instance, tend to be black boxes of the first kind because they are highly recursive. As
the term is presently used in its most common form, an explanation is a separate model
that is supposed to replicate most of the behavior of a black box (e.g., “the black box

says that people who have been delinquent on current credit are more likely to default on
a new loan”). Note that the term “explanation” here refers to an understanding of how

a model works, as opposed to an explanation of how the world works. The terminology
“explanation” will be discussed later; it is misleading.

I am concerned that the field of interpretability/explainability/comprehensibility/
transparency in machine learning has strayed away from the needs of real problems. This
field dates back to the early 90’s at least [see 4, 14], and there are a huge number of

papers on interpretable ML in various fields (that often do not have the word “interpretable”
or “explainable” in the title, as the recent papers do). Recent work on explainability of
black boxes — rather than interpretability of models — contains and perpetuates critical
misconceptions that have generally gone unnoticed, but that can have a lasting negative
impact on the widespread use of machine learning models in society. Let us spend some
time discussing this before discussing possible solutions.

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.
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It is a myth that there is necessarily a trade-off between accuracy and interpretability.

There is a widespread belief that more complex models are more accurate, meaning that
a complicated black box is necessary for top predictive performance. However, this is
often not true, particularly when the data are structured, with a good representation in
terms of naturally meaningful features. When considering problems that have structured
data with meaningful features, there is often no significant difference in performance
between more complex classifiers (deep neural networks, boosted decision trees, random
forests) and much simpler classifiers (logistic regression, decision lists) after preprocessing.
(Appendix B discusses this further.) In data science problems, where structured data with
meaningful features are constructed as part of the data science process, there tends to be
little difference between algorithms, assuming that the data scientist follows a standard
process for knowledge discovery [such as KDD, CRISP-DM, or BigData, see 15, 16, 17].

Even for applications such as computer vision, where deep learning has major performance
gains, and where interpretability is much more difficult to define, some forms of
interpretability can be imbued directly into the models without losing accuracy. This will

be discussed more later in the Challenges section. Uninterpretable algorithms can still be
useful in high-stakes decisions as part of the knowledge discovery process, for instance, to
obtain baseline levels of performance, but they are not generally the final goal of knowledge
discovery.

Figure 1, taken from the DARPA Explainable Artificial Intelligence program’s Broad
Agency Announcement [18], exemplifies a blind belief in the myth of the accuracy-
interpretability trade-off. This not a “real” figure, in that it was not generated by any data.
The axes have no quantification (there is no specific meaning to the horizontal or vertical
axes). The image appears to illustrate an experiment with a static dataset, where several
machine learning algorithms are applied to the same dataset. However, this kind of smooth
accuracy/interpretability/explainability trade-off is atypical in data science applications with
meaningful features. Even if one were to quantify the interpretability/explainability axis
and aim to show that such a trade-off did exist, it is not clear what algorithms would be
applied to produce this figure. (Would one actually claim it is fair to compare the 1984
decision tree algorithm CART to a 2018 deep learning model and conclude that interpretable
models are not as accurate?) One can always create an artificial trade-off between accuracy
and interpretability/explainability by removing parts of a more complex model to reduce
accuracy, but this is not representative of the analysis one would perform on a real problem.
It is also not clear why the comparison should be performed on a static dataset, because

any formal process for defining knowledge from data [15, 16, 17] would require an iterative
process, where one refines the data processing after interpreting the results. Generally, in
the practice of data science, the small difference in performance between machine learning
algorithms can be overwhelmed by the ability to interpret results and process the data better
at the next iteration [19]. In those cases, the accuracy/interpretability tradeoff is reversed —
more interpretability leads to better overall accuracy, not worse.

Efforts working within a knowledge discovery process led me to work in interpretable
machine learning [20]. Specifically, | participated in a large-scale effort to predict electrical
grid failures across New York City. The data were messy, including free text documents

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.
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(trouble tickets), accounting data about electrical cables from as far back as the 1890’s,
inspections data from a brand new manhole inspections program; even the structured data
were not easily integrated into a database, and there were confounding issues and other
problems. Algorithms on a static dataset were at most 1% different in performance, but the
ability to interpret and reprocess the data led to significant improvements in performance,
including correcting problems with the dataset, and revealing false assumptions about the
data generation process. The most accurate predictors we found were sparse models with
meaningful features that were constructed through the iterative process.

The belief that there is always a trade-off between accuracy and interpretability has led
many researchers to forgo the attemptto produce an interpretable model. This problem

is compounded by the fact that researchers are now trained in deep learning, but not in
interpretable machine learning. Worse, toolkits of machine learning algorithms offer little in
the way of useful interfaces for interpretable machine learning methods.

To our knowledge, all recent review and commentary articles on this topic imply (implicitly
or explicitly) that the trade-off between interpretability and accuracy generally occurs. It
could be possible that there are application domains where a complete black box is required
for a high stakes decision. As of yet, | have not encountered such an application, despite
having worked on numerous applications in healthcare and criminal justice [e.g., 21], energy
reliability [e.g., 20], and financial risk assessment [e.g., 22].

(i) Explainable ML methods provide explanations that are not faithful to what the original
model computes.

Explanations must be wrong. They cannot have perfect fidelity with respect to the original
model. If the explanation was completely faithful to what the original model computes, the
explanation would equal the original model, and one would not need the original model in
the first place, only the explanation. (In other words, this is a case where the original model
would be interpretable.) This leads to the danger that any explanation method for a black
box model can be an inaccurate representation of the original model in parts of the feature
space. [See also for instance, 23, among others.]

An inaccurate (low-fidelity) explanation model limits trust in the explanation, and by
extension, trust in the black box that it is trying to explain. An explainable model that

has a 90% agreement with the original model indeed explains the original model most of
the time. However, an explanation model that is correct 90% of the time is wrong 10% of
the time. If a tenth of the explanations are incorrect, one cannot trust the explanations, and
thus one cannot trust the original black box. If we cannot know for certain whether our
explanation is correct, we cannot know whether to trust either the explanation or the original
model.

A more important misconception about explanations stems from the terminology
“explanation,” which is often used in a misleading way, because explanation models do not
always attempt to mimic the calculations made by the original model. Even an explanation
model that performs almost identically to a black box model might use completely different
features, and is thus not faithful to the computation of the black box. Consider a black box

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.
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model for criminal recidivism prediction, where the goal is to predict whether someone

will be arrested within a certain time after being released from jail/prison. Most recidivism
prediction models depend explicitly on age and criminal history, but do not explicitly depend
on race. Since criminal history and age are correlated with race in all of our datasets, a
fairly accurate explanation model could construct a rule such as “This person is predicted to
be arrested because they are black.” This might be an accurate explanation model since it
correctly mimics the predictions of the original model, but it would not be faithful to what
the original model computes. This is possibly the main flaw identified by criminologists
[24] in the ProPublica analysis [25, 26] that accused the proprietary COMPAS recidivism
model of being racially biased. COMPAS (Correctional Offender Management Profiling for
Alternative Sanctions) is a proprietary model that is used widely in the U.S. Justice system
for parole and bail decisions. ProPublica created a linear explanation model for COMPAS
that depended on race, and then accused the black box COMPAS model of depending on
race, conditioned on age and criminal history. In fact, COMPAS seems to be nonlinear, and
it is entirely possible that COMPAS does not depend on race (beyond its correlations with
age and criminal history) [27]. ProPublica’s linear model was not truly an “explanation”
for COMPAS, and they should not have concluded that their explanation model uses the
same important features as the black box it was approximating. (There will be a lot more
discussion about COMPAS later in this document.)

An easy fix to this problem is to change terminology. Let us stop calling approximations

to black box model predictions explanations. For a model that does not use race explicitly,
an automated explanation “This model predicts you will be arrested because you are black”
is not an explanation of what the model is actually doing, and would be confusing to a
judge, lawyer or defendant. Recidivism prediction will be discussed more later, as it is a

key application where interpretable machine learning is necessary. In any case, it can be
much easier to detect and debate possible bias or unfairness with an interpretable model than
with a black box. Similarly, it could be easier to detect and avoid data privacy issues with
interpretable models than black boxes. Just as in the recidivism example above, many of

the methods that claim to produce explanations instead compute useful summary statistics
of predictions made by the original model. Rather than producing explanations that are
faithful to the original model, they show trends in how predictions are related to the features.
Calling these “summaries of predictions,” “summary statistics,” or “trends” rather than
“explanations” would be less misleading.

(iii) Explanations often do not make sense, or do not provide enough detail to understand
what the black box is doing.

Even if both models are correct (the original black box is correct in its prediction and
the explanation model is correct in its approximation of the black box’s prediction), it

is possible that the explanation leaves out so much information that it makes no sense.

I will give an example from image processing, for a low-stakes decision (not a high-
stakes decision where explanations are needed, but where explanation methods are often
demonstrated). Saliency maps are often considered to be explanatory. Saliency maps can
be useful to determine what part of the image is being omitted by the classifier, but this
leaves out all information about how relevant information /s being used. Knowing where

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.
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the network is looking within the image does not tell the user what it is doing with that

part of the image, as illustrated in Figure 2. In fact, the saliency maps for multiple classes
could be essentially the same; in that case, the explanation for why the image might contain
a Siberian husky would be the same as the explanation for why the image might contain a
transverse flute.

An unfortunate trend in recent work is to show explanations only for the observation’s
correct label when demonstrating the method (e.g., Figure 2 would not appear).
Demonstrating a method using explanations only for the correct class is misleading. This
practice can instill a false sense of confidence in the explanation method and in the black
box. Consider, for instance, a case where the explanations for multiple (or all) of the classes
are identical. This situation would happen often when saliency maps are the explanations,
because they tend to highlight edges, and thus provide similar explanations for each class.
These explanations could be identical even if the model is a/wayswrong. Then, showing
only the explanations for the image’s correct class misleads the user into thinking that the
explanation is useful, and'that the black box is useful, even if neither one of them are.

Saliency maps are only one example of explanations that are so incomplete that they might
not convey why the black box predicted what it did. Similar arguments can be made with
other kinds of explanation methods. Poor explanations can make it very hard to troubleshoot
a black box.

(iv) Black box models are often not compatible with situations where information outside
the database needs to be combined with a risk assessment.

In high stakes decisions, there are often considerations outside the database that need to

be combined with a risk calculation. For instance, what if the circumstances of the crime

are much worse than a generic assigned charge? There are often circumstances whose
knowledge could either increase or decrease someone’s risk. But if the model is a black box,
it is very difficult to manually calibrate how much this additional information should raise or
lower the estimated risk. This issue arises constantly; for instance, the proprietary COMPAS
model used in the U.S. Justice System for recidivism risk prediction does not depend on

the seriousness of the current crime [27, 29]. Instead, the judge is instructed to somehow
manually combine current crime with COMPAS. Actually, it is possible that many judges
do not know this fact. If the model were transparent, the judge could see directly that the
seriousness of the current crime is not being considered in the risk assessment.

(v) Black box models with explanations can lead to an overly complicated decision
pathway that is ripe for human error.

Typographical errors seem to be common in computing COMPAS, and these typographical
errors sometimes determine bail decision outcomes [1, 27]. This exemplifies an important
drawback of using overly complicated black box models for recidivism prediction — they
may be incorrectly calculated in practice. The computation of COMPAS requires 130+
factors. If typographical errors by humans entering these data into a survey occur at a rate of
1%, then more than 1 out of every 2 surveys on average will have at least one typographical
error. The multitude of typographical errors has been argued to be a type of procedural
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unfairness, whereby two individuals who are identical might be randomly given different
parole or bail decisions. These types of errors have the potential to reduce the in-practice
accuracy of these complicated models.

On the separate topic of model troubleshooting, an overly complicated black box model
may be flawed but we do not know it, because it is difficult to troubleshoot. Having an
(incomplete) explanation of it may not help, and now we must troubleshoot two models
rather than one (the black box model and the explanation model).

In the next section, we completely switch gears. We will discuss reasons why so many
people appear to advocate for black box models with separate explanation models, rather
than inherently interpretable models — even for high-stakes decisions.

3 Key Issues with Interpretable ML

There are many cases where black boxes with explanations are preferred over interpretable
models, even for high-stakes decisions. However, for most applications, | am hopeful that
there are ways around some of these problems, whether they are computational problems, or
problems with training of researchers and availability of code. The first problem, however,
is currently a major obstacle that | see no way of avoiding other than through policy, as
discussed in the next section.

(i) Corporations can make profits from the intellectual property afforded to a black box.

Companies that charge for individual predictions could find their profits obliterated if an
interpretable model were used instead.

Consider the COMPAS proprietary recidivism risk prediction tool discussed above that is in
widespread use in the U.S. Justice System for predicting the probability that someone will
be arrested after their release [29].

The COMPAS model is equally accurate for recidivism prediction as the very simple three
rule interpretable machine learning model involving only age and number of past crimes
shown in Figure 3 below. However, there is no clear business model that would suggest
profiting from the simple transparent model. The simple model in Figure 3 was created from
an algorithm called Certifiably Optimal Rule Lists (CORELS) that looks for if-then patterns
in data. Even though the model in Figure 3 looks like a rule of thumb that a human may
have designed without data, it is instead a full-blown machine learning model. A qualitative
comparison of the COMPAS and CORELS models is in Table 1. Standard machine learning
tools and interpretable machine learning tools seem to be approximately equally accurate
for predicting recidivism, even if we define recidivism in many different ways, for many
different crime types [30, 31]. This evidence, however, has not changed the momentum of
the justice system towards proprietary models. As of this writing, California has recently
eliminated its cash bail system, instead enforcing that decisions be made by algorithms; it is
unclear whether COMPAS will be the algorithm used for this, despite the fact that it is not
known to be any more accurate than other models, such as the simple CORELS model in
Figure 3.
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COMPAS is not a machine learning model — it was not created by any standard machine
learning algorithm. It was designed by experts based on carefully designed surveys and
expertise, and it does not seem to depend heavily on past criminal history [27]. Interestingly,
if the COMPAS model were not proprietary, its documentation [29] indicates that it would
actually be an interpretable predictive model. (It is a black box of the second type —
proprietary — but not the first type — complicated — discussed above.) Revealing this model,
however, would be revealing a trade secret.

Let us switch examples to consider the proprietary machine learning model by BreezoMeter,
used by Google during the California wildfires of 2018, which predicted air quality as “good
— ideal air quality for outdoor activities,” when air quality was dangerously bad according to
multiple other models [2], and people reported their cars covered in ash. The Environmental
Protection Agency’s free, vigorously-tested air quality index would have provided a reliable
result [33]. How could BreezoMeter’s machine learning method be so badly wrong and put
so many in danger? We will never find out, but BreezoMeter, who has probably made a
profit from making these predictions, may not have developed this new technology if its
models were forced to be transparent.

In medicine, there is a trend towards blind acceptance of black box models, which will

open the door for companies to sell more models to hospitals. For instance, radiology and
in-hospital patient monitoring are areas of medicine that stand to gain tremendously by
automation; humans cannot process data fast enough or rapidly enough to compete with
machines. However, in trusting these automated systems, we must also trust the full database
on which they were trained, the processing of the data, along with the completeness of

the database. If the database does not represent the full set of possible situations that can
arise, then the model could be making predictions in cases that are very different from
anything it was trained on. An example of where this can go wrong is given by Zech

et al. [34], who noticed that their neural network was picking up on the word “portable”
within an x-ray image, representing the type of x-ray equipment rather than the medical
content of the image. If they had used an interpretable model, or even an explainable

model, this issue would never have gone unnoticed. Zech et al. [34] pointed out the issue of
confounding generally; in fact, the plague of confounding haunts a vast number of datasets,
and particularly medical datasets. This means that proprietary models for medicine can have
serious errors. These models can also be fragile, in that if the model is used in practice in a
slightly different setting than how it was trained (e.g., new X-ray equipment), accuracy can
substantially drop.

The examples of COMPAS, Breezometer, and black box medical diagnosis all illustrate
a problem with the business model for machine learning. In particular, there is a conflict
of responsibility in the use of black box models for high-stakes decisions: the companies
that profit from these models are not necessarily responsible for the quality of individual
predictions. A prisoner serving an excessively long sentence due to a mistake entered

in an overly-complicated risk score could suffer for years, whereas the company that
constructed this complicated model is unaffected. On the contrary, the fact that the model
was complicated and proprietary allowed the company to profit from it. In that sense, the
model’s designers are not incentivized to be careful in its design, performance, and ease
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of use. These are some of the same types of problems affecting the credit rating agencies
who priced mortgages in 2008; that is, these are the same problems that contributed to the
financial crisis in the United States at that time.

One argument favoring black boxes is that keeping these models hidden prevents them from
being gamed or reverse-engineered. It is not clear that this argument generally makes sense.
In fact, the reason a system may be gamed is because it most likely was not designed
properly in the first place, leading to a form of Goodhart’s law if it were revealed. Quoting
from Chang et al. [35] about product rating systems: “If the ratings are accurate measures
of quality, then making the ratings more transparent could have a uniformly positive impact:
it would help companies to make better rated products, it would help consumers to have
these higher quality products, and it would encourage rating companies to receive feedback
as to whether their rating systems fairly represent quality.” Thus, transparency could help
improve the quality of the system, whereby attempting to game it would genuinely align
with the overall goal of improvement. For instance, improving one’s credit score should
actually correspond to an improvement in creditworthiness.

Another argument favoring black boxes is the belief that “counterfactual explanations” of
black boxes are sufficient. A counterfactual explanation describes a minimal change to the
input that would result in the opposite prediction. For instance, a possible counterfactual
explanation might be “your loan application was denied, but if you had $1000 less debt,
you would have qualified for the loan.” This type of explanation can suffer from key issue
(iv) discussed above, about combining information outside the database with the black box.
In particular, the “minimal” change to the input might be different for different individuals.
Appendix C discusses in more depth why counterfactual explanations generally do not
suffice for high stakes decisions of black boxes.

Interpretable models can entail significant effort to construct, in terms of both

computation and domain expertise.

As discussed above, interpretability usually translates in practice to a set of application-
specific constraints on the model. Solving constrained problems is generally harder than
solving unconstrained problems. Domain expertise is needed to construct the definition of
interpretability for the domain, and the features for machine learning. For data that are
unconfounded, complete, and clean, it is much easier to use a black box machine learning
method than to troubleshoot and solve computationally hard problems. However, for high-
stakes decisions, analyst time and computational time are less expensive than the cost of
having a flawed or overly complicated model. That is, it is worthwhile to devote extra effort
and cost into constructing a high-quality model. But even so, many organizations do not
have analysts who have the training or expertise to construct interpretable models at all.

Some companies have started to provide interpretable ML solutions using proprietary
software. While this is a step in the right direction, it is not clear that the proprietary
software is better than publicly available software. For instance, claims made by some
companies about performance of their proprietary algorithms are not impressive (e.g.,
Interpretable Al, whose decision tree performance using mixed integer programming
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software in 2017 is reported to be often beaten by or comparable to the 1984 Classification
and Regression Tree algorithm, CART).

As discussed earlier, interpretability constraints (like sparsity) lead to optimization problems
that have been proven to be computationally hard in the worst case. The theoretical hardness
of these problems does not mean we cannot solve them, though in real cases, these
optimization problems are often difficult to solve. Major improvements have been made

in the last decade, and some are discussed later in the Challenges section. Explanation
methods, on the other hand, are usually based on derivatives, which lead to easier gradient-
based optimization.

(iii) Black box models seem to uncover “hidden patterns.”

The fact that many scientists have difficulty constructing interpretable models may be
fueling the belief that black boxes have the ability to uncover subtle hidden patterns in the
data that the user was not previously aware of. A transparent model may be able to uncover
these same patterns. If the pattern in the data was important enough that a black box model
could leverage it to obtain better predictions, an interpretable model might also locate the
same pattern and use it. Again, this depends on the machine learning researcher’s ability to
create accurate-yet-interpretable models. The researcher needs to create a model that has the
capability of uncovering the types of patterns that the user would find interpretable, but also
the model needs to be flexible enough to fit the data accurately. This, and the optimization
challenges discussed above, are where the difficulty lies with constructing interpretable
models.

4 Encouraging Responsible ML Governance

Currently the European Union’s revolutionary General Data Protection Regulation and other
Al regulation plans govern “right to an explanation,” where only an explanation is required,
not an interpretable model [36], in particular “The data subject shall have the right not to

be subject to a decision based solely on automated processing, including profiling, which
produces legal effects concerning him or her or similarly significantly affects him or her”
(Article 22 of GDPR regulations from http://www.privacy-regulation.eu/en/22.htm). If one
were to provide an explanation for an automated decision, it is not clear whether the
explanation is required to be accurate, complete, or faithful to the underlying model [e.g.,
see 37]. Less-than-satisfactory explanations can easily undermine these new policies.

Let us consider a possible mandate that, for certain high-stakes decisions, rno black box
should be deployed when there exists an interpretable model with the same level of
performance. 1f such a mandate were deployed, organizations that produce and sell black
box models could then be held accountable if an equally accurate transparent model exists.
It could be considered a form of false advertising to sell a black box model if there is an
equally-accurate interpretable model. The onus would then fall on organizations to produce
black box models only when no transparent model exists for the same task.

This possible mandate could produce a change in the business model for machine learning.
Opacity is viewed as essential in protecting intellectual property, but it is at odds with
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the requirements of many domains that involve public health or welfare. However, the
combination of opacity and explainability is not the only way to incentivize machine
learning experts to invest in creating such systems. Compensation for developing an
interpretable model could be provided in a lump sum, and the model could be released

to the public. The creator of the model would not be able to profit from licensing the model
over a period of time, but the fact that the models are useful for public good applications
would make these problems appeal to academics and charitable foundations.

This proposal will not solve all problems, but it could at least rule out companies selling
recidivism prediction models, possibly credit scoring models, and other kinds of models
where we can construct accurate-yet-interpretable alternatives. If applied too broadly, it
could reduce industrial participation in cases where machine learning might benefit society.

Consider a second proposal, which is weaker than the one provided above, but which might
have a similar effect. Let us consider the possibility that organizations that introduce black
box models would be mandated to report the accuracy of interpretable modeling methods.
In that case, one could more easily determine whether the accuracy/interpretability trade-off
claimed by the organization is worthwhile. This also forces the organization to try using
interpretable modeling methods. It also encourages the organization to use these methods
carefully, otherwise risking the possibility of criticism.

As mentioned earlier, | have not yet found a high-stakes application where a fully black box
model is necessary, despite having worked on many applications. As long as we continue to
allow for a broad definition of interpretability that is adapted to the domain, we should be
able to improve decision making for serious tasks of societal importance. However, in order
for people to design interpretable models, the technology must exist to do so. As discussed
earlier, there is a formidable computational hurdle in designing interpretable models, even
for standard structured data with already-meaningful features.

5 Algorithmic Challenges in Interpretable ML

What if every black box machine learning model could be replaced with one that was
equally accurate but also interpretable? If we could do this, we would identify flaws in our
models and data that we could not see before. Perhaps we could prevent some of the poor
decisions in criminal justice and medicine that are caused by problems with using black box
models. We could also eliminate the need for explanations that are misleading and often
wrong.

Since interpretability is domain-specific, a large toolbox of possible techniques can come
in handy. Below we expand on three of the challenges for interpretable machine learning
that appear often. All three cases have something in common: people have been providing
interpretable predictive models for these problems for decades, and the human-designed
models look just like the type of model we want to create with machine learning. | also
discuss some of our current work on these well-known problems.

Each of these challenges is a representative from a major class of models: modeling that uses
logical conditions (Challenge 1), linear modeling (Challenge 2), and case-based reasoning
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(Challenge 3). By no means is this set of challenges close to encompassing the large number
of domain-specific challenges that exist in creating interpretable models.

Challenge #1: Constructing optimal logical models

A logical model consists of statements involving “or,” “and,” “if-then,” etc. The CORELS
model in Figure 3 is a logical model, called a ru/e /ist. Decision trees are logical models, as
well as conjunctions of disjunctions (“or’s” of “and’s” — for instance, IF condition A is true
OR conditions B AND C are true, THEN predict yes, otherwise predict no).

Logical models have been crafted by hand as expert systems as far back as the 1970°’s.
Since then, there have been many heuristics for creating logical models; for instance, one
might add logical conditions one by one (greedily), and then prune conditions away that

are not helpful (again, greedily). These heuristic methods tend to be inaccurate and/or
uninterpretable because they do not choose a globally best choice (or approximately best
choice) for the logical conditions, and are not designed to be optimally sparse. They

might use 200 logical conditions when the same accuracy could be obtained with 5 logical
conditions. [C4.5 and CART 38, 39, decision trees suffer from these problems, as well

as a vast number of models from the associative classification literature]. An issue with
algorithms that do not aim for optimal (or near-optimal) solutions to optimization problems
is that it becomes difficult to tell whether poor performance is due to the choice of algorithm
or the combination of the choice of model class and constraints. (Did the algorithm perform
poorly because it did not optimize its objective, or because we chose constraints that do

not allow enough flexibility in the model to fit the data well?) The question of computing
optimal logical models has existed since at least the mid 1990’s [40].

We would like models that look like they are created by hand, but they need to be accurate,
full-blown machine learning models. To this end, let us consider the following optimization
problem, which asks us to find a model that minimizes a combination of the fraction of
misclassified training points and the size of the model. Training observations are indexed
from 7=1,.., n,and & is a family of logical models such as decision trees. The optimization
problem is:

min

n
1 .

few ;Z 1 [training observation i is misclassified by f] T A X size(f)]. @
€ 1

-

Here, the size of the model can be measured by the number of logical conditions in the
model, such as the number of leaves in a decision tree. The parameter A is the classification
error one would sacrifice in order to have one fewer term in the model; if A is 0.01, it
means we would sacrifice 1% training accuracy in order to reduce the size of the model by
one. Another way to say this is that the model would contain an additional term only if this
additional term reduced the error by at least 1%.

The optimization problem in (1) is generally known to be computationally hard. Versions of
this optimization problem are some of the fundamental problems of artificial intelligence.
The challenge is whether we can solve (or approximately solve) problems like this in
practical ways, by leveraging new theoretical techniques and advances in hardware.
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The model in Figure 3 is a machine learning model that comes from the CORELS algorithm
[32]. CORELS solves a special case of (1), for the special choice of & as the set of rule
lists, and where the size of the model is measured by the number of rules in the list. Figure
3 has three “if-then” rules so its size is 3. In order to minimize (1), CORELS needs to avoid
enumerating all possible models, because this would take an extremely long time (perhaps
until the end of the universe on a modern laptop for a fairly small dataset). The technology
underlying the CORELS algorithm was able to solve the optimization problem to optimality
in under a minute for the Broward County, FL, dataset discussed above. CORELS’ backbone
is: (i) a set of theorems allowing massive reductions in the search space of rule lists, (ii)

a custom fast bit-vector library that allows fast exploration of the search space, so that
CORELS does not need to enumerate all rule lists, and (iii) specialized data structures that
keep track of intermediate computations and symmetries. This set of ingredients proved to
be a powerful cocktail for handling these tough computational problems.

The example of CORELS enforces two points discussed above, which are, first, that
interpretable models sometimes entail hard computational problems, and second, that these
computational problems can be solved by leveraging a combination of theoretical and
systems-level techniques. CORELS creates one type of logical model; however, there are
many more. Formally, the first challenge is to create algorithms that solve logical modeling
problems in a reasonable amount of time, for practical datasets.

We have been extending CORELS to more complex problems, such as Falling Rule Lists
[41, 42], and optimal binary-split decision trees, but there is much work to be done on other
types of logical models, with various kinds of constraints.

Note that it is possible to construct interpretable logical models for which the global model
is large, and yet each explanation is small. This is discussed in Appendix D.

Challenge #2: Construct optimal sparse scoring systems

Scoring systems have been designed by hand since at least the Burgess criminological
model of 1928 [43]. The Burgess model was designed to predict whether a criminal would
violate bail, where individuals received points for being a “ne’er do well” or a “recent
immigrant” that increased their predicted probability of parole violation. (Of course, this
model was not created using machine learning, which had not been invented yet.) A scoring
system is a sparse linear model with integer coefficients — the coefficients are the point
scores. An example of a scoring system for criminal recidivism is shown in Figure 4, which
predicts whether someone will be arrested within 3 years of release. Scoring systems are
used pervasively throughout medicine; there are hundreds of scoring systems developed by
physicians. Again, the challenge is whether scoring systems — which look like they could
have been produced by a human in the absence of data — can be produced by a machine
learning algorithm, and be as accurate as any other model from any other machine learning
algorithm.

There are several ways to formulate the problem of producing a scoring system [see, e.g.,
46, 47]. For instance, we could use a special case of (1), where the model size is the number
of terms in the model. (Figure 4 is a machine learning model with 5 terms.) Sometimes, one
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can round the coefficients of a logistic regression model to produce a scoring system, but
that method does not tend to give accurate models, and does not tend to produce models that
have particularly nice coefficients (such as 1 and —1 used in Figure 4). However, solving

(1) or its variants is computationally hard, because the domain over which we solve the
optimization problem is the integer lattice. (To see this, consider an axis for each of {4, &,
.., bp}, where each bjcan take on integer values. This is a lattice that defines the feasible
region of the optimization problem.)

The model in Figure 4 arose from the solution to a very hard optimization problem. Let us
discuss this optimization problem briefly. The goal is to find the coefficients b;, j=1 ... p
for the linear predictive model £z) = } ;0;z;where Zz;is the jth covariate of a test observation
z. In Figure 4, the by’s are the point scores, which turned out to be 1, -1, and 0 as a result of
optimization, where only the nonzero coefficients are displayed in the figure. In particular,
we want to solve:

n

4
min % E log(l +exp(— E bjxi,j
1 J=l

by, by, ..bp€ { =10, -9,...,9,10} i 2

+a2,1]bj £ 0],
J

where the point scores b;are constrained to be integers between —10 and 10, the training
observations are indexed by /=1, ..., n,and pis the total number of covariates for our

data. Here the model size is the number of non-zero coefficients, and again A is the trade-off
parameter. The first term is the logistic loss used in logistic regression. The problem is hard,
specifically it is a mixed-integer-nonlinear program (MINLP) whose domain is the integer
lattice.

Despite the hardness of this problem, new cutting plane algorithms have been able to
solve this problem to optimality (or near-optimality) for arbitrarily large sample sizes and
a moderate number of variables within a few minutes. The latest attempt at solving this
problem is the RiskSLIM (Risk-Supersparse-Linear-Integer-Models) algorithm, which is a
specialized cutting plane method that adds cutting planes only whenever the solution to a
linear program is integer-valued, and otherwise performs branching [44].

This optimization problem is similar to what physicians attempt to solve manually, but
without writing the optimization problem down like we did above. Because physicians

do not use optimization tools to do this, accurate scoring systems tend to be difficult for
physicians to create themselves from data. One of our collaborators spent months trying to
construct a scoring system himself by adding and removing variables, rounding, and using
other heuristics to decide which variables to add, remove, and round. RiskSLIM was useful
for helping him with this task [48]. Formally, the second challenge is to create algorithms for
scoring systems that are computationally efficient. 1deally we would increase the size of the
optimal scoring system problems that current methods can practically handle by an order of
magnitude.
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Challenge #3 Define interpretability for specific domains and create methods accordingly,
including computer vision

Since interpretability needs to be defined in a domain-specific way, some of the most
important technical challenges for the future are tied to specific important domains. Let us
start with computer vision, for classification of images. There is a vast and growing body
of research on posthoc explainability of deep neural networks, but not as much work in
designing /nterpretable neural networks. My goal in this section is to demonstrate that even
for classic domains of machine learning, where latent representations of data need to be
constructed, there could exist interpretable models that are as accurate as black box models.

For computer vision in particular, there is not a clear definition of interpretability, and the
sparsity-related models discussed above do not apply — sparsity in pixel space does not make
sense. There can be many different ideas of what constitutes interpretability, even between
different computer vision applications. However, if we can define interpretability somehow
for our particular application, we can embed this definition into our algorithm.

Let us define what constitutes interpretability by considering Aow people explain to each
other the reasoning processes behind complicated visual classification tasks. As it turns out,
for classification of natural images, domain experts often direct our attention to different
parts of the image and explain why these parts of the image were important in their
reasoning process. The question is whether we can construct network architectures for deep
learning that can also do this. The network must then make decisions by reasoning about
parts of the image so that the explanations are real, and not posthoc.

In a recent attempt to do this, Chen, Li, and colleagues have been building architectures
that append a special prototype layer to the end of the network [49, 55]. During training,
the prototype layer finds parts of training images that act as prototypes for each class. For
instance, for bird classification, the prototype layer might pick out a prototypical head of a
blue jay, prototypical feathers of a blue jay, etc. The network also learns a similarity metric
between parts of images. Thus, during testing, when a new test image needs to be evaluated,
the network finds parts of the test image that are similar to the prototypes it learned during
training, as shown in Figure 5. The final class prediction of the network is based on the
weighted sum of similarities to the prototypes; this is the sum of evidence throughout the
image for a particular class. The explanations given by the network are the prototypes (and
the weighted similarities to them). These explanations are the actual computations of the
model, and these are not posthoc explanations. The network is called “This look like that”
because its reasoning process considers whether “this” part of the image looks like “that”
prototype.

Training this prototype network is not as easy as training an ordinary neural network; the
tricks that have been developed for regular deep learning have not yet been developed for
the prototype network. However, so far these prototype networks have been trained to be
approximately as accurate as the original black box deep neural networks they were derived
from, before the prototype layer was added.
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Discussion on Interpretability for Specific Domains

A Technical

Let us finish this short discussion on challenges to interpretability for specific domains by
mentioning that there are vast numbers of papers that have imbued interpretability in their
methodology. Interpretability is not mentioned in the title of these papers, and often not

in the body of the text. This is why it is almost impossible to create a review article on
interpretability in machine learning or statistics without missing the overwhelming majority
of it.

It is not clear why review articles for interpretability and explainability make sense to create.
We do not normally have reviews of performance/accuracy measures, despite the fact that
there are many of them — accuracy, area under the ROC curve, partial AUC, sensitivity,
specificity, discounted cumulative gain, F-score, G-means, and many other domain-specific
measures. Interpretability/explainability is just as domain-specific as accuracy performance,
so it is not clear why reviews of interpretability make any more sense than reviews of
accuracy/performance. | have yet to find even a single recent review that recognized the
chasm between interpretability and explainability.

Let us discuss very briefly some of examples of work on interpretability that would

not have been covered by recent review articles, and yet are valuable contributions

to interpretability in their respective domains. Gallagher et al. [56] analyze brain-

wide electrical spatiotemporal dynamics to understand depression vulnerability and find
interpretable patterns in a low dimensional space. Dimension reduction to interpretable
dimensions is an important theme in interpretable machine learning. Problems residing in
applied statistics are often interpretable because they embed the physics of the domain;
e.g., Wang et al. [57] create models for recovery curves for prostatectomy patients whose
signal and uncertainty obey specific constraints in order to be realistic. Constraints on the
uncertainty of the predictions make these models interpretable.

The setup of the recent 2018 FICO Explainable ML Challenge exemplified the blind belief
in the myth of the accuracy/interpretability tradeoff for a specific domain, namely credit
scoring. Entrants were instructed to create a black box to predict credit default and explain
the model afterwards. However, there was no performance difference between interpre table
models and explainable models for the FICO data. A globally interpretable model [22] won
the FICO Recognition Prize for the competition. This is a case where the organizers and
judges had not expected an interpretable model to be able to be constructed and thus did
not ask entrants to try to construct such a model. The model of [22] was an additive model,
which is a known form of interpretable model [see also 9, 58, where additive models are
used for medical data]. Additive models could be optimized using similar techniques to
those introduced in Challenge 2 above.

Reason Why Accurate Interpretable Models Might Exist in Many Domains

Why is it that accurate interpretable models could possibly exist in so many different
domains? Is it really possible that many aspects of nature have simple truths that are waiting
to be discovered by machine learning? Although that would be intriguing, | will not make
this kind of Occham’s-Razor-style argument, in favor of a technical argument about function
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classes, and in particular, Rashomon Sets. The argument below is fleshed out more formally
in [59]. This is related to (but different from) the notation of “flat minima,” for which a nice
example is given by Hand [19].

Here is the Rashomon set argument: Consider that the data permit a large set of reasonably
accurate predictive models to exist. Because this set of accurate models is large, it often
contains at least one model that is interpretable. This model is thus both interpretable and
accurate.

Unpacking this argument slightly, for a given data set, we define the Rashomon set as the set
of reasonably accurate predictive models (say within a given accuracy from the best model
accuracy of boosted decision trees). Because the data are finite, the data could admit many
close-to-optimal models that predict differently from each other: a large Rashomon set. |
suspect this happens often in practice because sometimes many different machine learning
algorithms perform similarly on the same dataset, despite having different functional forms
(e.g., random forests, neural networks, support vector machines). As long as the Rashomon
set contains a large enough set of models with diverse predictions, it probably contains
functions that can be approximated well by simpler functions, and so the Rashomon set can
also contain these simpler functions. Said another way, uncertainty arising from the data
leads to a Rashomon set, a larger Rashomon set probably contains interpretable models, thus
interpretable accurate models often exist.

If this theory holds, we should expect to see interpretable models exist across domains.
These interpretable models may be hard to find through optimization, but at least there is a
reason we might expect that such models exist.

If there are many diverse yet good models, it means that algorithms may not be stable; an
algorithm might choose one model, and a small change to that algorithm or to the dataset
may yield a completely different (but still accurate) model. This is not necessarily a bad
thing, in fact, the availability of diverse good models means that domain experts may have
more flexibility in choosing a model that they find interpretable. Appendix E discusses this
in slightly more detail.

6 Conclusion

If this commentary can shift the focus even slightly from the basic assumption underlying
most work in Explainable ML — which is that a black box is necessary for accurate
predictions — we will have considered this document a success.

If this document can encourage policy makers not to accept black box models without
significant attempts at interpretable (rather than explainable) models, that would be even
better.

If we can make people aware of the current challenges right now in interpretable machine
learning, it will allow policy-makers the mechanism to demand that more effort should be
made in ensuring safety and trust in our machine learning models for high-stakes decisions.
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If we do not succeed at these efforts, it is possible that black box models will continue

to be permitted when it is not safe to use them. Since the definition of what constitutes

a viable explanation is unclear, even strong regulations such as “right to explanation” can

be undermined with less-than-satisfactory explanations. Further, there will continue to be
problems combining black box model predictions with information outside the database, and
continued miscalculations of black box model inputs. This may continue to lead to poor
decisions throughout our criminal justice system, incorrect safety guidance for air quality
disasters, incomprehensible loan decisions, and other widespread societal problems.
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A: On the Two Types of Black Box

Black box models of the first type are too complicated for a human to comprehend, and
black box models of the second type are proprietary. Some models are of both types. The
consequences of these two types of black box are different, but related. For instance, for a
black box model that is complicated but not proprietary, we at least know what variables it
uses. We also know the model form and could use that to attempt to analyze the different
parts of the model. For a black box model that is proprietary but not complicated [we have
evidence that COMPAS is such a model, 27], we may not even have access to query it in
order to study it. If a proprietary model is too sparse, there is a risk that it could be easily
reverse-engineered, thus there is an incentive to make proprietary models complicated in
order to preserve their secrecy.

B: Performance Comparisons

For most problems with meaningful structured covariates, machine learning algorithms tend
to perform similarly, with no algorithm clearly dominating the others. The variation due

to tuning parameters of a single algorithm can often be higher than the variation between
algorithms. This lack of single dominating algorithm for structured data is arguably why
the field of machine learning focuses on image and speech recognition, whose data are
represented in raw features (pixels, sound files); these are fields for which the choice of
algorithm impacts performance. Even for complex domains such as medical records, it has
been reported in some studies that logistic regression has identical performance to deep
neural networks [e.g. 60].

If there is no dominating algorithm, the Rashomon Set argument discussed above would
suggest that interpretable models might perform well.

Unfortunately the culture of publication within machine learning favors selective reporting
of algorithms on selectively chosen datasets. Papers are often rejected if small or no

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rudin

Page 19

performance gains are reported between algorithms. This encourages omission of accurate
baselines for comparison, as well as omission of datasets on which the method does not
perform well, and encourages authors to poorly tune the parameters of baseline methods, or
equivalently, place more effort into tuning the parameters of the author’s own method. This
creates an illusion of large performance differences between algorithms, even when such
performance differences do not truly exist.

C: Counterfactual Explanations

Some have argued that counterfactual explanations [e.g., see 37] are a way for black boxes
to provide useful information while preserving secrecy of the global model. Counterfactual
explanations, also called inverse classification, state a change in features that is sufficient
(but not necessary) for the prediction to switch to another class (e.g., “If you reduced your
debt by $5000 and increased your savings by $50% then you would have qualified for the
loan you applied for”). This is important for recourse in certain types of decisions, meaning
that the user could take an action to reverse a decision [61].

There are several problems with the argument that counterfactual explanations are sufficient.
For loan applications, for instance, we would want the counterfactual explanation to provide
the Jowest cost action for the user to take, according to the user’s own cost metric. [See

35, for an example of lowest-cost counterfactual reasoning in product rankings]. In other
words, let us say that there is more than one counterfactual explanation available (e.g., the
first explanation is “If you reduced your debt by $5000 and increased your savings by $50%
then you would have qualified for the loan you applied for” and the second explanation is
“If you had gotten a job that pays $500 more per week, then you would have qualified for
the loan™). In that case, the explanation shown to the user should be the easiest one for the
user to actually accomplish. However, it is unclear in advance which explanation would be
easier for the user to accomplish. In the credit example, perhaps it is easier for the user to
save money rather than get a job or vice versa. In order to determine which explanation

is the lowest cost for the user, we would need to elicit cost information for the user, and

that cost information is generally very difficult to obtain; worse, the cost information could
actually change as the user attempts to follow the policy provided by the counterfactual
explanation (e.g., it turns out to be harder than the user thought to get a salary increase).

For that reason it is unclear that counterfactual explanations would suffice for high stakes
decisions. Additionally, counterfactual explanations of black boxes have many of the other
pitfalls discussed throughout this paper.

D: Interpretable Models that Provide Smaller-Than-Global Explanations

It is possible to create a global model (perhaps a complicated one) for which explanations
for any given individual are very sparse. In other words, even if the global model would

take several pages of text to write, the prediction for a given individual can be very simple

to calculate (perhaps requiring only 1-2 conditions). Let us consider the case of credit risk
prediction. Assume we do not need to justify to the client why we would grant a loan, but we
would need to justify why we would deny a loan.
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Let us consider a disjunctive normal form model, which is a collection of “or’s” of “and’s.”
For instance, the model might deny a loan if “(credit history too short AND at least one
bad past trade) OR (at least 4 bad past trades) OR (at least one recent delinquency AND
high percentage of delinquent trades).” Even if we had hundreds of conjunctions within the
model, only one of these needs to be shown to the client; if any conjunction is true, that
conjunction is a defining reason why the client would be denied a loan. In other words, if
the client had “at least one recent delinquency AND high percentage of delinquent trades,”
then regardless of any other aspects of her credit history, she could be shown that simple
explanation, and it would be a defining reason why her loan application would be denied.

Disjunctive normal form models are well-studied, and are called by various names, such as
“or’s of and’s,” as well as “decision rules,” “rule sets” and “associative classifiers.” There
has been substantial work in being able to generate such models over the past few years

so that the models are globally interpretable, not just locally interpretable (meaning that the
global model consists of a small number of conjunctions) [e.g., see 62, 63, 64, 65, 66].

There are many other types of models that would provide smaller-than-global explanations.
For instance, falling rule lists [41, 42] provide shorter explanations for the decisions that are
most important. For instance, a falling rule list for predicting patient mortality would use
few logical conditions to categorize whether a patient is in a high-risk group, but use several
additional logical conditions to determine which low-risk group a patient falls into.

E: Algorithm Stability

A common criticism of decision trees is that they are not stable, meaning that small changes
in the training data lead to completely different trees, giving no guidance as to which tree

to choose. In fact, the same problem can happen in /inear models when there are highly
correlated features. This can happen even in basic least squares, where correlations between
features can lead to very different models having precisely the same levels of performance.
When there are correlated features, the lack of stability happens with most algorithms that
are not strongly regularized.

I hypothesize this instability in the learning algorithm could be a side-effect of the
Rashomon effect mentioned earlier — that there are many different almost-equally good
predictive models. Adding regularization to an algorithm increases stability, but also limits
flexibility of the user to choose which element of the Rashomon set would be more
desirable.

For applications where the models are purely predictive and not causal (e.g., in criminal
recidivism where we use age and prior criminal history to predict future crime), there is no
assumption that the model represents how outcomes are actually generated. The importance
of the variables in the model does not reflect a causal relationship between the variables and
the outcomes. Thus, without additional guidance from the domain expert, there is no way
to proceed further to choose a single “best model” among the set of models that perform
similarly. As discussed above, regularization can act as this additional input.
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I view the lack of algorithmic stability as an advantage rather than a disadvantage. If the lack
of stability is indeed caused by a large Rashomon effect, it means that domain experts can
add more constraints to the model to customize it without losing accuracy.

In other words, while many people criticize methods such as decision trees for not being
stable, | view that as a strength of interpretability for decision trees. If there are many
equally accurate trees, the domain expert can pick the one that is the most interpretable.

Note that not all researchers working in interpretability agree with this general sentiment
about the advantages of instability [67].
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Learning
Performance

Explanation
Effectiveness

Figure 1:
A fictional depiction of the “accuracy-interpretability trade-off,” taken from the DARPA

XAl (Explainable Artificial Intelligence) Broad Agency Announcement [18].
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Test Image

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute

Explanations Using
Attention Maps

Figure 2:

Saliency does not explain anything except where the network is looking. We have no idea
why this image is labeled as either a dog or a musical instrument when considering only
saliency. The explanations look essentially the same for both classes. Figure credit: Chaofan

Chen and [28].
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IF age between 18-20 and sex is male THEN predict arrest (within 2 years)
ELSE IF age between 21-23 and 2-3 prior offenses THEN predict arrest

ELSE IF more than three priors THEN predict arrest
ELSE predict no arrest.
Figure 3:

This is a machine learning model from the Certifiably Optimal Rule Lists (CORELS)
algorithm [32]. This model is the minimizer of a special case of Equation 1 discussed later
in the challenges section. CORELS’ code is open source and publicly available at http://
corels.eecs.harvard.edu/, along with the data from Florida needed to produce this model.

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.


http://corels.eecs.harvard.edu/
http://corels.eecs.harvard.edu/

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Rudin

Page 28

O AN =

Prior Arrests > 2
Prior Arrests > 5

Prior Arrests for Local Ordinance
Age at Release between 18 10 24
Age at Release > 40

1 point
1 point
1 point
1 point
-1 points

+ 4+ + +

SCORE

SCORE
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RISK

11.9%

26.9%

50.0%

73.1%

88.1%

Fi

gure4:

Scoring system for risk of recidivism from [21] [which grew out of 30, 44, 45]. This model
was not created by a human; the selection of numbers and features come from the RiskSLIM
machine learning algorithm.
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Figure5:
Image from the authors of [49], indicating that parts of the test image on the left are similar

to prototypical parts of training examples. The test image to be classified is on the left, the
most similar prototypes are in the middle column, and the heatmaps that show which part

of the test image is similar to the prototype are on the right. We included copies of the test
image on the right so that it is easier to see what part of the bird the heatmaps are referring
to. The similarities of the prototypes to the test image are what determine the predicted

class label of the image. Here, the image is predicted to be a clay-colored sparrow. The top
prototype seems to be comparing the bird’s head to a prototypical head of a clay-colored
sparrow, the second prototype considers the throat of the bird, the third looks at feathers, and
the last seems to consider the abdomen and leg. Test image from [50]. Prototypes from [51,
52, 53, 54]. Image constructed by Alina Barnett.
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Comparison of COMPAS and CORELS models. Both models have similar true and false positive rates and

true and false negative

Table 1:

rates on data from Broward County, Florida.

COMPAS CORELS
black box full model is in Figure 3
130+ factors only age, priors, (optional) gender
might include socio-economic info no other information
expensive (software license), free, transparent
within software used in U.S. Justice System

Nat Mach Intell. Author manuscript; available in PMC 2022 May 20.



Nutrition & Diabetes

ARTICLE

www.nature.com/nutd

W) Check for updates

Machine learning modeling practices to support the principles
of Al and ethics in nutrition research

Diana M. Thomas@®'

™ Samantha Kleinberg?®, Andrew W. Brown>*, Mason Crow', Nathaniel D. Bastian®, Nicholas Reisweber’,

Robert Lasater', Thomas Kendall', Patrick Shafto®, Raymond Blaine’, Sarah Smith’, Daniel Ruiz’, Christopher Morrell” and

Nicholas Clark’

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

BACKGROUND: Nutrition research is relying more on artificial intelligence and machine learning models to understand, diagnose,
predict, and explain data. While artificial intelligence and machine learning models provide powerful modeling tools, failure to use
careful and well-thought-out modeling processes can lead to misleading conclusions and concerns surrounding ethics and bias.
METHODS: Based on our experience as reviewers and journal editors in nutrition and obesity, we identified the most frequently
omitted best practices from statistical modeling and how these same practices extend to machine learning models. We next
addressed areas required for implementation of machine learning that are not included in commercial software packages.
RESULTS: Here, we provide a tutorial on best artificial intelligence and machine learning modeling practices that can reduce
potential ethical problems with a checklist and guiding principles to aid nutrition researchers in developing, evaluating, and
implementing artificial intelligence and machine learning models in nutrition research.

CONCLUSION: The quality of Al/ML modeling in nutrition research requires iterative and tailored processes to mitigate against
potential ethical problems or to predict conclusions that are free of bias.

Nutrition and Diabetes (2022)12:48 ; https://doi.org/10.1038/s41387-022-00226-y

INTRODUCTION

Complex, large, and multimodal nutrition datasets are being
aggregated for the purpose of advancing personalized nutrition,
such as the Personalized Responses to Dietary Composition Trial-
1 (PREDICT) study [1], a study focused on nutritional prediction
of glycemic responses [2], and the new Nutrition for Precision
Health program [3]. Such studies and programs highlight a
critical need and growing desire to implement machine learning
(ML) in nutrition research. For nutrition researchers new to ML
but well-versed in statistical methods, using ML models will
require adhering to best practices from statistical methods while
establishing new approaches that address the complexities of
ML models.

The availability of AI/ML capabilities in commercial software
packages has made AI/ML algorithms accessible to the wider
nutrition research community. However, the high accessibility of
AlI/ML models through “click and play programs” belies their
complexity, which, when overlooked, can lead to myriad
unanticipated ethical problems that violate published Al principles
[4, 5]. Standardized procedures for the appropriate implementa-
tion of ML models often do not exist. Deceptively simple
questions, such as whether the sample size is adequate for model
fitting, often require iterative evaluation by the modeler that

cannot be built into standardized software. Failure to follow a
reflective thoughtful approach to AI/ML modeling can lead to
errors and biased conclusions that can have deleterious results [6].

Herein we define ML as computer algorithms that improve
automatically through experience [7, 8]. The closely related term
“artificial intelligence” (Al) is often interchanged with ML. Al refers
to an algorithm that can learn insights, adapt through feedback,
be dynamic, respond to its environment, and problem solve
independently with minimal human supervision [8, 9]. ML is
sometimes considered a subset of Al and vice versa, and the terms
are frequently used interchangeably [8]. We, therefore, refer to
both types of algorithms as Al/ML because many of the ethical
concerns discussed herein apply regardless of distinction.

The Alignment Problem by Brian Christian [6] and landmark
studies like those of Buolamwini and Gebru [10] highlight many
unfortunate consequences of launching ML models without
careful examination of the data used for modeling, without
application of more than one modeling approach, and without a
thorough review and surveillance of model predictions and
conclusions. Such negative consequences can range from racial
or other discriminatory predictions, wasted time or opportunity,
negative health outcomes, or even death. Many detrimental
consequences of Al/ML applications covered in Christian’s book
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can be summarized as resulting from poor modeling practices. In
addition, a recent review of 62 studies that used machine learning
to detect and predict COVID-19 from chest radiographs and CT
scans found that every single study had a methodological flaw
[11]. These flaws ranged from lack of transparency regarding how
key modeling decisions were made to not including model
validation experiments [11].

With many and varied approaches available for evaluating Al/
ML models, how can nutrition modelers, manuscript reviewers,
and journal editors ensure that the models are complete,
minimize predictions or conclusions that can cause patient harm,
avoid bias, and minimize ethical violations [12]? While we cannot
address every possible situation and scenario that could arise, we
address common considerations that nutrition researchers may
encounter when developing and/or evaluating AI/ML models. The
considerations we address herein came from our experience as Al/
ML modelers in nutrition, serving as reviewers of Al/ML modeling
articles, and our service as editors for top nutrition research
journals. We frame the discussion for an audience of nutrition
researchers who are familiar with statistical and ML methods in
nutrition research but may be new to or have limited experience
with developing, evaluating, or implementing Al/ML models.

The description and recommendations here build upon an
existing body of literature. The Findable, Accessible, Interoperable,
and Reusable (FAIR) Data Principles [13] involve stewardship and
management of data which have some overlap with Al/ML best
modeling practices. There have been several articles on best Al/ML
modeling practices which draw upon and integrate with FAIR
principles [14, 15]. Articles that provide overviews of machine
learning also include some best modeling practices [16, 17] and
articles that are specific to an application like image analysis [18]
include best modeling practices that scale to other disciplines. In
addition, discipline-specific checklists are now being applied for
publications such as the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) [19], the machine learning checklist for
Neural Information Processing Systems [20], and the machine
learning reproducibility checklist produced by the Computer
Vision and Pattern Recognition Conference [21]. The guidelines
and checklist presented here focus on the viewpoint of a nutrition
researcher who has a background in statistics and wishes to build
on that background to include Al/ML models to describe, predict
and explain nutrition data.

We begin with some well-known modeling practices derived
from statistical methods that extend to AI/ML modeling. We next
move to two important areas specific to Al/ML model develop-
ment: appropriate sample sizes and balanced datasets. Next, we
address the need for simultaneous development of models and
specifically explainable Al/ML models. Finally, we emphasize the
need for increased data literacy. With the application of new and
complex AI/ML approaches in nutrition research, we as a
community need to learn more about the underlying properties,
requirements, capabilities, and limitations of AI/ML model
development. Because AI/ML approaches are relatively new
[1, 2] in nutrition, many of the examples of bias and error arising
from poor development and evaluation of AI/ML models are
drawn from other disciplines. These examples, while not
specifically in nutrition, provide can raise our awareness of
potential pitfalls as a higher dependence on AI/ML models in
nutrition research advances. Table 1 serves as a Table of Contents,
and Table 2 is a checklist that summarizes our tutorial. The
checklist in Table 2 is presented in order of Al/ML execution
starting with study design and ending with model evaluation.
While every step in the checklist is important as a best practice,
the most important result of the checklist is reproducibility. If we
consider the Al/ML modeling process analogous to the methods
behind the experiment, the checklist provides clear, rigorous, and
transparent guidelines for the methods that ensure the results are
reproducible.
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Table 1. The Table of Contents is hyperlinked to ease navigation to
sections within the article.

Hyperlinked Article Sections

Introduction to Extensions of Statistical Methods to Al/ML
Measurement Error

Selection Bias

Sample Size Calculations for Al/ML

Missing Data in Al/ML

Data Imbalance

Explainable Al

Data Literacy: The Al User Responsibility

EXTENSIONS TO AI/ML FROM STATISTICAL MODELING
Statistical modeling has well-developed methods for identifying,
mitigating, and transparently reporting bias and error. We
distinguish “bias” in the statistical sense from “bias” in the social
sense. When we discuss bias in a model, we are indicating that
the expectation of the model does not match the true value; that
is, we reliably come to inaccurate conclusions. More specifically,
we are referring to bias that comes from the statistic being used
to estimate a parameter, or we are discussing bias that arises
from using data that is not representative of our population. In
either case, the result of the bias is a parameter estimate that is
not accurate. However, we should note that all bias is not bad;
statisticians will often use a biased estimator if it results in a
lower mean squared error such as what is used in the popular
LASSO algorithm. Biased data, or sampling data that is not
reflective of our population, on the other hand, is rarely a good
idea and can lead to disastrous results if not properly accounted
for. This is different than the social aspects of bias, such as
prejudice. Unfortunately, some forms of bias discussed herein
(attrition bias, selection bias) may result in or result from socially
biased research approaches, which in turn can create a model
that inherits those biases, and ultimately creates a statistically
biased model. Many of the statistically-based quality assurance
checks still apply and are even more important to consider when
developing machine learning models. Unfortunately, these
statistical best practices are oft “forgotten” [22] and are not
standard or routine when reporting the results of machine
learning predictive models. Identifying whether the character-
istics of participants who dropped out were different than
completers, whether missing data were missing at random, or
expressing limitations on extending predictions beyond the
sample are common omissions [23, 24].

Statistical modeling best practices that ensure data are
collected in manners that reduce bias and errors exist and are
also relevant for AI/ML model development. It is not our intent to
provide a comprehensive statistical tutorial on the statistical
methods. Instead, we provide a summary of bias and error that is
often observed in nutrition research and address how statistical
mitigation strategies also prevail for Al/ML models. Some methods
are “best (but oft-forgotten) practices” [25] and we recommend
the statistical series at the American Journal of Clinical Nutrition for
an in-depth tutorial into statistical practices frequently applied in
nutrition research [22].

Measurement error

Take home message. Controlled data with minimal measurement
error are needed as a gold standard to compare clinically relevant
data that the models will be used on. Explainable Al/ML models
are key to understanding the propagation of measurement error.

What is it? There is a wide range of measurements in clinical
nutrition. Measurements of glycated hemoglobin (HbA1c) are
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Table 2. Checklist for ethical and effective application of AlI/ML modeling in nutrition research.

Considerations for Ethical & Effective Application of Machine Learning for Nutrition Research

Item No. Item
Study Design

1 Describe Overall Goal

2 Describe Data

4 Discuss Al/ML Suitability

5 Establish Evaluation Criteria

Data Pre-Processing

6 Handle Missing Data

7 Classify Outliers

8 Balance Classes

9 Select Features

10 Evaluate Dataset Size &

Augmentation

Nutrition and Diabetes (2022)12:48

Recommendations

Is the purpose to understand new data, select the most informative features from
data, inform other researchers/clinicians/public, develop a model that makes
predictions or diagnoses, or something else?

Clearly identify

1. The data source

2. When data were collected

3. Over what time period data were collected

4. Whether data will continue to be collected

5. The size of the dataset

6. The collection methodology

Disclose in the manuscript if any of the above are unknown.

Describe

1. The approaches for minimizing measurement error during data collection
2. The approaches for minimizing collection procedure bias

3. Warning labels regarding the representation of the data

If existing data sources are used, why were these particular source(s) used?

Do the data represent the target population(s) (the population that your Al/ML
models will be used to predict) accurately?

Are the modeling approach(es) supervised or unsupervised? Will the models be
updated with additional data and, if so, how?

Explain the suitability of AlI/ML to answering the question. For example, is there an
abundance of complex data? What were the results of traditional approaches such as
regression? Do you suspect the data contain underlying patterns or correlations that
a computer could learn?

What evaluation criteria will you use to assess the performance of your model(s)?

Why did you settle on these criteria? If using categorical classification, report a
confusion matrix in the results. In the discussion, explain what is the impact is of the
false positive rate and false negative rate on your application. If you are predicting
continuous outcomes, what is the cost of over or under-estimating?

What data are missing? What techniques were employed to account for missing data?
If multiple techniques were used, how were they evaluated against each other?

In the discussion, describe the potential cause for missing data. Are the data MCAR
(Missing Completely At Random), MAR (Missing At Random), MNAR (Missing Not At
Random)?

Why did you settle on a particular method for handling missing data?

How were outliers defined? Were outliers removed? What is the impact of including
the outliers on your modeling? Why did you settle on this method to identify and
classify outliers? Simulate the potential comparison of model performance with/
without outliers or outliers defined by different approaches.

Did you balance the subgroups used as inputs or the classes you are predicting? What
was the method used to balance the dataset (e.g., up-sampling previously untapped
populations)? Justify the choices of balancing classes. For example, did the initial class
distribution fail to match the distribution of the population for which you are
applying the AI/ML model? Describe your balancing methodology, including
justifying why not balancing would be appropriate if you choose not to balance your
dataset.

Which features from your dataset did you select for AI/ML model training? Were all
available features used or a subset? Explain why the features were selected.

Was the dataset reduced/expanded through resampling or augmentation?

Is the dataset of an appropriate size for the Al/ML modeling methods? Why was the
dataset reduced or expanded? Are you targeting a particular Al/ML algorithm (i.e.,
neural network)?

How will the size of the dataset, after pre-processing, inform the choice Al/ML
algorithm(s) (see next section)?
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Table 2. continued

Considerations for Ethical & Effective Application of Machine Learning for Nutrition Research

Item No. Item
Algorithm Construction

11 Select Algorithm(s)
12 Algorithm Explainability
13 Model Reproducibility

Algorithm Evaluation

14 Determine Baseline Performance
15 Internal Validation

16 Determine Best Model

17 External Validation

18 Model Deployment

Considerations

19 Considerations

Recommendations

List all AI/ML modeling approaches that were trained and evaluated.

Justify why the approaches were selected. If only one approach is used, explain why it
was not feasible or not desirable to test more than one model. Is at least one Al/ML
approach explainable? If not, why?

Clearly assess assumptions of the Al/ML models and describe whether they hold.
Describe approaches to enhance or select for explainability of models.

Describe the level of explainability of the selected models. Can the model’s decision-
making be understood or interpreted?

If selecting a non-explainable model, justify the choice (e.g., far superior model
performance when non-explainable). If an explainable model was not paired with the
non-explainable example, provide justification.

Provide the exact hardware, software, and hyperparameter specifications used to
train Al/ML model(s). Supply the algorithms, data, and code to reproduce the model.
Explain the steps required to reproduce the results. If appropriate, explain why data,
code, software, or other artifacts necessary to reproduce the work are not publicly
available.

Determine Comparison Performance. What is the state of the model accuracy in the
literature? How are you improving understanding or accuracy beyond what already
exists?

Describe how the training and validation/test set were divided and why. Use
evaluation approaches like k-fold cross-validation to capture internal variance. Include
multiple runs on any machine learning model that relies on random initiation of
weights or other model parameters (e.g. neural networks).

Do the results suggest the model was overfitting or underfit? Did you use internal
validation approaches like k-fold cross-validation? If so, what were the results?

Identify and explain which Al/ML model performed the best in accordance with your
chosen evaluation criteria.

Describe any approaches used to externally validate the model (i.e., model validated
on an independent sample).

If not externally validating, why not? If externally validating, explain why that external
data source and approach are being used.

What are the results of external validation? Alternatively, what are the ramifications of
not externally validating?

Describe how the model will be deployed and who the end user would be.

Describe the use cases for the model. What are the limitations of the model? How
often should it be reevaluated or retrained? What is the shelf life of the data?

Offer considerations for future research. What additional techniques or data could be
tested?

objective and correlate to a patient’s diabetes status [26]. On the
other hand, measurements that are obtained from accelerometers
are also objective, but can be extremely noisy and are not able to
estimate physical activity expenditure well in comparison to gold
standard methods [27]. However, the largest source of measure-
ment in nutrition research, self-reported energy intake, is not
objective and sometimes not reliable without triangulating with
other methods [28] for deriving scientific conclusions [29-31].
There are numerous additional diverse measurements in nutrition
research such as clinical energy balance measurements [32, 33],
body composition [34], anthropometry [35], and biomarkers [36].
Within these measurements, some of the measurement errors
occur at random while some are systematic or idiosyncratic.
Statistical modeling has long included discussions of error,
including assumptions about the nature of the error (e.g., normally
distributed with zero mean) that have to be satisfied in order to
make statistical inferences and methods that assume that the true
values are measured with error (e.g. Bayesian error models)
[37, 38]. Because measurement error can render the results of a
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study or model meaningless, imprecise, or unreliable [39], there is
a vast literature on handling measurement error [40, 41] in the
context of statistical modeling.

What should we do about it? While we cannot eliminate all
measurement errors, there are best practices to reduce measure-
ment errors during data collection. Some best practices to
minimize measurement error is to take multiple measurements
of the same variable when possible and to collect the data with
precision. For example, body weights should be collected under
similar conditions, such as first thing in the morning, on the same
scale, and in a hospital gown. To obtain information on the
variation in measurements, the measurement should be taken
multiple times (e.g., three times for body weight). How much
measurement error is in the input data needs to be conveyed, not
just in peer-reviewed publications, but also as “warning labels” in
data repositories that will include AI/ML prediction tools. An
exemplar for including warning labels within a data repository is
the All of Us Research Program [42], which alerts data users to the
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quality and distribution of the data during access. A robust list of
resources for tagging data for reuse and reproducibility appears
on the Go FAIR website for the Findable, Accessible, Interoperable,
and Reusable (FAIR) principles [13, 43].

In the case of non-objective measurement error, it has been
suggested that self-reported dietary intake should not be used as
true dietary intake to derive scientific conclusions [29, 30]. This
does not mean that self-reported dietary intake data is not
valuable during interventions. There are examples of self-reported
dietary intake data being used in tandem with other tools such as
energy intake wearables [44, 45] and mathematical models that
predict weight loss to guide intake [46] improving dietary
adherence even more than any of the dietary assessment
methods used alone [28]. The danger of using data like self-
reported dietary intake as true intake to train Al/ML models is that
the models will identify patterns that are artifacts of error from the
input data which will then be used to make erroneous predictions
that inform decision-making. For example, intake has been found
to be underreported in individuals with obesity [31, 471, which has
led to erroneous predictions and conclusions that people with
obesity gain weight while eating less [48]. It is important to note
that if we knew the bias in the self-reported data this could easily
be corrected. Future research should focus on identifying the
magnitude and direction of biases in the data using proxy or
alternate datasets. Multilevel models also serve as potential tools
that should further be studied to determine how they can
potentially be leveraged to correct self-reporting biases [49].

We also need to be concerned about the measurement and its
error under conditions of research versus conditions of use. Using
body weight as an example: if a model is trained on body weight
collected under exacting conditions, multiple times, at the same
time of day, the model may not perform as well when using body
weights taken at the clinic once, at any time of day, often without
removing excess clothing. The measurement for the model thus
does not match the measurement for use.

Extension to AI/ML modeling Errors in measurement have the
potential to result in erroneous decisions. Simple models allow us
to track how error propagates from the initial variable to the final
output. In comparison to simpler explainable models like linear
regression, it is often challenging to track error propagation in Al/
ML models when they contain nonlinearities and interconnections
between variables that are not immediately apparent, also known
as “black boxes” [50]. Furthermore, AI/ML methods often
incorporate nonlinear aspects which tend to exacerbate error
[51]. Specific methods to address individual AI/ML models exist,
but there does not exist a one size fits all solution to generally
characterize error propagation within AI/ML models [51]. The
reliability of a model where the error propagation is unknown
cannot be properly characterized; however, model developers can
look to the literature for the specific model to find methods to
quantify error propagation [52].

Selection bias

Take home message. Characteristics of the dataset, such as
demographics, need to be summarized and explored for limitations
prior to training algorithms. Justification should be provided for why
the AI/ML model is appropriate for the sample size. Approaches such
as up-sampling and down-sampling can be cautiously applied using
an iterative process to mitigate concerns about selection bias.

What is it? One of the most well-known examples of selection
bias in artificial intelligence occurred when a Google Photos image
classifier incorrectly identified people of color as gorillas [6].
Google attempted to fix the artificial intelligence model from a
top-down approach relying on various strategies; however, the
underlying problem was that the model training dataset did not
contain enough people of color. This is known as “selection bias”.
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Selection bias occurs when the individuals or groups in a dataset
differ from the population of interest in a systematic way [53]. In
the Google Photos example, the data on which the model was
trained did not fully represent the population the models were
applied for. As summarized by Brian Christian, the problem with “a
system that can, in theory, learn just about anything from a set of
examples is that it finds itself, then, at the mercy of the examples
from which it is taught” [6].

What should we do about it? Selection bias awareness is
required in both study design and in reporting model capabilities.
When recruiting, investigators should focus on the population
they hope to generalize to and then recruit participants that meet
those criteria. Recruiting a population that aligns with the target
population for study outcomes will minimize selection bias.
However, such recruitment may require creative ways to reach
previously untapped populations [6].

Extension to AI/ML modeling Recruiting representative popula-
tions for training datasets may not always be possible. For instance,
large datasets may consist of convenience samples like electronic
health records [54]. One method to account for this limitation is to
weigh the data for key characteristics between the sample and
population of interest. Weighting the data for regression applica-
tions is straightforward, but does not extend to AlI/ML models that
are often nonlinear. An extension of the statistical weighting
approach to Al/ML models is to “up-sample” or “down-sample” the
data according to weights. For example, if the dataset contains a
sample of 20% females and 80% males, “up-sample” by repeating
the 20% observations until the dataset female:male ratio matches
the population of interest (e.g., ~50%). Conversely, a random sample
of male subjects can be selected to down-sample or develop a
dataset that contains the target female:male ratio. While this
concrete example addresses female:male imbalance, it does not
address other potential imbalances. For example, the female sample
may have a BMI distribution different from the population (e.g., the
sample is all below 25kg/m?). AI/ML models may therefore
incorrectly learn that females will have BMI below 25 kg/m? without
appropriately addressing imbalance. In all cases, the limitations of
the data used to train the model should be made explicit in
publications and any software application or tools used to
disseminate the model should warn the user of limitations such as
the characteristics of the training dataset.

CONSIDERATIONS SPECIFIC TO Al/ML MODELING

Sample sizes calculations

Take home message. No one-size-fits-all approach exists to
calculate sample sizes for AI/ML models. Adequate sample size
depends on the application and model complexity. Sample size
calculations for specific AI/ML models often require an iterative
process. For reproducibility, the justification for the sample size
always should be articulated.

What is it? Having a large enough sample to train and test Al/ML
models is critical to avoid overfitting or underfitting models. The
definition of model overfitting is when the model fits too closely to
the training dataset [55], thereby capturing idiosyncrasies of the
observed data rather than generalizing true data properties. Ethical
issues with overfitting occur when models perform well on the
training dataset, but do not translate well to new data. For example,
an overfit model that uses biomarkers to predict patient health will
predict accurately the patient’s health used in the sample to develop
the model, but misdiagnose patients not used in model develop-
ment as being healthy when they actually require treatment [56].
There are several ways to mitigate potential overfitting and sample
size can play a role. In general, the more complex the model (e.g.,
more weights, input variables, and layers in a neural network), the
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more data required to avoid situations like overfitting. Underfitting,
on the other hand, can occur when there is not enough complexity
in the model to match the supplied data [57]. In both cases,
selecting the right sample size depends on the complexity of the
model, tests for goodness of fit in independent data, and iterative
evaluation of the model design versus model's outcomes. In
addition, in AlI/ML models that are used for feature selection or
identifying which variables are relevant, too small of a training
dataset may result in lower data variability and, consequently,
degrade the identification of important features [58].

What should we do about it? Power is the probability of
detecting a difference when one really exists (that is, one minus
the probability of making a type 2 error). In statistical analyses, it is
used to determine the sample size required to make appropriate
and corresponding statistical inferences. Although well-studied in
the area of AI/ML modeling [59], a similar systematic and tractable
method to determine sample sizes for AI/ML models cannot be
provided. The nonlinearity and complexities of Al/ML models and
the multiple models that fall into the category of Al/ML do not
lend well to a uniform process for calculating sample sizes when
compared to more simplistic analyses like a t-test. Despite these
challenges, several published “rules of thumb” exist [60]. For
classification models (e.g., decision trees or neural network
classifiers), a rule-of-thumb is that the sample size needs to be
at least 50-1000 times the number of classes being predicted [61].
For example, if you are predicting categories of obesity (BMI > 30
versus BMI < 30), this is a binary classifier and your sample size
would need to be between 100 and 2000. Similar rules of thumb
exist relating sample sizes to the number of input variables or
features, or sample size to number of weights used in the model.
These rules ultimately relate the sample size to the complexity of
the model (e.g., number of classes predicted, number of variables
used as inputs, the number of hidden layers, or number of
weights) and range widely as demonstrated with the 100-2000
range for a binary classifier. Thus, an iterative process is required
to determine the appropriate sample size tailored for each
individual problem and model. In publications or other forms of
model dissemination, the sample size choice must be justified and
clearly articulated.

For exploratory modeling when the number of covariates is
high compared to the number of data points, regularization
techniques such as LASSO regression or, more generally, Elastic
Net regression offer ways to fit data. Here the resulting parameters
will be biased, however, more complex models can be fit [62].
Whether these techniques are appropriate depends on the overall
goal of modeling, but they are often good tools if practitioners are
attempting to both diagnose a root cause as well as build a
predictive model.

Missing data

Take home message. Nutrition research frequently includes
missing data, such as from incomplete self-reported habits or
missed clinical visits. How we handle missing data can influence
AI/ML model predictions and conclusions. In addition to
traditional statistical approaches for handling missing data such
as imputation, methods using Al/ML models have been developed
to handle missing data. In some cases, missingness can be treated
as a model feature. Lack of adherence to prescribed interventions
and other reasons for missingness can be captured using this
approach.

What is it? Missing data are pervasive in healthcare and
especially common in nutrition research. Missing data can occur
in multiple ways. Nutrition research often relies on logs kept by
human subjects or surveys (such as the food frequency
questionnaire (FFQ), food diaries, or 24-hour recalls) [63].
Individuals may forget to record a specific meal, selectively omit

SPRINGER NATURE

information due to desirability bias [64], or fail to complete the
dietary instrument altogether. Objective measures, too, may have
missing data, such as missed samples for biomarkers or user and
technological errors failing to record behaviors. Datasets may
therefore be missing individual data points (e.g., a meal), entire
variables (e.g., no blood glucose data), or specific time windows
(e.g. losing a day of data due to technology failures).

There are three main types of missing data and each has different
implications for data analysis [65]. The first is missing completely at
random (MCAR). An example of this is if a researcher is out sick and
misses follow-up appointments with some subjects. The probability
of a data point being missing is then independent of any
characteristics of the participants. MCAR data reduces the sample
size (and study power) depending on the proportion of missing
information. In some cases, information for some missing data can
be inferred from other information in the dataset. However, many
models can use only complete records, but in the case of MCAR,
ignoring missing data will not lead to biased results. This type of
missingness is unlikely. A more common scenario is data that is
missing at random (MAR), which is when the likelihood of a variable
being missing depends on other variables [66]. For example, if
someone leaves out snacks in their meal logs only on days when
they do not exercise, data on snacks would be MAR. Similarly, if
people are more likely to answer survey questions based on their
age or gender, those data would also be MAR. If we use only
complete records with MAR data, we may get a biased estimate of
how prevalent something is in the population (e.g., 100% of people
who snack exercise). For some types of analysis, such as likelihood-
based methods, this type of missingness is considered ignorable,
though this terminology is a misnomer. We cannot ignore that
missingness depends on other observed variables and cannot use
only complete records without introducing bias. For causal
inference, using only complete records can mean we fail to discover
causal relationships (e.g., without any variation in reported snack
behavior we cannot find what causes it). Finally, when the presence
of data depends on the variable of interest itself, data is missing not
at random (MNAR). An example of this is if people only self-report
their weight when it falls in certain ranges if doctors measure HbA1c
when they suspect it is high, or if an individual with diabetes tests
their blood glucose only when they suspect it is too high or too low.
Ignoring incomplete records will lead to biased results. For example,
ignoring times without glucose values will give the impression that
glucose is always at an extreme. Predictive models trained on
datasets with data that are MNAR will fail when used in the real
world, since they will have few examples of glucose values outside
of the extremes. Finally, note that statistical tests to distinguish
whether missing data are MCAR, MAR, or MNAR are often highly
limited.

What should we do about it? Ignoring subjects who dropped out
of a clinical trial can bias results [66], and the same is true for Al/
ML methods. Failing to account for missing data can lead to
incorrect results and models that fail when applied to new
populations. The primary strategies for handling missing data are
imputation or modeling the missingness. The majority of
imputation methods are designed for data that is MAR, and use
observed values to reconstruct missing ones. The simplest
approach, using the mean (or mode) value in the observed data
to replace missing values, has been used widely, but has
significant limitations and is not recommended for use in nutrition
studies. The mean recorded bodyweight or calorie intake in a
dataset is simply not representative of missing instances. Similarly,
carrying forward the last observation (e.g., assuming someone’s
bodyweight is the same until it is next recorded) requires
assumptions about the stability of these variables that are not
justified. More advanced approaches, such as k-nearest neighbor
(kNN), aim to find similar observed instances to missing ones, and
have been applied to FFQ data [67]. Rather than using a
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population average, kNN finds the most similar subjects to one
with missing data, and uses a function of their values to replace
missing ones. Note that this approach is only appropriate for MAR
data, where there is a relationship between observed values and
missing ones. A limitation is that accuracy declines as more
variables are missing for an instance, and it cannot be used when
all data is missing (e.g., for time series data, if all variables are
absent at one-time point). Multiple imputation [68] allows
modeling of uncertainty in missing data. Rather than fill in gaps
with a single value, these methods create multiple imputed
datasets. Combining results on each enables estimates of error
due to the missing data. This approach has been used on FFQ [69],
24-h recall [70], and food log data [71]. For data that are MNAR,
fewer methods exist, though some have been introduced to
model data with variables that may be MNAR or MAR [72].

Notably, missingness can be informative and has been used as a
feature to improve prediction. Intuitively, if a doctor chooses not
to run a test or a person decides not to record a specific meal,
those events are likely to be different from the ones that are
observed. Thus, if we impute values for missing data, but do not
capture the fact that data was not originally recorded, we may lose
valuable information. Lin and Huang [73] showed that including
indicators representing missing data improved predictions from
electronic health record data. This has been repeated using other
methods such as recurrent neural networks [74, 75].

Data imbalance

Take home message. Datasets used for training must be balanced
so models learn what and how input features are important to the
application of the AI/ML model. The definition of balance will
depend on the model type and intended application, but should
consider the distribution of classes in a dataset. There are methods
to “balance” a dataset that should be applied cautiously. For
reproducibility and transparency, the percentage of different
classes available in the training data as well as steps taken to
balance the data need to be articulated.

What is it? Data imbalance occurs when most instances in a
dataset belong to a single or small subset of the total classes. For
example, if females represent only 20% of a training dataset and
males are 80% of the dataset, then we would say the dataset is
imbalanced. Similarly, if a specific outcome of interest occurs at
lower rates than all other outcomes, such as pregnancies
complicated by gestational diabetes, and we are developing an
Al/ML model to predict which pregnancies result in gestational
diabetes, the dataset is also referred to as imbalanced.

In the case where a sub-group is smaller in size than other
groups, AI/ML models “see” the subgroup less when learning. The
lack of exposure can result in poor performance when restricted to
the subgroup. This is exactly what occurred in the Google Photo
example described in the Selection Bias section. While people of
color were contained in the large dataset, the learning models did
not see enough examples of people’s faces to be able to recognize
faces of people of color when presented with a new photo.

In the second case, where the outcome occurs less frequently,
such as gestational diabetes mellitus (GDM), failure to balance the
dataset could result in flawed or non-informative models. It is
estimated that GDM prevalence is between 4 and 10% of all
pregnancies in the United States [76]. An Al/ML model that classifies
GDM pregnancies would need more than 90% accuracy to outper-
form the model that assumes that GDM does not occur. This is
because in the worst-case estimate of 10% prevalence of GDM
pregnancies, the model that assumes GDM never occurs is already
90% accurate.

What should we do about it? In the section on Selection Bias, up-

sampling and down-sampling were already discussed and represent
the most frequently applied method to mitigate problems with data
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imbalance. However, sampling up or down should remain an
alternative to the original collection of balanced data. As mentioned
earlier, up-sampling can result in Al/ML models learning artifacts of
up-sampled observations that are not true features. Similarly, down-
sampling the other classifications or subgroups reduces the size of
the dataset to the smallest-sized subgroup.

APPLICATION OF EXPLAINABLE MODELS
Goals of explainable Al
The challenge with modern AI/ML models is that oftentimes the
complexity of the modeling approach comes at a cost of
explainability. This becomes an issue when practitioners attempt
to draw causal or suggest causal relationships between predictors
and response variables in the model. Because there are many Al/ML
modeling approaches, one of the most important best practices is to
use more than one Al/ML method and specifically to combine non-
explainable with explainable models. For example, neural network
classifiers are sometimes referred to as “black boxes” because while
neural networks may have high accuracy for prediction, their
complexity results in loss of explainability. However, using neural
networks in tandem with an explainable method like logistic
regression can circumvent the black box and provide explainability.
In general, to understand what elements of a model should be
explainable it is useful to think of the Generalized Linear Models
(GLM) framework. In this commonly used methodology a
practitioner specifies a linear predictor that captures covariates
of interest, a link function that maps the linear predictor to
function of parameters in the statistical model, and a distribution
function that captures the unexplainable parts of the model. The
covariates, in this case, are the explainable part of the model. The
practitioner may never explain why the uncertainty in the data
follow, say, a gamma distribution, but they can explain the
meaning behind how the explanatory variables are related to the
response. Uncertainty then can further be partitioned through the
use of Generalized Linear Mixed Effects Models (GLMM) that allow
additional model-based uncertainty to be specified, therefore
partitioning the uncertainty into model-based and data-based
uncertainty. An interpretable Al algorithm should seek to behave
similarly, where some key aspects of the model can be captured as
a meaningful part of the parameter. In the machine learning
literature tools such as Gaussian Process Regression have recently
been used to model more complex data patterns than can be
done using GLMMs but in an interpretable manner.

Explainable Al
What is it?. Al/ML models have improved prediction beyond
what was previously possible; however, due to model complexity,
Al/ML models often lose internal model interpretability [77]. This
loss of interpretability can eventually lead to unexpected and
problematic model conclusions [6]. For example, deep convolu-
tion neural networks were trained using images of skin lesions,
and they classified malignant versus benign melanomas with a
high degree of accuracy when compared to the diagnosis of
board-certified dermatologists [78]. However, it was later found
that images of lesions that included rulers were classified as
malignant because the model “learned” that when a ruler was
included in the image, the lesion was more likely to be malignant.
This artifact was introduced because rulers were included in
images when the clinician already thought the lesion was more
likely to be malignant [79]. If this artifact was not detected (that is,
if the model was not explained), the model would have a high
false-negative rate for new images. Explainable Al was promoted
to preserve the high level of desirable accuracy that is provided by
complex Al/ML models while retaining interpretation.
Explainable Al (XAl) [80], is a collection of methods to extract
knowledge from opaque or “black box” machine learning
methods like deep learning. XAl systems have been developed
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to meet this challenge, primarily motivated by image classification
concerns like the erroneous classifications with the ruler in the
image problem [79]. One example of an XAl method that opens
the Al black box for interpretability is a saliency map [81]. A
saliency map reveals information on the degree that each feature
in the image explain and contribute to predictions [82]. Saliency
maps applied in tandem with a deep convolution neural network
can leverage the high degree of accurate predictions while
retaining interpretable and explainable aspects of the underlying
model. Another similar example of XAl used in tandem with a less
explainable model occurs with random forests where one can
compare the “variable importance” resulting from a comparison of
the number of decision trees in which the variable appears,
normalized by the associated node impurity decrease.

What are the available tools and how can they be used to model in
nutrition?. XAl methods in nutrition are just beginning to advance
[50, 83]. For example, XAl has been recently applied to automatic
identification of food from images [84]. Food imaging and
classification have been used in the Remote Food Photography
Method [85] and in eating sensors [86, 87] and represent a novel
objective method to estimate food intake in free-living humans.

DATA LITERACY: THE Al USER RESPONSIBILITY

An issue that is rarely addressed is the accountability of Al/ML
consumers regarding data literacy. Because of our increasing
reliance on AI/ML in nutrition, a certain level of data literacy and
data standards needs to be embraced by all nutrition stake-
holders. A critical component of data literacy is properly specifying
a data-driven question and analyzing whether the question can be
answered through descriptive analytics, diagnostic analytics, or
predictive analytics. Further, as practitioners increase their data
literacy they are better postured to combine the techniques given
above. Indeed, many of the methods that fall under AlI/ML are
diverse and require specialized training. Even trained mathema-
tical modelers cannot be experts in all possible methods and areas
— just like any other discipline that interfaces with nutrition.
Therefore, we advocate for more articles like the one presented
here with checklists and summaries that help the nutrition
research community address the right questions that will require
models to be transparent, reproducible, and ethically applied.

CONCLUSIONS

The quality of AI/ML modeling requires iterative and tailored
processes to mitigate against potential ethical problems or to
predict conclusions that are free of bias. Some of these feasibility
checks may require a background in Al/ML training and including
research team members with expertise will provide support for
these analyses. Providing some basic best practice Al/ML modeling
principles provides a path for researchers interested in using Al/ML
models to understand and implement in nutrition applications.
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