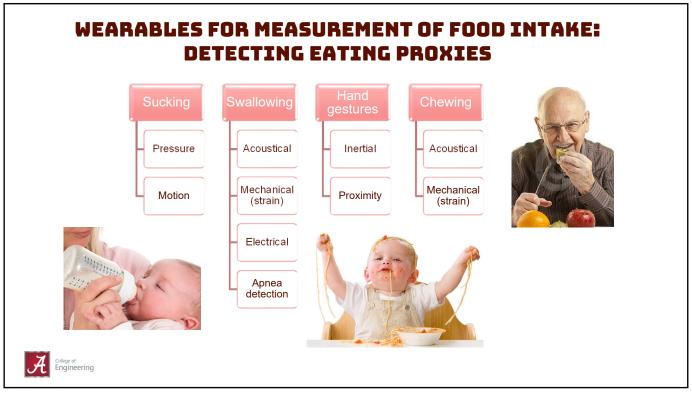


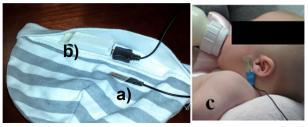
1

DISCLOSURES

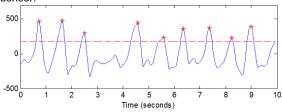
Founder and partner in Bitwear Labs Inc



WEARABLES: SUCKING MONITORS



Sensor in the infant's hat. (a) jaw motion sensor, (b) wireless data acquisition module, and (c) a bottle-fed infant wearing the sensor.



Jaw motion sensor signal. Sucks are represented by *.

College of Engineering Farooq M, Chandler-Laney PC, Hernandez-Reif M, Sazonov E. Monitoring of infant feeding behavior using a jaw motion sensor. J Healthc Eng 2015;6(1):23-40.

5

WEARABLES: HAND-TO-MOUTH MONITORS

r = 0.44, p < .001ASA24 Estimated Kilocalories on ship between bite count and automated self-administered 24-hour dietary recall (ASA24)

Figure 2. Scatterplot of the relationship between bite count and autoestimated kilocalories across all 2,975 eating activities (r=0.44; P<0.001).

- High social acceptance
- Relatively low accuracy due to similarity of everyday gestures
- No insight into the type of foods consumed

Y. Dong, A. Hoover, J. Scisco, and E. Muth, "A New Method for Measuring Meal Intake in Humans via Automated Wrist Motion Tracking," Appl. Psychophysiol. Biofeedback, vol. 37, no. 3, pp. Sep. 2012.

WEARABLES: SWALLOWING MONITORS

Acoustical Magnetic Electrical Piezoelectric

- · A very reliable way to detect food and beverage consumption
- Very low social acceptance: people do not like "collars"
- · No insight into the type of foods consumed

O. Makeyev, P. Lopez-Meyer, S. Schuckers, W. Besio, and E. Sazonov, "Automatic food intake detection based on swallowing sounds," Biomed. Signal Process. Control, vol. 7, no. 6, pp. 649–656 Nov. 2012.

A. Kandori, T. Yamamoto, Y. Sano, M. Oonuma, T. Miyashita, M. Murata, and S. Sakoda, "Simple Magnetic Swallowing Detection System," IEEE Sens. J., vol. 12, no. 4, pp. 805–811, Apr. 2012. M. Farooq, J. M. Fontana, and E. Sazonov, "A novel approach for food intake detection using electroglottography," Physiol. Meas., vol. 35, no. 5, p. 739, May 2014. H. Kalantarian, N. Alshurafa, T. Le, and M. Sarrafzadeh, "Monitoring eating habits using a piezoelectric sensor-based necklace," Comput. Biol. Med., vol. 58, pp. 46–55, Mar. 2015.

7

WEARABLES: CHEWING MONITORS

Temporalis muscle

Masseter muscle

Ear canal

- Reliable way to detect food and beverage consumption. Sipping of beverages may generate false negatives and chewing gum/lip biting may generate false positives
- Moderate to high social acceptance
- No insight into the type of foods consumed

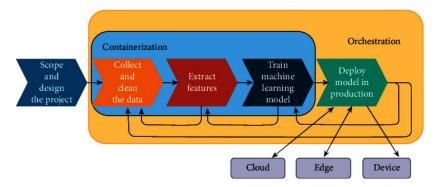
S. Päßler, M. Wolff, and W.-J. Fischer, "Food intake monitoring: an acoustical approach to automated food intake activity detection and classification of consumed food," Physiol. Meas., vol. 33, no. 6, pp. 1073–1093, 2012.

E. Sazonov and J. M. Fontana, "A Sensor System for Automatic Detection of Food Intake Through Non-Invasive Monitoring of Chewing," IEEE Sens. J., vol. 12, no. 5, pp. 1340 –1348, 2012.

M. Farooq and E. Sazonov, Segmentation and Characterization of Chewing Bouts by Monitoring Temporalis Muscle Using Smart Glasses with Piezoelectric Sensor, IEEE J. Biomed. Health Inform., 2017

D. Hossain, T. Ghosh, M. Haider Imtiaz, and E. Sazonov, "Ear canal pressure sensor for food intake detection," *Frontiers in Electronics*, vol. 4, 2023, Accessed: Jul. 18, 2023.

ML/AI IN WEARABLES

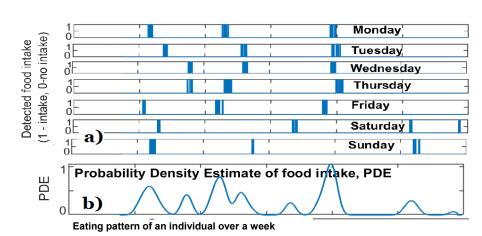


- ML/Al is the driving force for data analysis in wearables
- Data collection, cleaning, labeling, feature extraction and model training/validation are critical steps
- · Limitation: only simple, small models may be deployed on the device
- Sophisticated and computationally intensive models may only be deployed on the edge or in the cloud, requiring network connectivity

Sabry F, Eltaras T, Labda W, Alzoubi K, Malluhi Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J Healthc Eng. 2022 Apr 18;2022:4653923. doi: 10.1155/2022/4653923. PMID: 35480146; PMCID: PMC9038375.

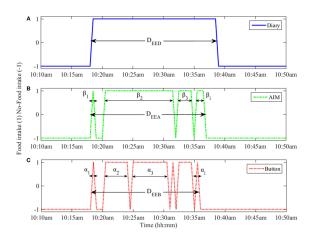
9

WEARABLES: CAPABILITIES



- Detect eating events through "passive" detection
- Measure timing and duration
- Evaluate daily patterns

WEARABLES: CAPABILITIES

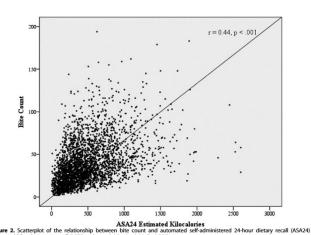


Evaluate microstructure of eating: number of bouts, hand gesture rate, chewing rate, etc.

Meal microstructure characterization from sensor-based food intake detection, Abul Doulah, Muhammad Farooq, Xin Yang, Jason Parton, Engineering Megan A. McCrory, Janine A. Higgins, Edward Sazonov, Front. Nutr., 17 July 2017

11

WEARABLES: CAPABILITIES



	Relative reporting	g error	Mean es	timation	Lower LOA	Upper LOA
	Mean	SD	Mean	SD		
Full	0.252	0.189	-17.665	226.901	-462.391	427.061
Chew	0.291	0.282	-1.186	230.42	-452.808	450.437
Bite	0.292	0.221	-39.669	266.946	-562.884	483.546
Swallow	0.266	0.212	-0.698	210.725	-413.72	412.323
Sensor	0.342	0.42	-8.627	252.591	-503.706	486.452

Estimate the consumed amount.

Statistical models for meal-level estimation of mass and energy intake using features derived from video observation and a chewing sensor, Xin Yang, Abul Doulah, Muhammad Farooq, Jason Parton, Megan A. McCrory, Janine A Higgins, Edward Sazonov, Nature Scientific Reports, 9, 45. 2019.

in Y. Dong, A. Hoover, J. Scisco, and E. Muth, "A New Method for Measuring Meal Intake in Humans via Automated Wrist Motion Tracking," Appl. Psychophysiol. Biofeedback, vol. 37, no. 3, pp. 205–215, Sep. 2012.

WEARBLES + IMAGES

J. Liu et al., "An Intelligent Food-Intake Monitoring System Using Wearable Sensors," 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, London, UK, 2012, pp. 154-160, doi: 10.1109/BSN.2012.11.

M. Sun et al., "eButton: A wearable computer for health monitoring and personal assistance," 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2014, pp. 1-6, doi: 10.1145/2593069.2596678.

A. Doulah, T. Ghosh, D. Hossain, M. H. Imtiaz and E. Sazonov, ""Automatic Ingestion Monitor Version 2" – A Novel Wearable Device for Automatic Food Intake

Engire tion and Passive Capture of Food Images," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 2, pp. 568-576, Feb. 2021, doi: 10.1109/JBHI.2020.2995473.

13

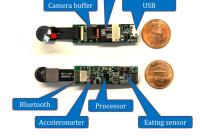
WEARABLES + IMAGES

Automatic Ingestion Monitor v2

AIM-2 is a "passive" wearable device that is:

- Does not require user actions beyond wearing
- Captures egocentric images of food showing eating progression
- Automatically detects eating and captures images of food
- Captures eating in various environments (on the go, during transportation, etc.)
- Captures the dynamic process of eating, including any additions in servings
- Monitors compliance with wear regimen

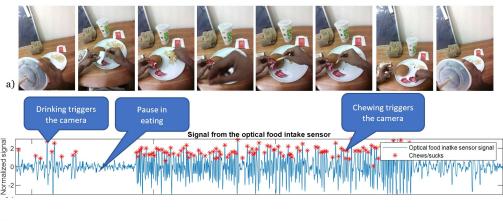
The images may be analyzed by a nutritionist or by an image recognition system to identify type of food and portion size.



A. B. M. S. U. Doulah, T. Ghosh, and E. Sazonov, "Automatic Ingestion Monitor Version 2 – A Novel Wearable Device for Automatic Food Intake Detection and Passive Capture Of Food Images," J. Biomed. Health Inform. Rev., 2019

WEARABLES + IMAGES

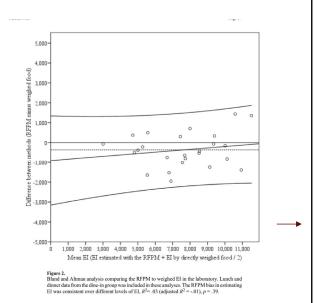
- Optical sensor monitors activations of temporalis muscle associated with eating and drinking.
- Images of the complete meal progression, including any foods introduced during the meal
- · Sensor signals describing the eating process such as chewing rate, and chewing bouts



15

FOOD IMAGE ANALYSIS BY A NUTRITIONIST

By a human: a nutritionist recognizing the images and estimating portion sizes



College of Engineering

C. K. Martin et al., "A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method," *Br. J. Nutr.*, vol. 2009

FOOD IMAGE ANALYSIS BY A NUTRITIONIST

Table 3. Sources of error contributing to differences in EI assessment by image analysis compared with WFR $(n = 25)^a$.

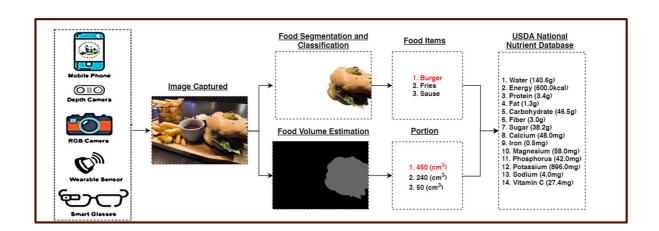
	Line items, n (% of WFR)	WFR, MJ/d (% of WFR daily EI)	Image analysis, MJ/d (% of WFR daily EI)	Image analysis adjusted, MJ/d (% of WFR daily EI)
Food identification errors				
Nutritionist error	$0.6 \pm 1.0 (3.5)$	0.47 ± 0.83 (5.3)	0.55 ± 1.37 (6.2)	0.41 ± 0.85 (4.7)
Ambiguity in image	$0.9 \pm 1.0 (5.8)$	$0.53 \pm 0.73 (6.0)$	0.79 ± 1.15 (8.9)	$0.70 \pm 0.80 \ (7.8)$
No database match	0	0	0	0
Portion size errors				
Nutritionist error	5.5 ± 3.8 (34.5)	2.49 ± 1.75 (28.1)	3.94 ± 2.74 (44.4)	2.89 ± 2.00 (32.5)
Ambiguity in image	1.2 ± 2.2 (7.3)	$0.42 \pm 0.70 \ (4.7)$	0.66 ± 1.11 (7.4)	0.60 ± 0.95 (6.8)
No database match	$4.0 \pm 2.2 (24.8)$	2.85 ± 2.16 (32.1)	3.98 ± 2.61 (44.8)	3.47 ± 2.36 (39.1)
Other error types				
No database match in energy density	0.1 ± 0.3 (0.8)	0.04 ± 0.12 (0.4)	0.05 ± 0.16 (0.6)	0.05 ± 0.16 (0.6)
More than one type of error	0.5 ± 0.8 (3.0)	$0.33 \pm 0.60 $ (3.8)	0.39 ± 0.66 (4.4)	0.33 ± 0.64 (3.7)
Acceptable error (El within ±10% of WFR daily El)	3.2 ± 2.0 (20.3)	1.69 ± 1.06 (19.0)	1.75 ± 1.13 (19.8)	1.54 ± 0.98 (17.4)

El energy intake, WFR weighed food record. $^{\rm a}$ Values are mean \pm SD (% of mean WFR daily El in parentheses).

A. Doulah et al., "Energy intake estimation using a novel wearable sensor and food images in a laboratory (pseudo-free-living) meal setting: quantification and contribution of sources of error," Int J Obes (Lond), Oct. 2022, doi: 10.1038/s41366-022-01225-w.

17

IMAGE-BASED DIETARY ASSESSMENT BY AI

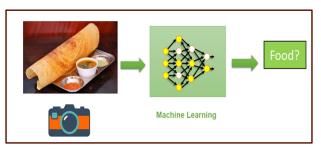


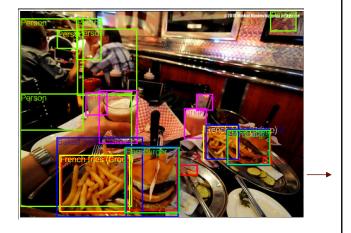
Lo, Frank Po Wen & Sun, Yingnan & Qiu, Jianing & Lo, Benny. (2020). Image-Based Food Classification and Volume Estimation for Dietary Assessment: A Review. IEEE Journal of Biomedical and Health Informatics. PP. 1-1. 10.1109/JBHI.2020.2987943

FOOD DETECTION AND RECOGNITION

Food detection can be achieved by:

- 1. Detection: Classifying images as food and non- food images.
- 2. Localization: Object detection (identify instances of food objects in the image)
- 3. Food recognition: Identify the type of food

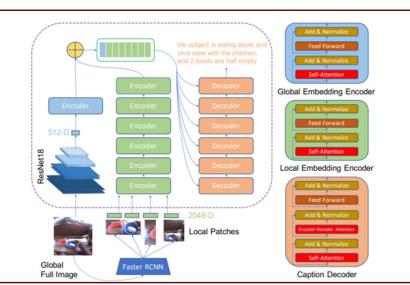




G. Chen et al., "Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features," Frontiers in Artificial Intelligence, vol. 4, p. 28, 2021, doi: 10.3389/frai.2021.644712

19

FOOD IMAGE TO TEXT DESCRIPTION



A Deep learning architecture for conversion of images into text captions

Qiu et al., "Egocentric Image Captioning for Privacy-Preserved Passive Dietary Intake Monitoring," arXiv:2107.00372 [cs], Jul. 2021, Accessed: Jul. 12, 2021. [Online]. Available: http://arxiv.org/abs/2107.00372

FOOD IMAGE TO RECEIPE

Query Image

True ingrs.

Retrieved ingrs. Retrieved Image

whole milk half - and - half cr white sugar lemon extract ground cinnamon frozen blueberries vanilla wafers ice cubes berries strawberry yogurt banana milk white sugar

butter garlic cloves all - purpose flour kosher salt milk chicken broth mozzarella cheese parmesan cheese onion 1 box any pasta you ground beef 1 envelope taco seas water 1/2 packages cream c cheese

cooked white rice salt shrimp Broccolini mayonnaise nori sushi rice salmon avocado cream cheese nori

mayonnaise onion cider vinegar sugar celery seeds green cabbage carrot salt & freshly groun ground chuck

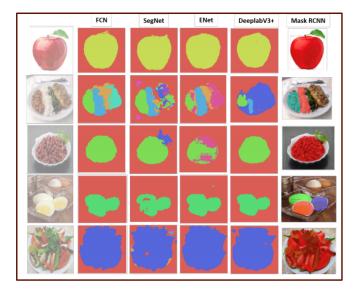
yellow onion coarse salt ground pepper ground chuck buns eggs ketchup canned beets lettuce leaves

Im2Recipe: ingredients from an image

J. Marín et al., "Recipe 1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 43, no. 1, pp. 187-203, 1 Jan. 2021, doi: 10.1109/TPAMI.2019.2927476.

21

SEGMENTATION OF FOOD IMAGES

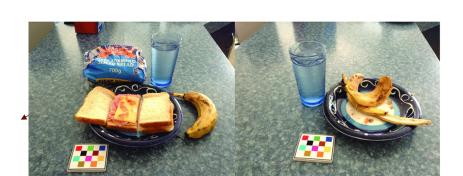


He Y, Xu C, Khanna N, Boushey CJ, Delp EJ. FOOD IMAGE ANALYSIS: SEGMENTATION, IDENTIFICATION AND WEIGHT ESTIMATION. Proc (IEEE Int Conf Multimed Expo). 2013;2013:10.1109/ICME.2013.6607548. doi:10.1109/ICME.2013.6607548

X. Wu, X. Fu, Y. Liu, E.-P. Lim, S. C. H. Hoi, and Q. Sun, "A Large-Scale Benchmark for Food Image Segmentation," arXiv:2105.05409 [cs], May 2021, Accessed: Jul. 12, 2021. [Online]. Available: http://arxiv.org/abs/2105.05409

PORTION SIZE ESTIMATION FROM FOOD IMAGES

- A dimensional reference is required for estimation of the portion size
- Frequently, participants are asked to place fiducial markers in the image
- Leftover images are taken to estimate consumed amounts

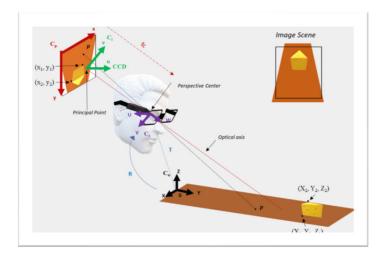


K. E. Bathgate et al.,

"Feasibility of Assessing Diet with a Mobile Food Record for Adolescents and Young Adults with Down Syndrome," *Nutrients*, vol. 9, no. 3, p. E273, Mar. 2017, doi: 10.3390/nu9030273

23

PORTION SIZE ESTIMATION FROM FOOD IMAGES



College of Engineering

Perspective transformation: an example of the geometric transformations for portion size estimation by the Automatic Ingestion Monitor

PORTION SIZE ESTIMATION FROM FOOD IMAGES

Performance of recent methods

Method	Scale Reference	Input	Core Idea	Error
MuseFood [39]	Depth	RGB Image (Top + Side View)	Differential Modeling	−0.27~12.37% Test dataset: 3 food items
Eye-Measurement [39]	n/a	RGB Image	Visually Gauged by Human	-13.84~22.87% Test dataset: 3 food items
Hassannejad et al. [13]	Checkerboard	Multi-View (6) RGB Images	3D Modeling with Structure from Motion	1.70~19.10% Test dataset: 10 food items
im2calories [21]	Depth	RGB + Depth Image	3D Reconstruction with Deep Learning	- Test dataset NFood-3D dataset
Fang et al. [40]	Depth	Gray + Depth Image	3D Voxel Representation from depth	11.00~33.90% [38] Test dataset: 10 food objects
Lo et al. [18]	al. [18] Depth Depth Image 3D Reconstruction with (Front + Back View) Iterative Closest Point		3.30~9.40% Test dataset: 8 synthetic food objects	
Point2Volume. [41] Depth		RGB + Depth Image	3D Point Cloud Completion	15.32% Test dataset: 11 food items
VD Meter [42]		Multi-View (192) RGB Images	3D Reconstruction	0.83~5.23% Test dataset: 6 food items
Ours	Learned	Single RGB Image	Reference Volume Classification	11.60~20.10% Test dataset: 174~540 food images

Collige of Engineering Z. Yang et al., "Human-Mimetic Estimation of Food Volume from a Single-View RGB Image Using an Al System," Electronics, vol. 10, no. 13, Art. no. 13, Jan. 2021, doi: 10.3390/electronics10131556

25

COMPLEXITY OF REAL-LIFE BEHAVIOR

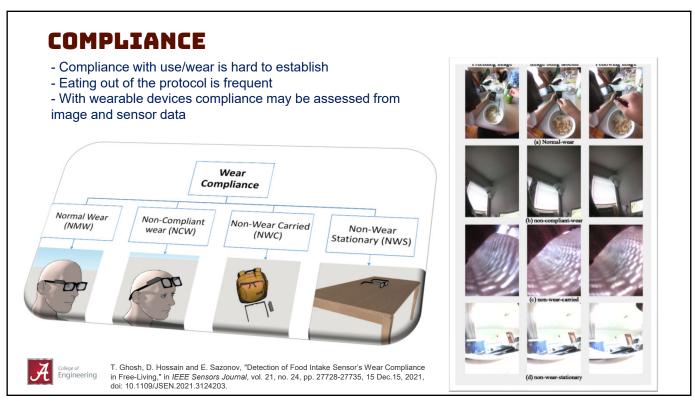
Natural food intake behavior is significantly more complex than commongly used staged food scenes:

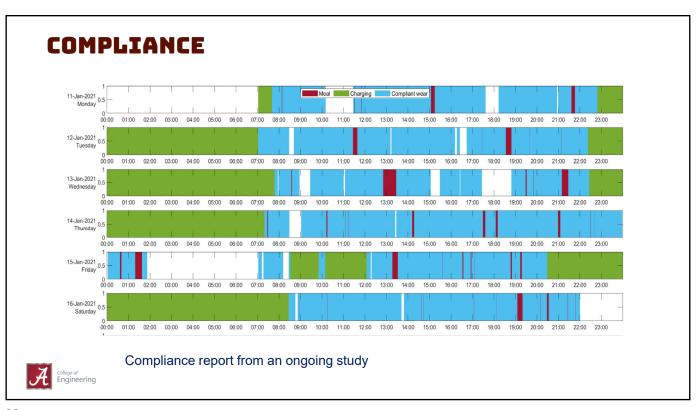
- Foods are not staged. Food items may be occluded or consumed mixed.

- Foods are eaten in all kinds of environments (car, bed, etc.)

- Foods may be consumed from shared plates (e.g. appetizers)

- Dimensional refences may not be available





PRIVACY

- Use of any image data raises privacy concerns
- Images may contain HIPAA-protected information
- Privacy issues are not inherent to personal cameras (e.g. in the US there is 1 surveillance camera per 6.5 people)

Potential issues:

- Inappropriate or Unwanted Images
- Confidentiality (capture of illegal activities)
- Third Parties (family members, co-workers, general public)

Potential solutions:

- Use of ethical guidelines in research
- Use of privacy-preserving techniques

P. Kelly et al., "An ethical framework for automated, wearable cameras in health behavior research," Am. J. Prev. Med., vol. 44, no. 3, pp. 314–319, Mar. 2013

M. A. Hassan and E. Sazonov, "Selective Content Removal for Egocentric Wearable Camera in Nutritional Studies," IEEE Access, vol. 8, pp. 198615–198623, 2020

29

INHERENT LIMITATIONS OF IMAGING

- Similar-looking items may have different nutritional value

SUMMARY

- Wearables allow for "passive" detection of eating events but do not provide insights of the foods being consumed
- Leveraging imaging capability allows to combine the best aspects of wearables and image —based methods
- AI/ML methods form the backbone of technology-based dietary and behavioral assessment, but many technical issues yet to be resolved
- All of the described methods are indirect measurements with inherent limitations
- Ethical and privacy issues need to be addressed along with technical engineering aspects

31

THANK YOU!

Thanks to all colleagues, postdocs and students with whom I had privilege to collaborate on these projects!

NIH support:

- > R01DK122473
- > R21HL083052
- > R21DK085462
- > R01DK100796
- ➤ U24CA268228

BILL & MELINDA GATES foundation

A Systematic Review of Sensor-Based Methodologies for Food Portion Size Estimation (https://ieeexplore.ieee.org/document/9272773)

An Ethical Framework for Automated, Wearable Cameras in Health Behavior Research (https://www.sciencedirect.com/science/article/pii/S0749379712008628?via%3Dihub)

Image-Based Food Classification and Volume Estimation for Dietary Assessment: A Review https://ieeexplore.ieee.org/document/9082900

The Use of Mobile Devices in Aiding Dietary Assessment and Evaluation https://ieeexplore.ieee.org/document/5473089

Vision-Based Approaches for Automatic Food Recognition and Dietary Assessment: A Survey https://ieeexplore.ieee.org/document/8666636

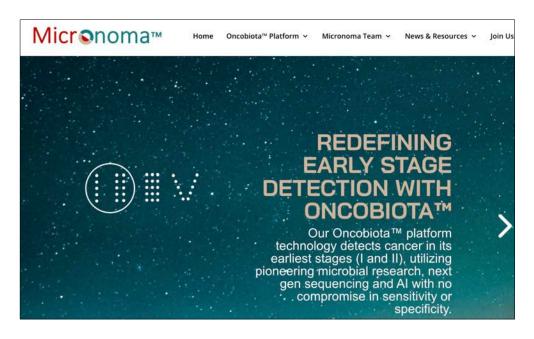
Applications and Lessons Learned: Microbiome

Rob Knight, Ph.D.

Wolfe Family Endowed Chair of Microbiome Research at Rady Children's Hospital of San Diego Professor, Pediatrics, Bioengineering CSE & HDSI at University of California San Diego

Disclosures (Knight):

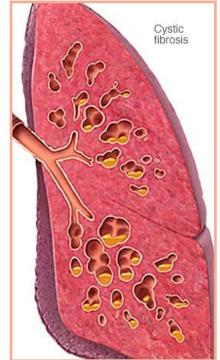
- Filed international patent applications:
 - PCT/US19/59647: Cancer microbiome tissue and blood diagnostics
 - PCT/US2021/051261: Metastatic cancer microbiome tissue and blood diagnostics
- Filed national patent applications:
 - U.S. Patent Application No. 62/754,696
 - U.S. Patent Application No. 63/081,075
 - U.S. Patent Application No. 63/105,624
 - U.S. Patent Application No. 63/221,504
- Pursuing commercialization of this work through a company (Micronoma) that has exclusively licensed the intellectual property from UC San Diego.
- Also: co-founder and shares, Biota; SAB and shares, BiomeSense, GenCirq; SAB, DayTwo; consultant and shares, Cybele

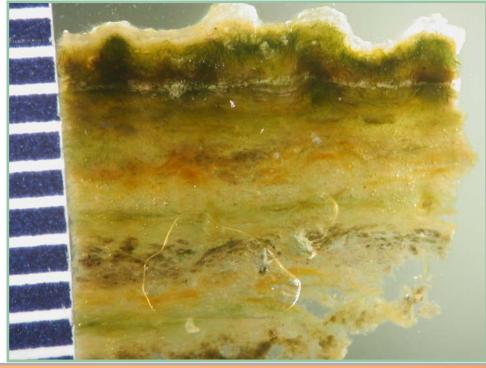


Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex

Micah Hamady¹, Jeffrey J Walker², J Kirk Harris³, Nicholas J Gold² & Rob Knight⁴

NATURE METHODS | VOL.5 NO.3 | MARCH 2008 | 235





Error-correcting barcoded primers for pyrosequencing hundreds Cystic fibrosis lung of samples in multiplex Micah Hamady¹, Jeffrey J Walker², J Kirk Harris³, Nicholas J Gold² & Rob Knight⁴ NATURE METHODS | VOL.5 NO.3 | MARCH 2008 | 235 Mat Air North American rivers Figure 2 | UniFrac clustering by community was essentially perfect with sequences from pyrosequencing. Samples from cystic fibrosis lung. microbiome project Guerrero Negro microbial mat, air and North American rivers cluster by environment type. Thompson et al. 2017 Nature

We can now build **predictive models** for many traits related to health from the **microbiome**

Classifying lean/obese*:

57% accuracy from human genes

VS

90% accuracy from microbial genes

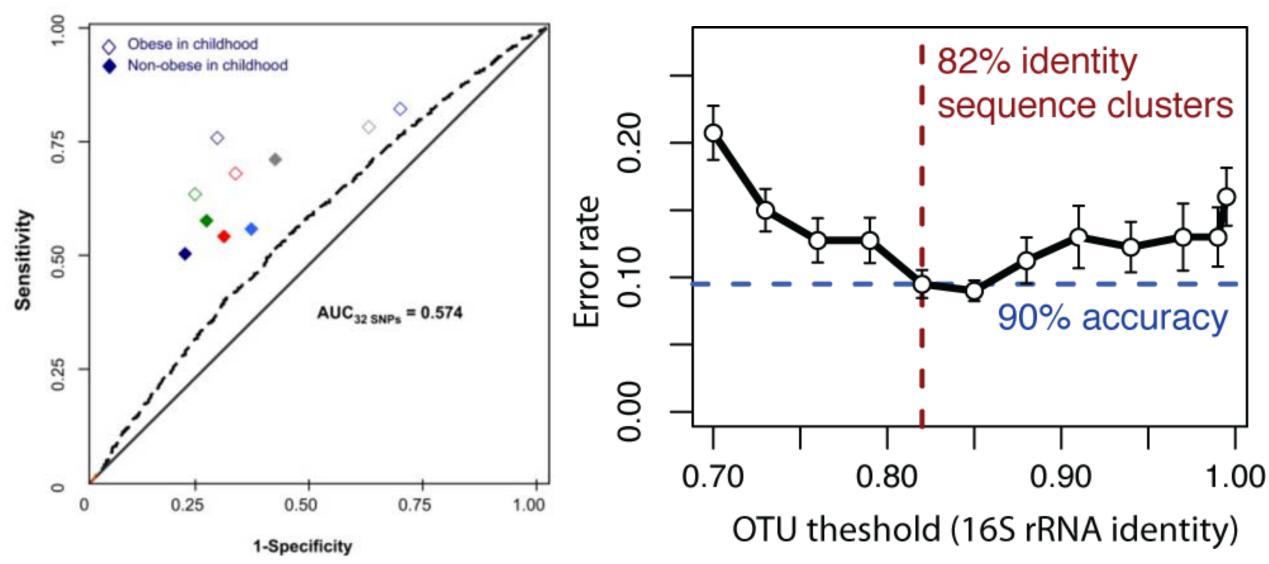
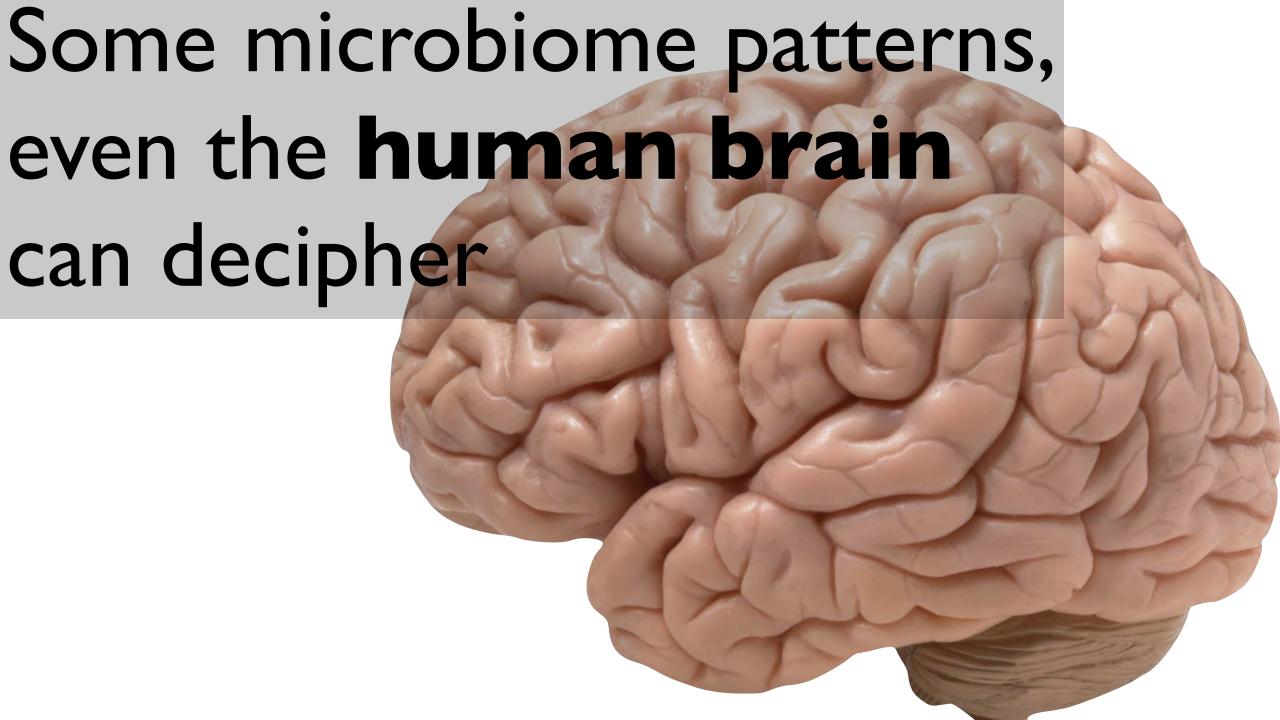
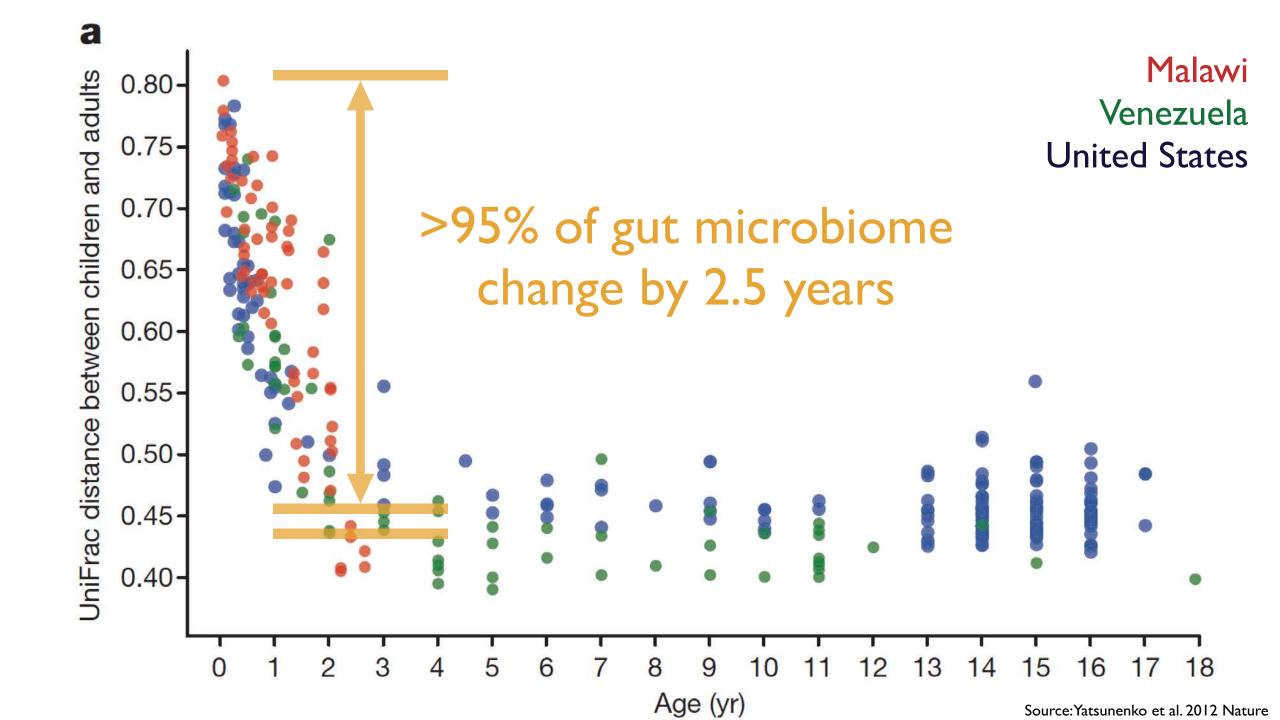
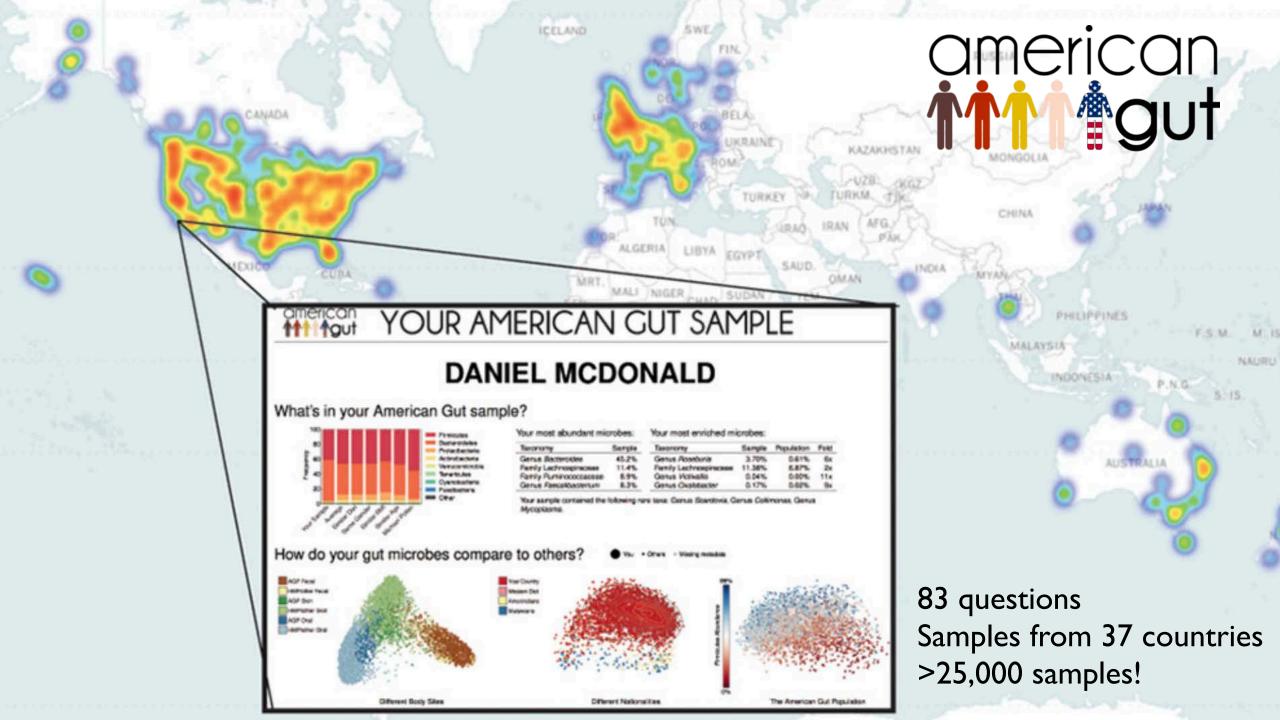


Fig. 5. The AUC_{ROC} for the 32 BMI-associated loci to predict obesity in 8,120 individuals from the ARIC study. ⁴⁸ For comparison, sensitivity and 1-specific are shown for 'parental obesity' as a test at various ages during childhood and adolescence (1–2 yrs in dark blue, 3–5 yrs in green, 6–9 yrs in red, 10–14 yrs in light blue, 15–17 yrs in grey) to predict obesity in adult life, with data derived from Whitaker et al.⁷¹

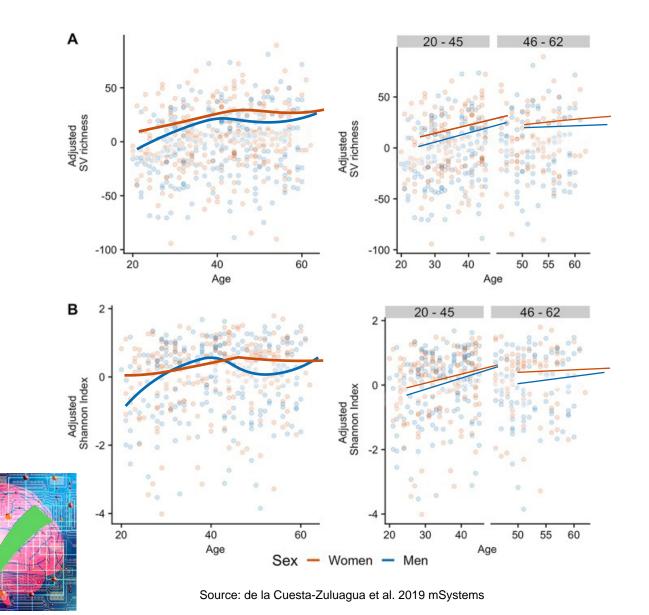


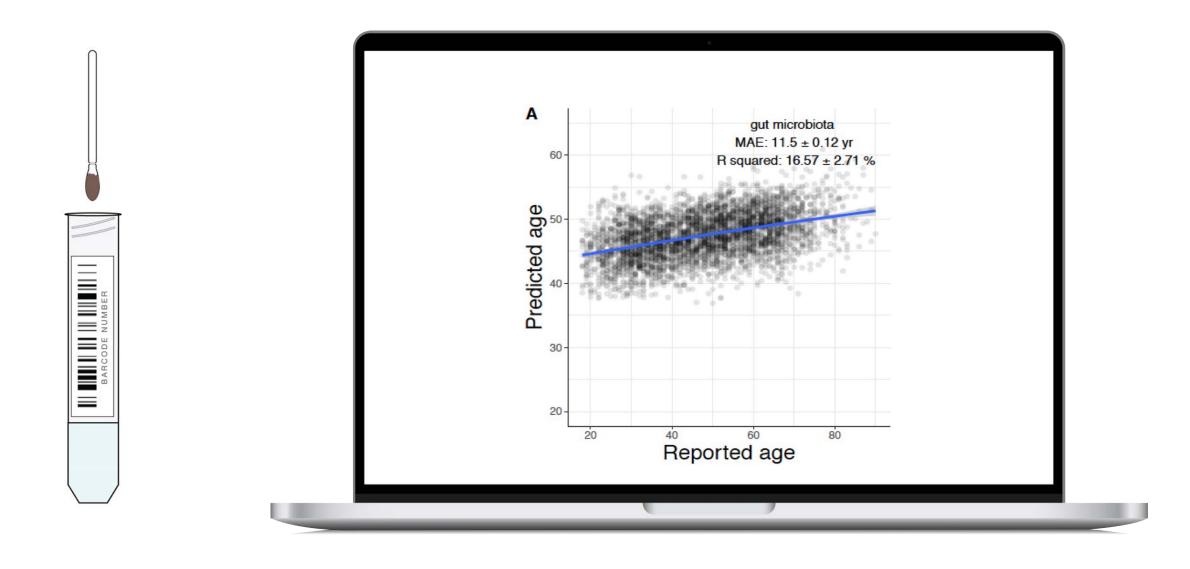


So is your microbiome OONISDAY DOONISDAY AHEAD AHEAD doomed by age 3?

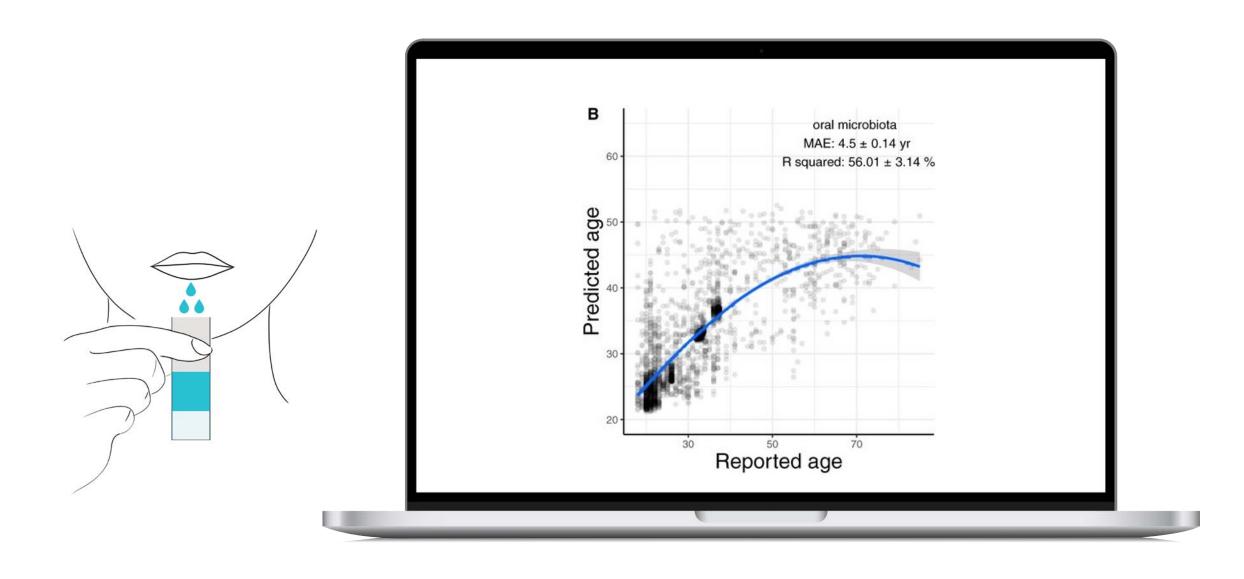


Microbiome changes with age in adults are subtle...

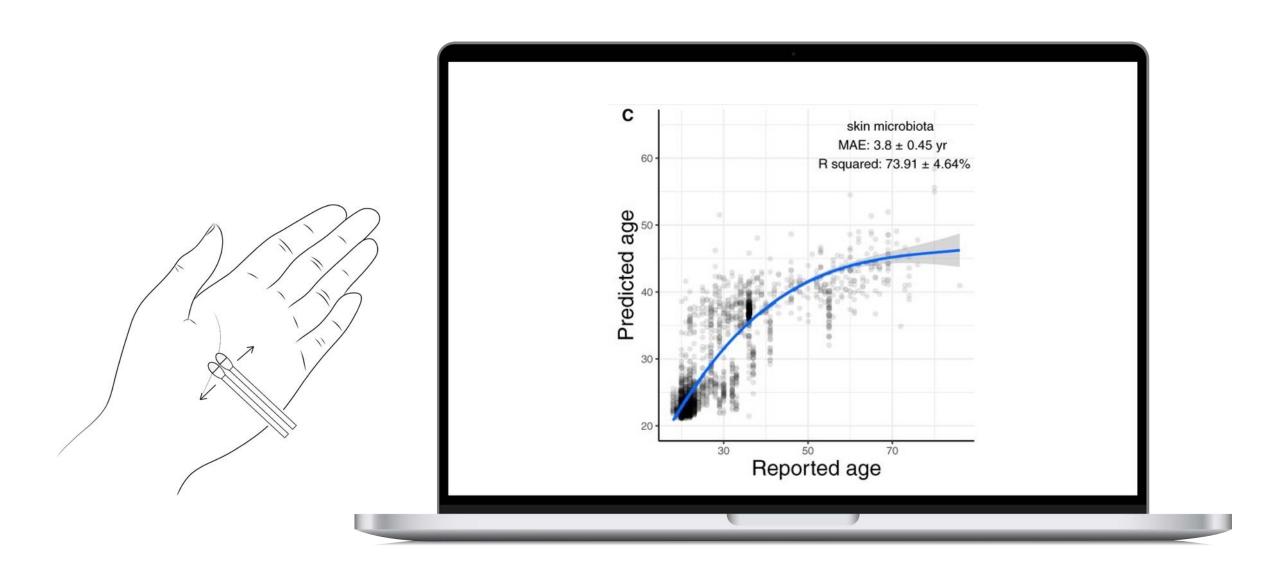




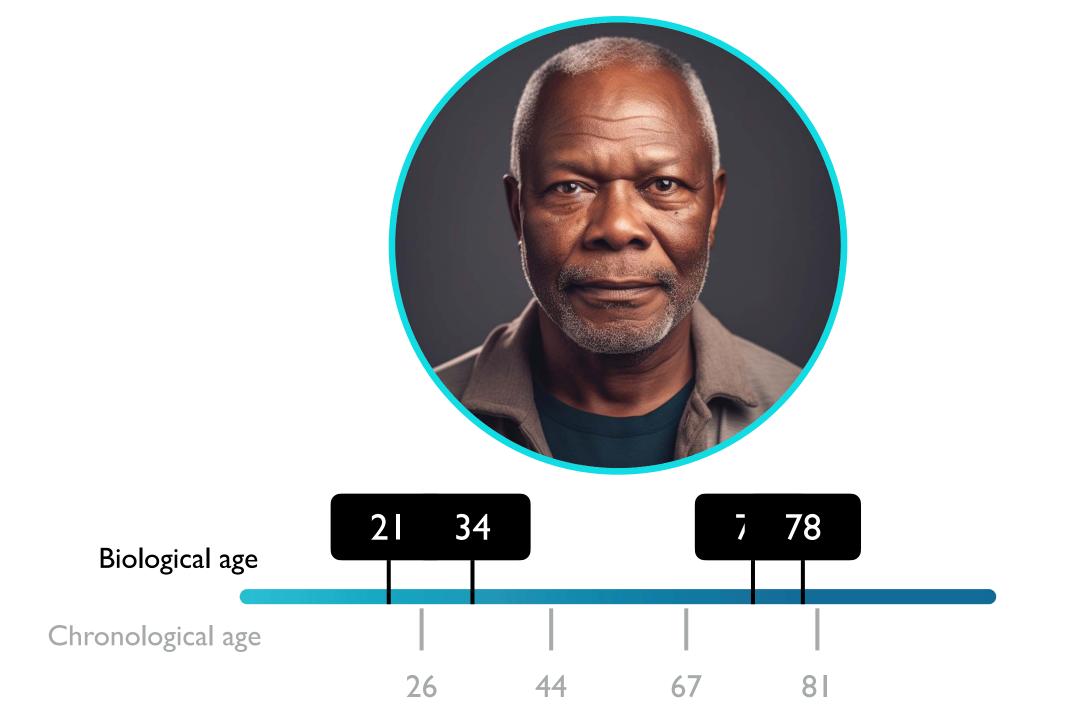
Stool Sample - Determines age within 12 years



Saliva Sample - Determines age within 5 years



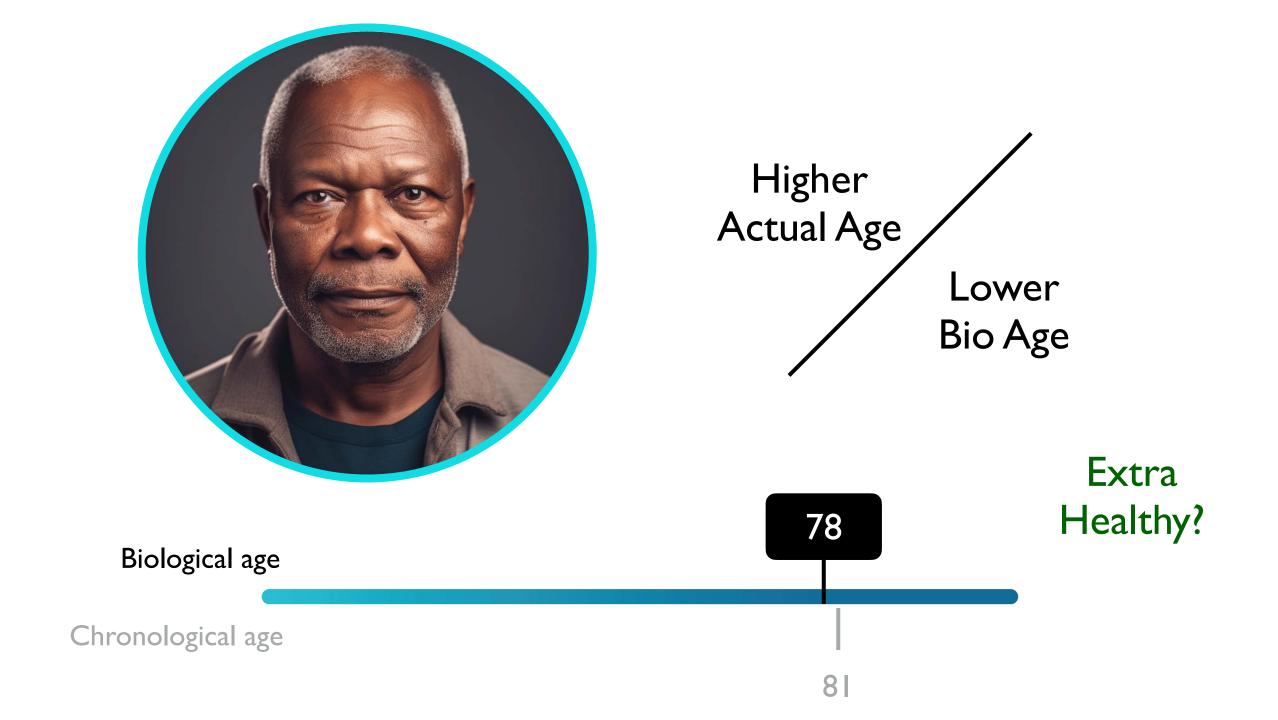
Skin Sample - Determines age within 4 years



Lower Actual Age Higher Bio Age

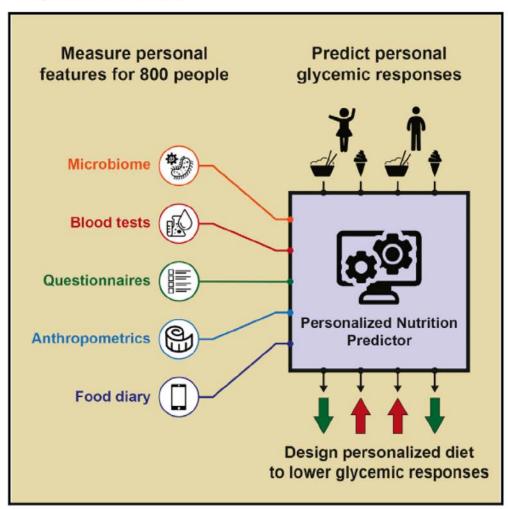
Biological age

Chronological age



Personalized Nutrition by Prediction of Glycemic Responses

Graphical Abstract



Authors

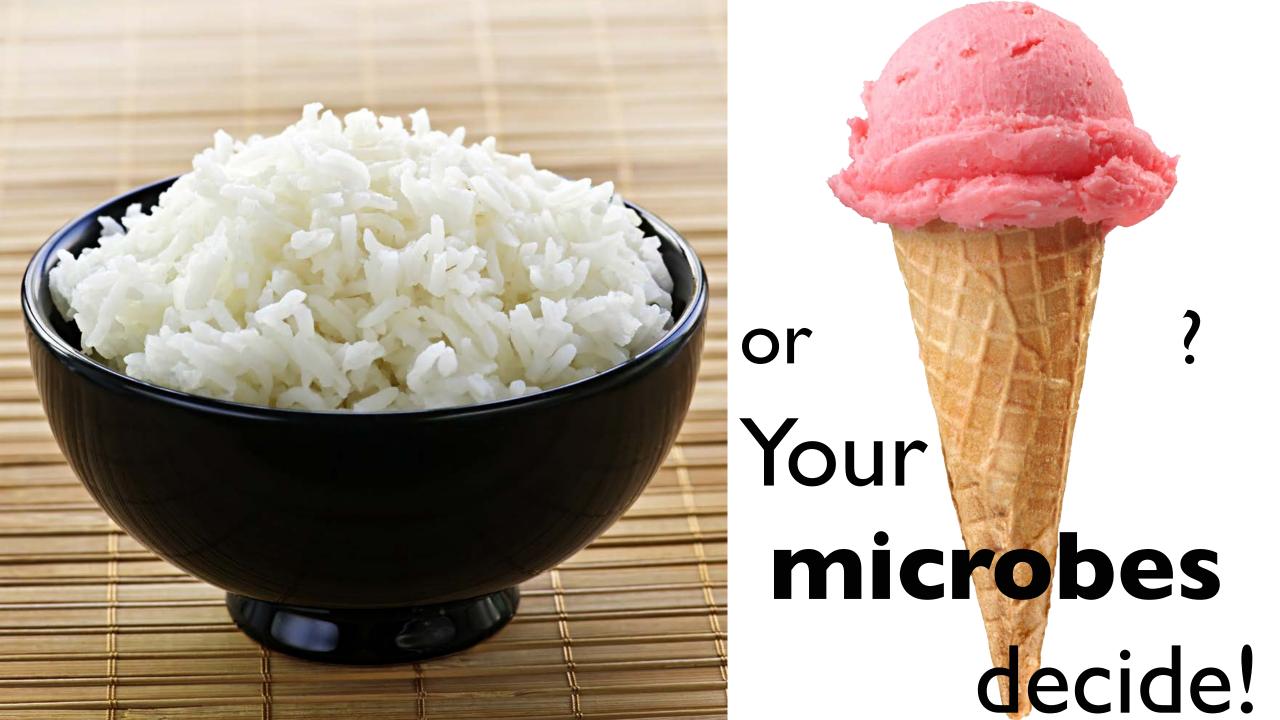
David Zeevi, Tal Korem, Niv Zmora, ..., Zamir Halpern, Eran Elinav, Eran Segal

Correspondence

eran.elinav@weizmann.ac.il (E.E.), eran.segal@weizmann.ac.il (E.S.)

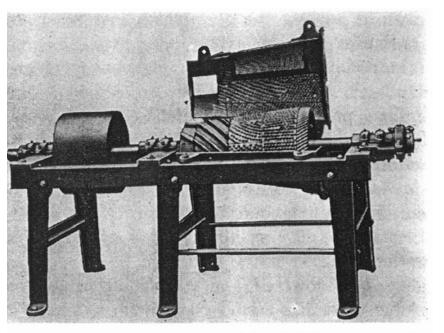
In Brief

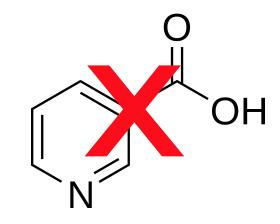
People eating identical meals present high variability in post-meal blood glucose response. Personalized diets created with the help of an accurate predictor of blood glucose response that integrates parameters such as dietary habits, physical activity, and gut microbiota may successfully lower post-meal blood glucose and its long-term metabolic consequences.



This happy event was motivated (in part) by a sad one...

...a murder...





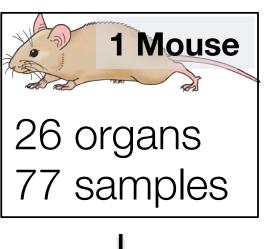
Courtesy of The Beall Improvements Co.

Fig. 14.2. Beall Degerminator and Corn Huller

STUDIES ON PELLAGRA. I. THE INFLUENCE OF THE MILLING OF MAIZE ON THE CHEMICAL COMPOSITION AND THE NUTRITIVE VALUE OF MAIZE-MEAL. By CASIMIR FUNK.

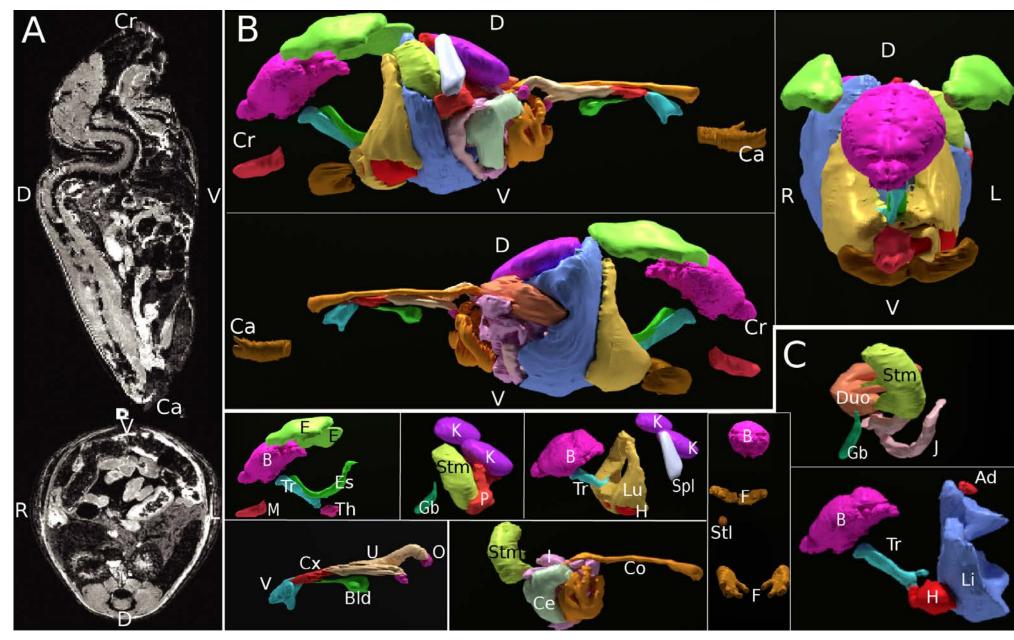
(From the Department of Chemical Physiology, Cancer Hospital Research Institute, Brompton, London, S.W.)

J Physiol. 1913 Dec 19; 47(4-5): 389-392.

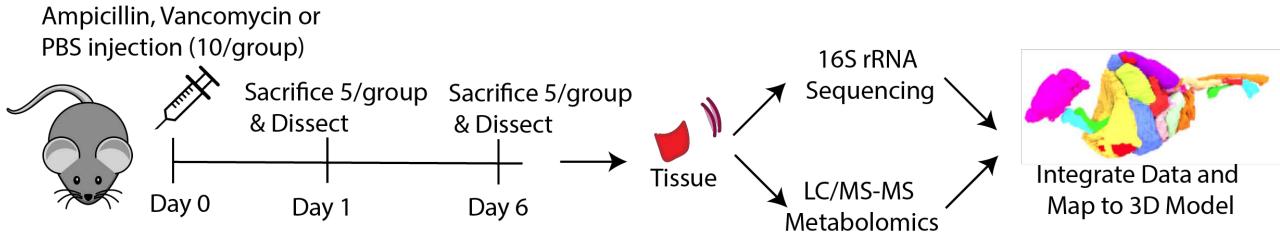


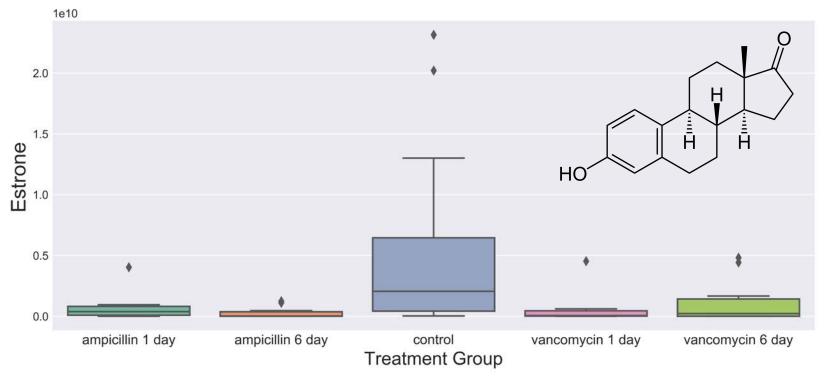
16S rRNA sequencing

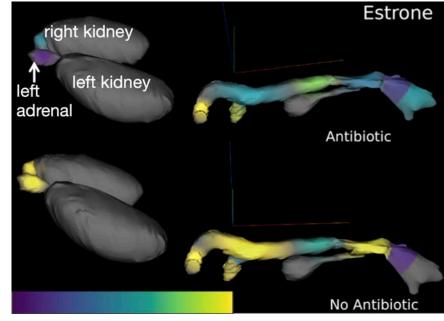
LC-MS/MS (untargeted)



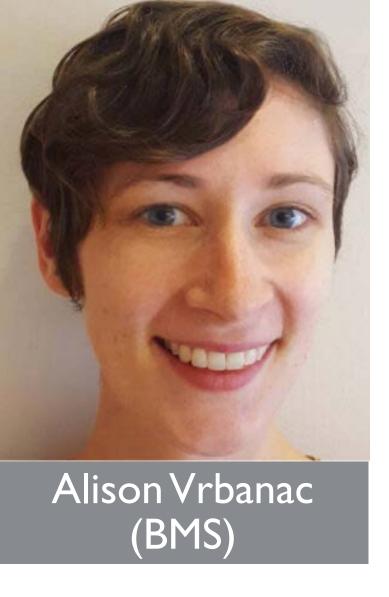
Vrbanac et al. 2020 mSystems

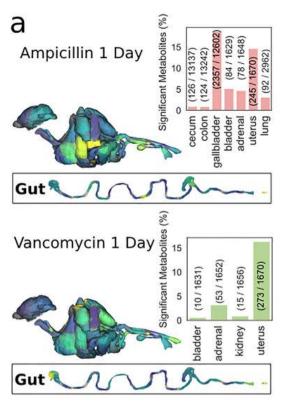


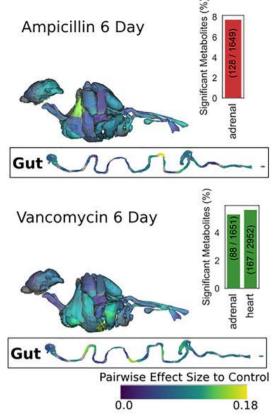




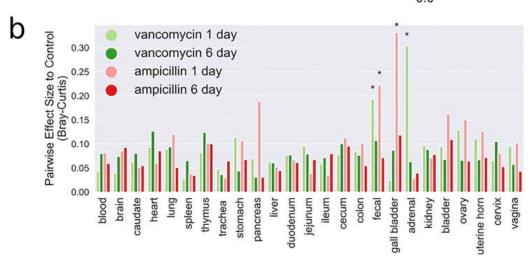
Vrbanac et al. 2020 mSystems







Antibiotics change molecules throughout the body



SUBSCRIBE

8 wks / 99¢

WEDNESDAY JAN. 25, 2017

SECTIONS

UCSD to study centenarians in Italian village

Fruits and vegetables are a staple at open air markets in Acciaroli, Italy (Courtesy of Dr. Alan Maisel)

By Gary Robbins . Contact Reporter

AUGUST 25, 2016, 8:12 PM

cientists from UC San Diego have begun to arrive in a small coastal village in southwestern Italy to study why a disproportionate number of its citizens live to be

Salvatore Di Somma Professor of Medicine Md PhD at Sapienza Università di Roma

Cilento on Aging Outcomes Study

Example Community in the Cilento Region: Acciaroli

SCIENCE

HEALTH

CULTURE

REVIEWS

FEATURES VIDEOS

Is Rosemary The Secret To Longer Life? New Study Looks Into Lifestyle Of Italian Village With 300 Centenarians

000 () II

April 2016, 6:46 am EDT By Deepthi B Tech Times

Centenarian

Italian Village

Longevity

A remote Italian village, home to 300 men who have crossed 100 years of age, might hold the secret to longevity. Researchers are studying the lifestyle behaviors of these centenarians and found the common factor among them is the use of rosemary herb. (Ajale | Pixabay)

The secret to longevity leave alone immortality, has been an ageold quest boggling the minds of curious mortal men. Statistically, the average lifespan worldwide is around 70 to 80 years of age, but yet a few miraculously live on until a ripe old age of 100.

Researchers from the San Diego School of Medicine, University of California along with University of Rome La Sapienza have delved into an interesting study on longevity. The study group consists of 300 senior citizens wherein each and every one of them have outlived a whopping century.

These centenarians are idealistically living together in peace and harmony not to forget good health, in a quaint little village in Acciaroli, Italy.

Over and beyond long life, this group of 300 is surprisingly free of the usual and common old-age diseases such as Alzheimer's and heart-related conditions. Mentally and physically they are found to be fit.

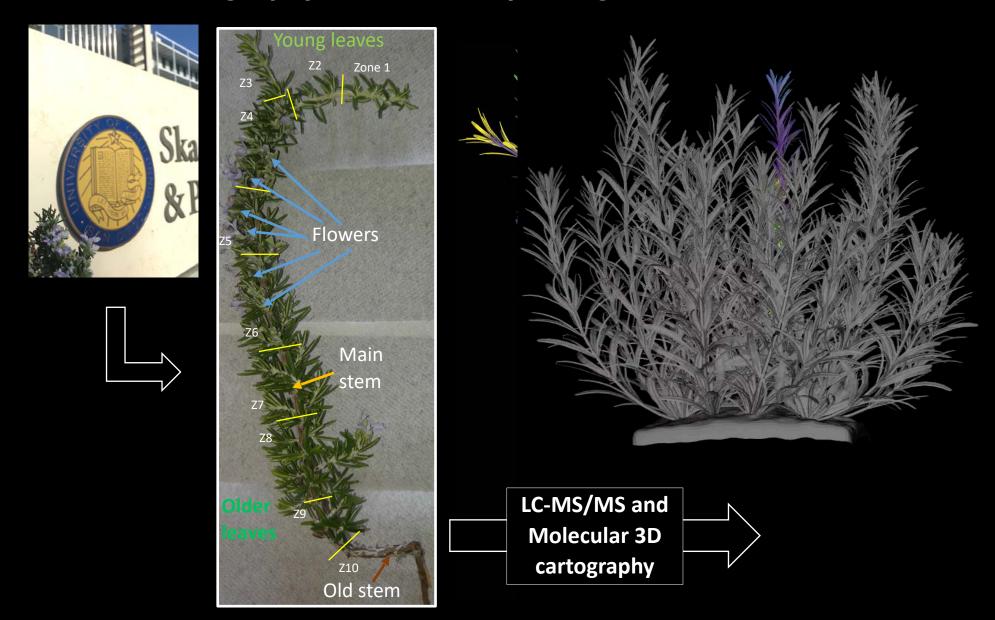
"The goal of this long-term study is to find out why this group of 300 is living so long by conducting a full genetic analysis and examining lifestyle behaviors, like diet and exercise. The results from studying the longevity of this group could be applied to our practice at UC San Diego and to patients all over the world." said Alan Maisel, investigator and professor at the San Diego School of Medicine.

CLICK HERE FOR CES 2017 COVERAGE

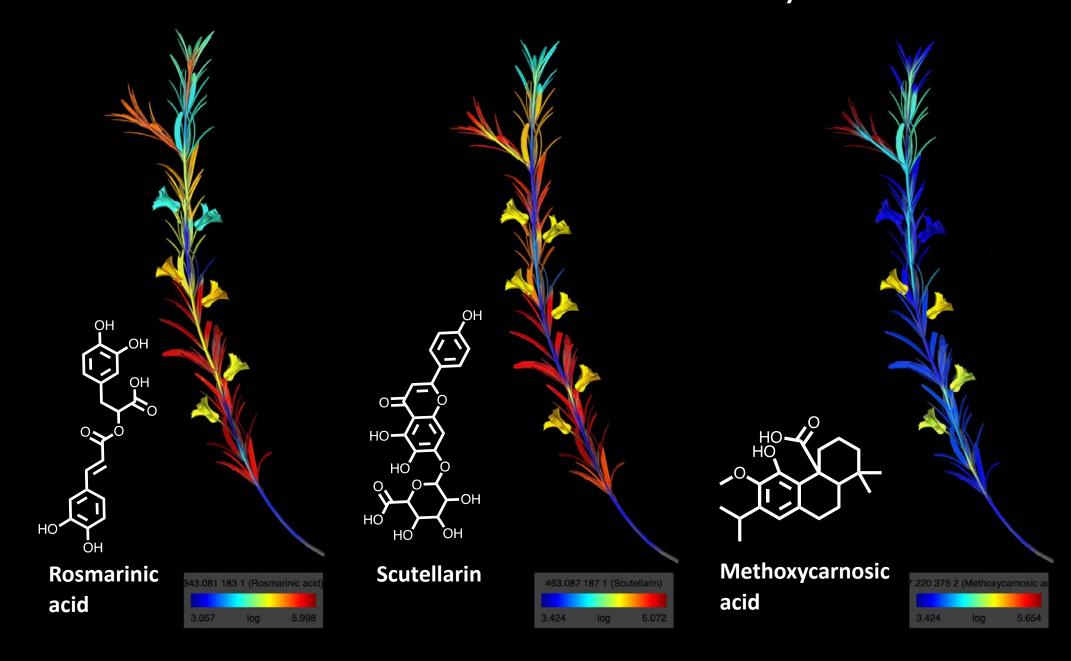
MOST POPULAR

GOOGLE Google I/O 2017 Date Confirmed In A Puzzle

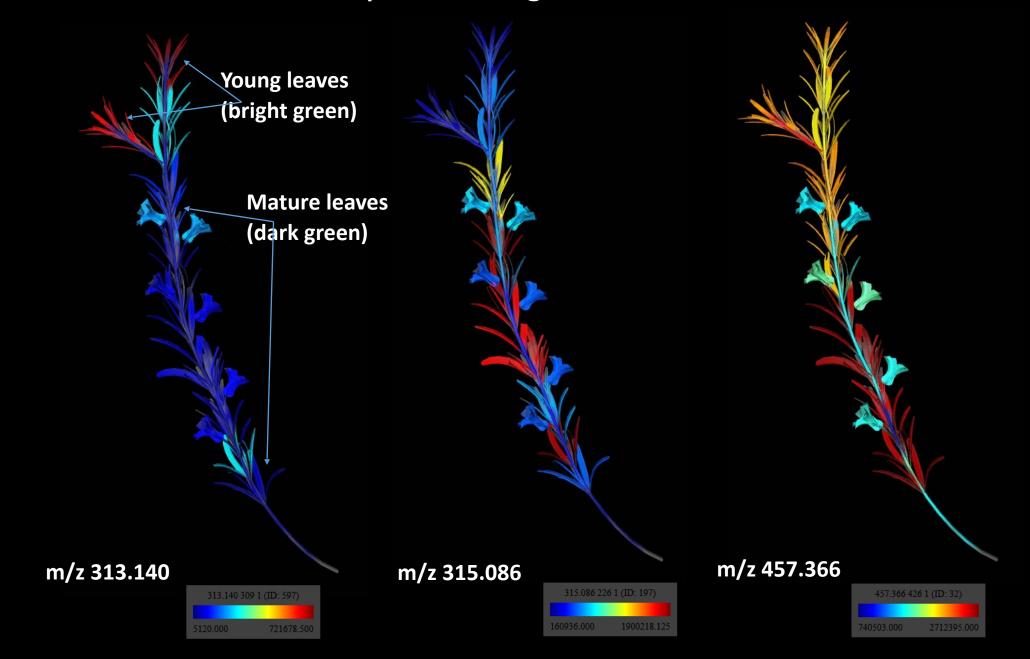
Molecular 3D cartography of Rosemary using LC-MS/MS



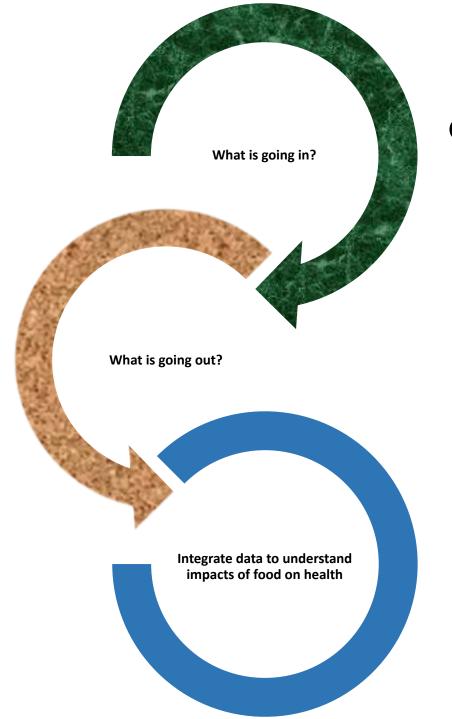
Distribution of some bioactive molecules from Rosemary



Unidentified metabolites unique to foliage



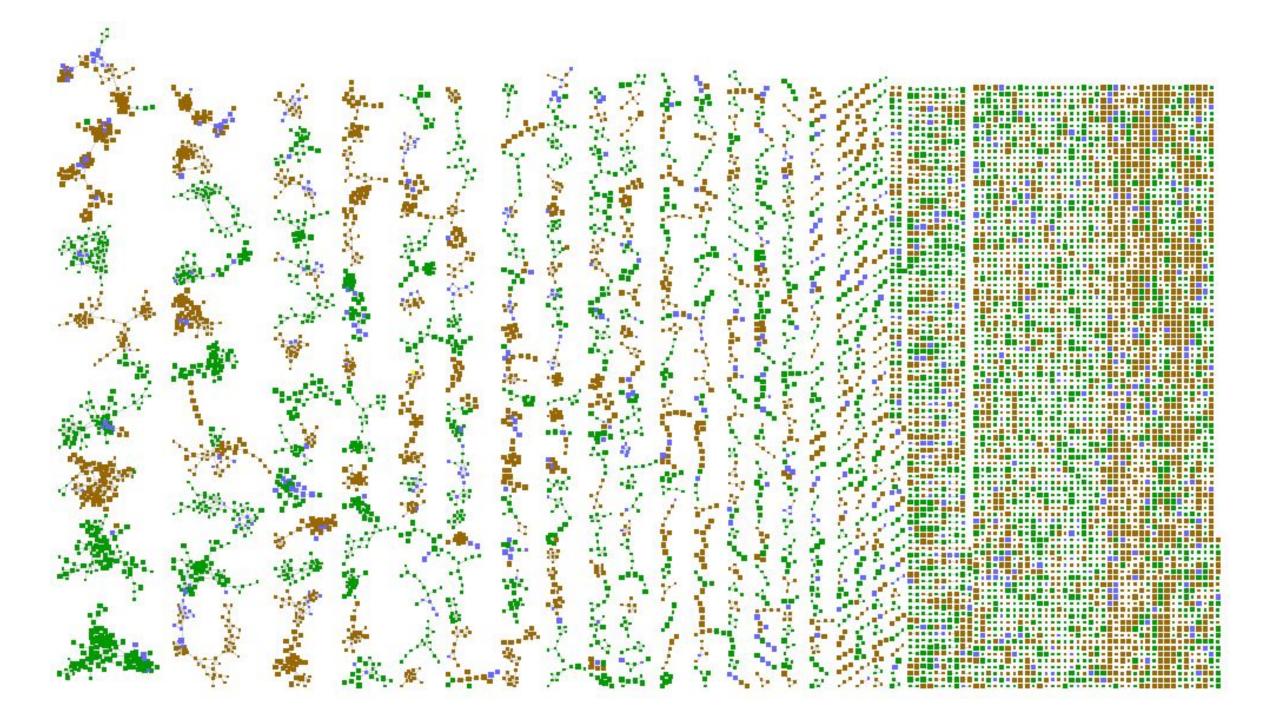
www.globalfoodomics.org



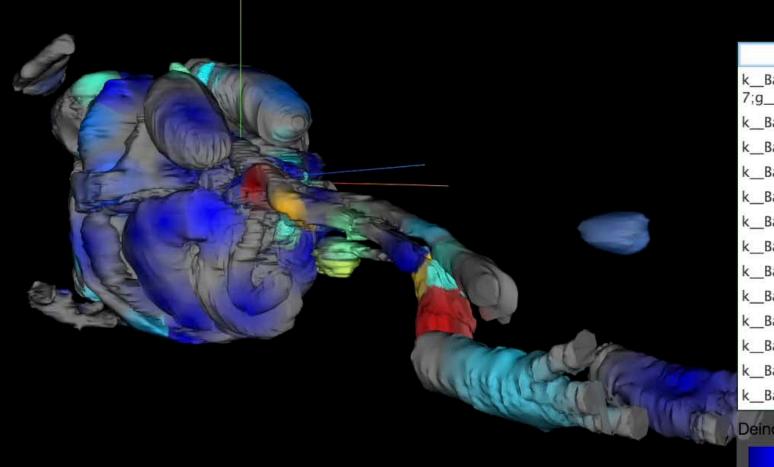
Global FoodOmics Project

Meta-analyses

American Gut Project



Imaging microbes and molecules throughout the mouse

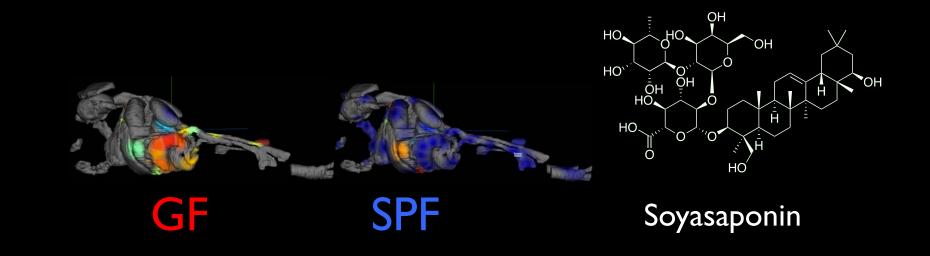


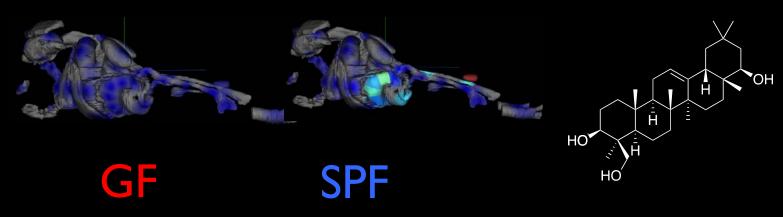
k_Bacteria;p_Bacteroidetes;c_B 7;g_;s_ k_Bacteria;p_Verrucomicrobia;c k_Bacteria;p_Firmicutes;c_Baci k_Bacteria;p_Firmicutes;c__;o__ k_Bacteria;p_Firmicutes;c_Baci k__Bacteria;p__Firmicutes;c__Baci k_Bacteria;p_Firmicutes;c_Clos k_Bacteria;p_Proteobacteria;c_ k_Bacteria;p_Firmicutes;c_Clos k_Bacteria;p_Bacteroidetes;c_B k Bacteria;p Firmicutes;c Baci k_Bacteria;p_Firmicutes;c_Erys k_Bacteria;p_Firmicutes;c_Clos Deinococci;o_Thermales;f_Th

19,000

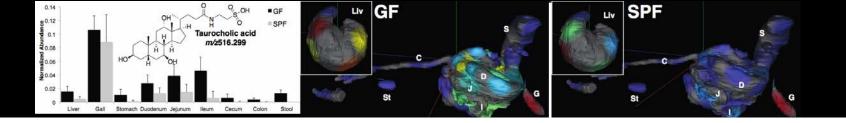
0.000

Microbiome-Mediated Metabolism of Food





Soyasapogenol



Article

Global chemical effects of the microbiome include new bile-acid conjugations

https://doi.org/10.1038/s41586-020-2047-9

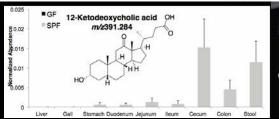
Received: 6 July 2018

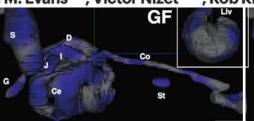
Accepted: 3 January 2020

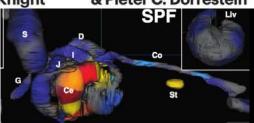
Published online: 26 February 2020

Check for updates

Robert A. Quinn^{1,2}, Alexey V. Melnik¹, Alison Vrbanac³, Ting Fu⁴, Kathryn A. Patras³, Mitchell P. Christy¹, Zsolt Bodai⁵, Pedro Belda-Ferre³, Anupriya Tripathi^{1,3}, Lawton K. Chung³, Michael Downes⁴, Ryan D. Welch⁴, Melissa Quinn⁶, Greg Humphrey³, Morgan Panitchpakdi¹, Kelly C. Weldon^{1,19}, Alexander Aksenov¹, Ricardo da Silva¹, Julian Avila-Pacheco⁷, Clary Clish⁷, Sena Bae^{8,9}, Himel Mallick^{7,8}, Eric A. Franzosa^{7,8}, Jason Lloyd-Price^{7,8}, Robert Bussell¹⁰, Taren Thron¹¹, Andrew T. Nelson¹, Mingxun Wang¹, Eric Leszczynski⁶, Fernando Vargas¹, Julia M. Gauglitz¹, Michael J. Meehan¹, Emily Gentry¹, Timothy D. Arthur^{3,7}, Alexis C. Komor⁵, Orit Poulsen³, Brigid S. Boland¹², John T. Chang¹², William J. Sandborn¹², Meerana Lim³, Neha Garg^{13,14}, Julie C. Lumeng¹⁵, Ramnik J. Xavier⁷, Barbara I. Kazmierczak¹⁶, Ruchi Jain¹⁶, Marie Egan¹⁷, Kyung E. Rhee³, David Ferguson⁶, Manuela Raffatellu³, Hera Vlamakis⁷, Gabriel G. Haddad³, Dionicio Siegel¹, Curtis Huttenhower^{7,8}, Sarkis K. Mazmanian¹¹, Ronald M. Evans^{4,18}, Victor Nizet^{1,3,19}, Rob Knight^{3,19,20,21} & Pieter C. Dorrestein^{1,3,19}

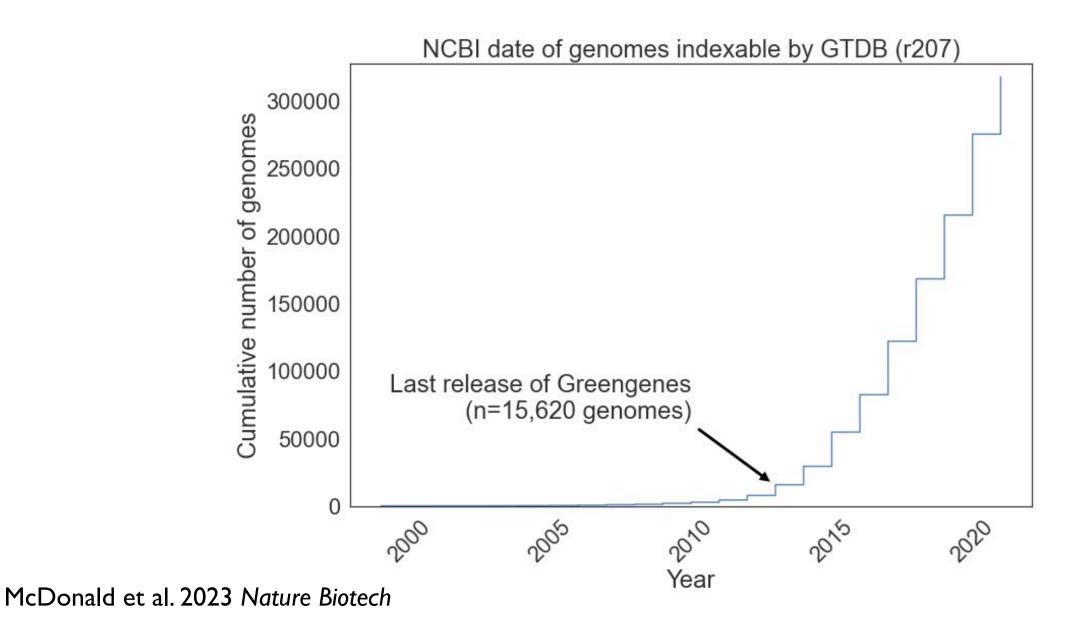


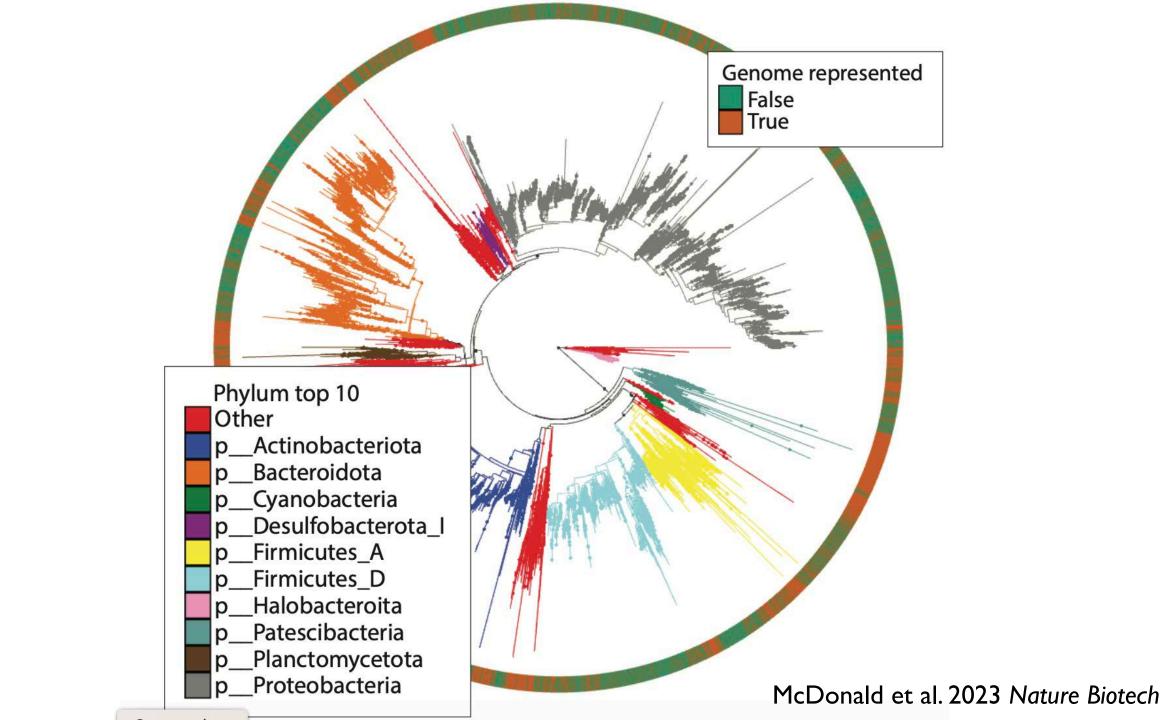




Problem: how to integrate 16S and shotgun data?

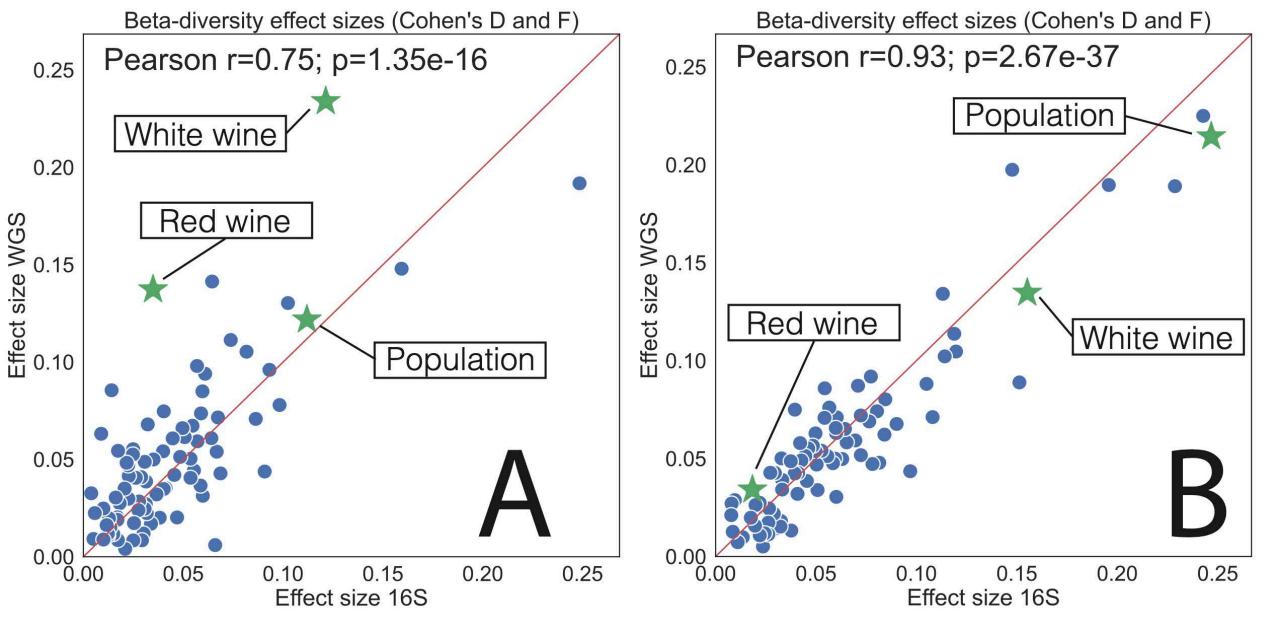
Daniel McDonald





Samples sequenced both for 16S rRNA V4 and whole genome shotgun were characterized by Greengenes2. Beta diversity and principal coordinates were computed, plotted and colored by the preparation type. (A) Bray Curtis and (B) Weighted UniFrac.

For the first time, see correlation in effect size



EUROPE

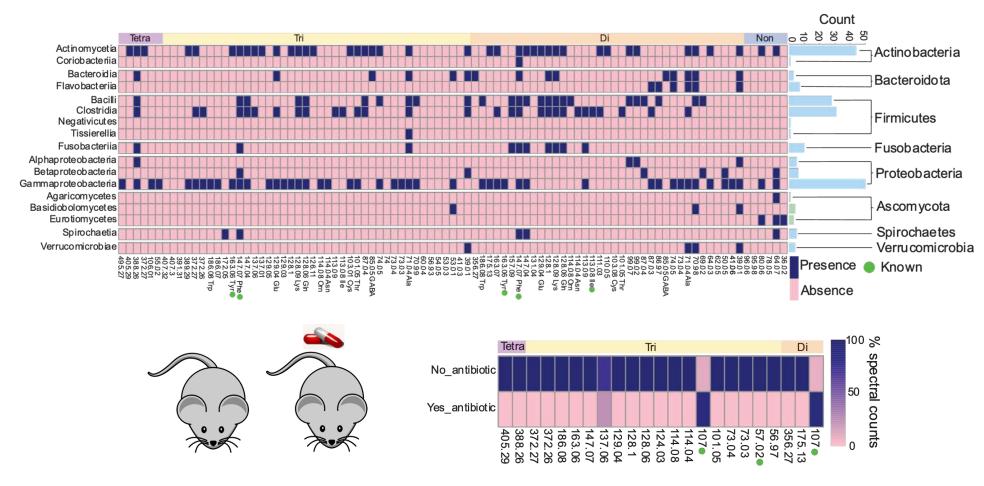
www.thdmi.org

UNITED KINGDOM ##

Tokyo Institute o

Tokyo Institute of Technology

MicrobeMASST allows searches using MassQL to find microbe-specific molecules

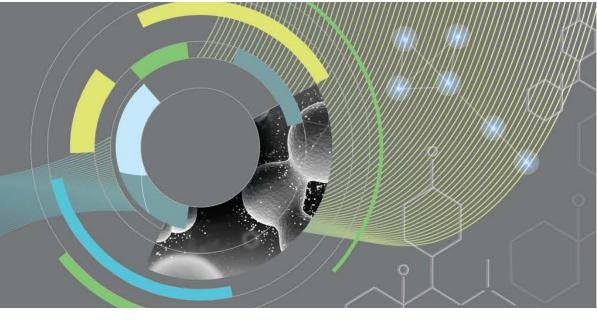


Reanalysis of Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340-345, 2017.

Exploring the Connection Between the Gut Microbiome & Alzheimer's Disease Pathogenesis

Alzheimer Gut Microbiome Project (AGMP)

Rima Kaddurah-Daouk **Duke University Medical Center**



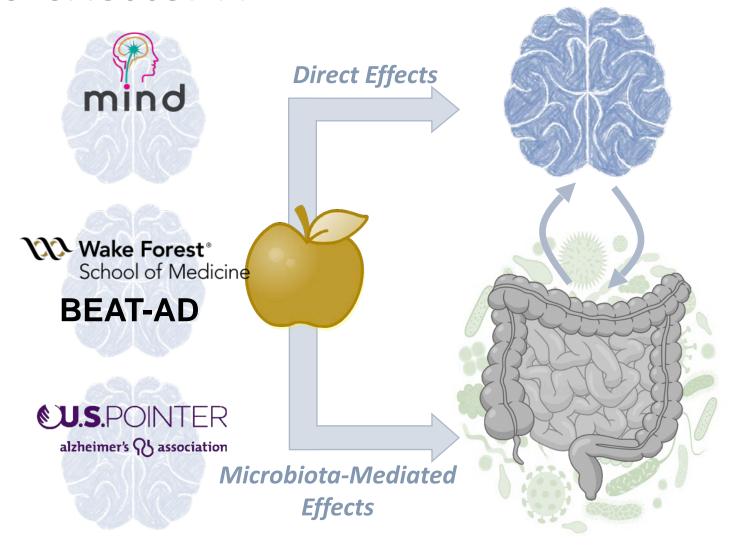
1U19AG063744 POs: Suzana Petanceska, Nandini Arunkumar

AGMP Sample Collections from study sites (ADRCs) **NCRAD** es (ADRCs) **ADRCs** Kits barcoded (NCRAD) ADRCs hand/mail kits to Samples collected at home NCRAD receives, logs, assembled and shipped participants at time of then mailed overnight to request kits homogenizes, subaliquots, LIMS to sites (Daklapak) clinic visit NCRAD stores & distributes samples ADRCs hold NCRAD holds ADRCs recruit Ppts consented for Kit & sample data entry the crosswalk to the key to ADRC ID participants samples, survey & FFQ unblind ppts/ converted to match ppts to Monthly match to NACC NACC IDs kits report data Duke (AGMP) generated Reconciliation, control for protocol Report sent to study sites & AGMP Ppts redirected to adherence, group quotas & Ppts linked to IU REDCap Viocare - FFQ collected - AGMP survey collected diversity on behalf of Consortium on behalf of Consortium Sample request received by Sample distribution NCRAD NCRAD & MTA Distribution requested by Consortium randomizes documents generated samples & balances **Duke Database** plates Sage Qiita - GNPS Manifest deposit neradared * generated Unprocessed data metadata Metadata Data NACC Samples shipped to collaborating produced collaborating institutions for profiling publication Data analyzed Unprocessed data & curated

studies

Diet/Microbiome AD Studies

U19AG063744



MIND:

Mediterranean-DASH Diet Intervention for Neurodegenerative Delay

BEAT:

Brain Energy for Amyloid Transformation in Alzheimer's Disease Study

Influence of Controlled Diets on Gut Microbiome, Metabolome, and Cognitive Function

POINTER:

U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk

BRIEF COMMUNICATION

https://doi.org/10.1038/s41587-022-01368-1

Enhancing untargeted metabolomics using metadata-based source annotation

```
Julia M. Gauglitz<sup>1,2,36</sup>, Kiana A. West<sup>1,2,36</sup>, Wout Bittremieux <sup>1,2,36</sup>, Candace L. Williams <sup>3</sup>,
Kelly C. Weldon 1,2,4, Morgan Panitchpakdi,2, Francesca Di Ottavio, Christine M. Aceves,2,
Elizabeth Brown<sup>2,5</sup>, Nicole C. Sikora<sup>1,2</sup>, Alan K. Jarmusch<sup>1,2</sup>, Cameron Martino <sup>0,4,6,7</sup>, Anupriya Tripathi<sup>2,5,6</sup>,
Michael J. Meehan<sup>1,2</sup>, Kathleen Dorrestein<sup>1,2</sup>, Justin P. Shaffer<sup>®</sup>, Roxana Coras<sup>®</sup>, Fernando Vargas<sup>1,2,5</sup>,
Lindsay DeRight Goldasich<sup>6</sup>, Tara Schwartz<sup>6</sup>, MacKenzie Bryant <sup>6</sup>, Gregory Humphrey<sup>6</sup>,
Abigail J. Johnson<sup>9</sup>, Katharina Spengler<sup>1</sup>, Pedro Belda-Ferre <sup>4,6</sup>, Edgar Diaz<sup>6</sup>, Daniel McDonald <sup>6</sup>,
Qiyun Zhu<sup>6</sup>, Emmanuel O. Elijah<sup>1,2</sup>, Mingxun Wang<sup>0</sup><sup>1,2</sup>, Clarisse Marotz<sup>6</sup>, Kate E. Sprecher<sup>10,11</sup>,
Daniela Vargas-Robles<sup>12</sup>, Dana Withrow<sup>10</sup>, Gail Ackermann<sup>6</sup>, Lourdes Herrera<sup>13</sup>, Barry J. Bradford<sup>14</sup>,
Lucas Maciel Mauriz Marques<sup>15</sup>, Juliano Geraldo Amaral<sup>10</sup>, Rodrigo Moreira Silva<sup>17</sup>,
Flavio Protasio Veras<sup>15</sup>, Thiago Mattar Cunha <sup>15</sup>, Rene Donizeti Ribeiro Oliveira <sup>18</sup>,
Paulo Louzada-Junior<sup>18</sup>, Robert H. Mills<sup>1,2,6,19</sup>, Paulina K. Piotrowski<sup>20</sup>, Stephanie L. Servetas<sup>20</sup>,
Sandra M. Da Silva<sup>20</sup>, Christina M. Jones<sup>20</sup>, Nancy J. Lin<sup>20</sup>, Katrice A. Lippa<sup>20</sup>, Scott A. Jackson<sup>20</sup>,
Rima Kaddurah Daouk<sup>21,22,23</sup>, Douglas Galasko<sup>24</sup>, Parambir S. Dulai<sup>25</sup>, Tatyana I. Kalashnikova<sup>26</sup>,
Curt Wittenberg 27, Robert Terkeltaub 8,28, Megan M. Doty 6,27, Jae H. Kim<sup>29</sup>, Kyung E. Rhee 6,
Julia Beauchamp-Walters <sup>30</sup>, Kenneth P. Wright Jr<sup>10</sup>, Maria Gloria Dominguez-Bello <sup>30</sup>,
Mark Manary<sup>31</sup>, Michelli F. Oliveira<sup>32</sup>, Brigid S. Boland<sup>21</sup>, Norberto Peporine Lopes <sup>17</sup>, Monica Guma<sup>8</sup>,
Austin D. Swafford<sup>4</sup>, Rachel J. Dutton<sup>5</sup>, Rob Knight<sup>4,6,33,34,35</sup> and Pieter C. Dorrestein 1,2,4,6 2
```

Clinical samples Reference data **GNPS** Molecular networking Food ontology 63 MS/MS spectra from this biospecimen match MS/MS spectra from oranges Food counts

Reference data driven metabolomics Diet readout from clinical samples

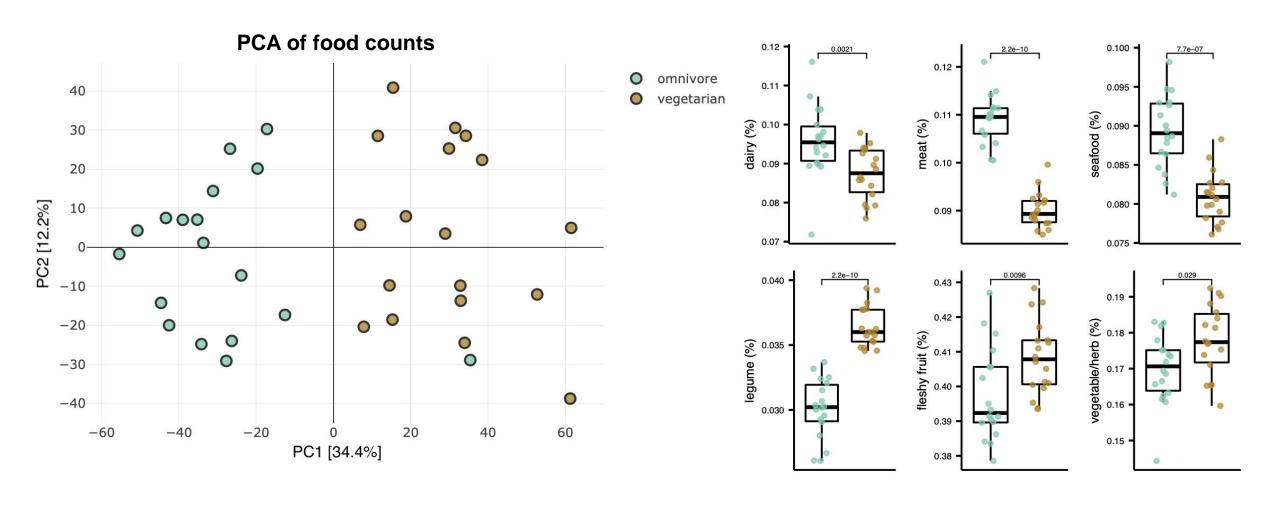
Pieter Dorrestein

Julia Gauglitz

Kiana West

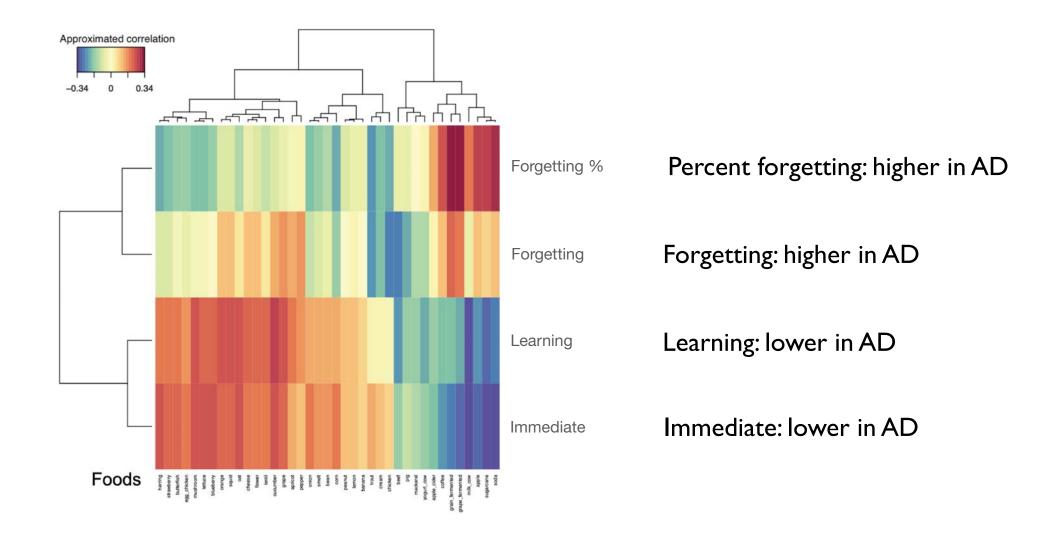
Wout Bittremieux

Diet readouts from fecal samples distinguish omnivores from vegetarians?



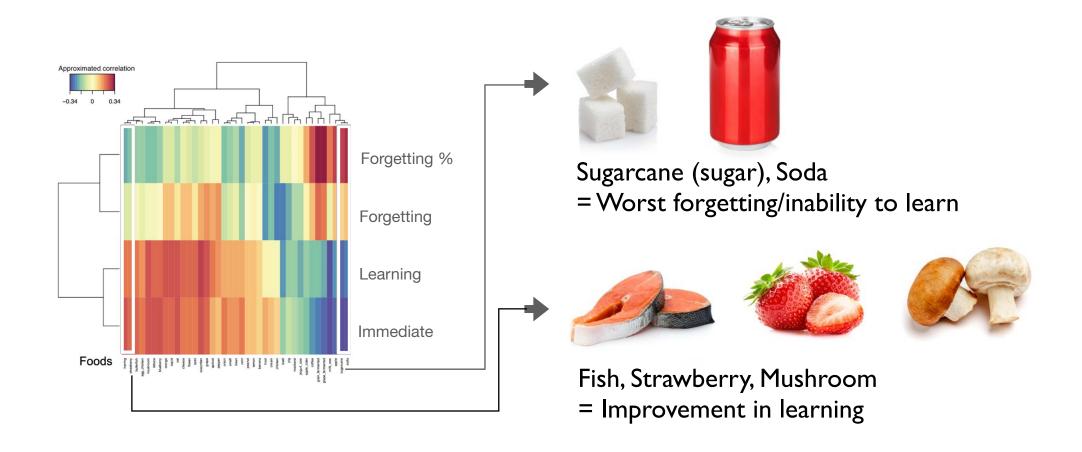
Foods that correlate with memory: Rey's Auditory Verbal Learning Test (RAVLT)

Scored based on: Number of words recalled from a list, read to the patient verbally



Foods that correlate with memory: Rey's Auditory Verbal Learning Test (RAVLT)

Scored based on: Number of words recalled from a list, read to the patient verbally



Correlation is not causation but enables hypothesis formulation with diet and disease severity

A diet soda a day might affect dementia risk, study Drinking Too Nuch Soda May Be Linked

Under the Soda May Believed to the Award Policy and Terms

On Alzheimer's RISHARCH TOUNDAME

RESHARCH TOUNDA

Study: Diet soda could increase chances of stroke,

The New York Times

Sugary Drinks Tied to Accelerated Brain Aging

DRINKING SODA TIED TO POOR BRAIN HEALTH AND ALZHEIMER'S RISK

Diet Sodas May Raise Risk of Dementia and

Stroke, Study Finds

People who drink diet sodas daily have three times the risk of stroke and dementia compared to people who drink one less than once a week.

Another downside to soda and chips: Your memory

A new study shows eating large amounts of ultra-processed for significantly accelerate cognitive decline.

TECHNOLOGY & INNOVATION - MARCH 9, 2017

Sugar does rot your brain after all: Scientists connect to Alzheimer's

High sugar intake may increase risk for Alzheimer's disease

The Atlantic

Adding just two-and-a-half teaspoons of sugar to your tea DAILY increases your risk of Alzheimer's by 54%, study finds

The Startling Link Between Sugar nature neuroscience and Alzheimer's

Sweet Trouble: How Sugar Intake Might Increase Alzheimer's Risk

Publish with us > Subscribe

nature > nature neuroscience > news & views > article

Published: 26 March 2015

Sugar and Alzheimer's disease: a bitter

Scientists reveal link between sugar intake and brain disease

Newsletters

The Atlantic

PMCID: PMC7103640 PMID: 32265686

Advanced

HEALTH

Study of the Day: People Who Eat More Fish Enjoy Improved Memory May 1;187(5):933-940. doi: 10.1093/aje/kwx330.

Fish Intake May Affect Brain Structure and Improve Cognitive Ability in Healthy People Published online 2020 Mar 20. doi: 10.3389/fnagi.2020.00076

Keisuke Kokubun, 1.º Kiyotaka Nemoto, 2 and Yoshinori Yamakawa 1,3,4,5,6 • Author information • Article notes • Copyright and License information

Fish Intake, Genetic Predisposition to Alzheimer Disease, and Decline in Global Cognition and Memory

in 5 Cohorts of Older Persons

Cécilia Samieri ¹, Martha-Clare Morris ², David A Bennett ³, Claudine Berr ⁴, Philippe Amouyel ⁵, Jean-François Dartigues ¹, Christophe Tzourio ¹, Daniel I Chasman ⁶, Francine Grodstein ⁷ ⁸

FISHER CENTER FOR ALZHEIMER'S

from research organizations

TWO SERVINGS OF FISH A WEEK MAY HELP PROTECT AGAINST DEMENTIA

Science News

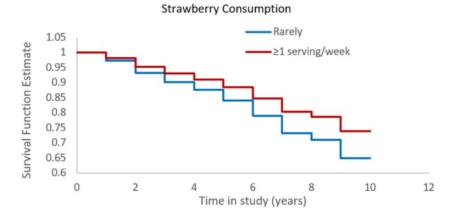
Eating fish reduces risk of Alzheimer's disease, study finds

The Relationship of Omega-3 Fatty Acids with Cognitive Decline: Evidence from Prospecti Supplementation, Dietary Intake, and Blog

Bao-Zhen Wei † • Lin Li † • Cheng-Wen Dong • Chen-Chen Tan • for the Alzheimer's Disease Neuroimaging Initiative • Wei Xu 🙏 🖂 🤄

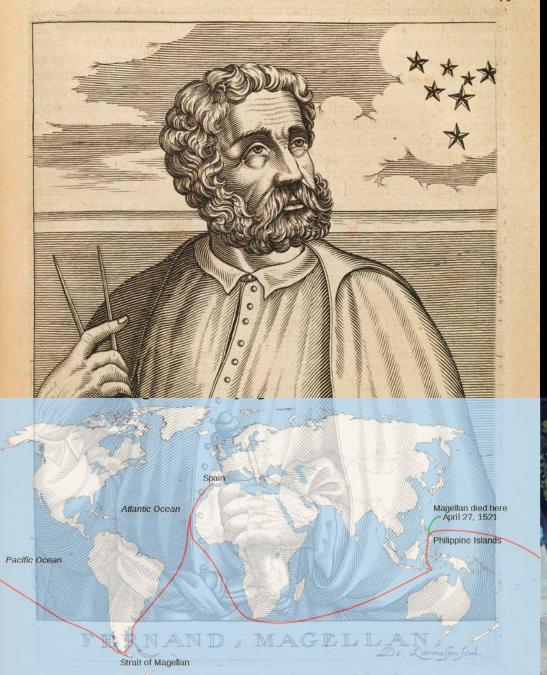
Published: April 04, 2023 • DOI: https://doi.org/10.1016/j.ajcnut.2023.

Association of Strawberries and Anthocyanidin Intake with Alzheimer's Dementia Risk

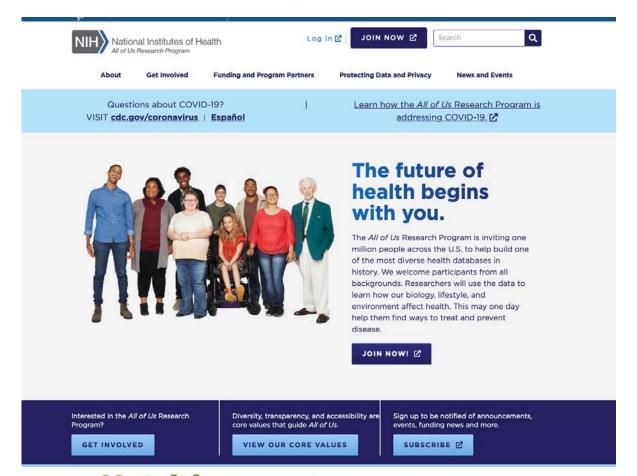


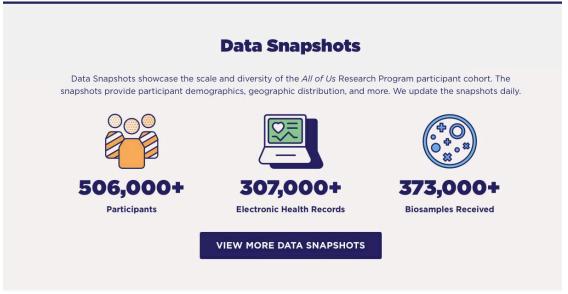
Strawberry consumption and Alzheimer's dementia risk (Cox-proportional hazards model adjusted for age, sex, education, physical activity, participation in cognitively stimulating activities, APOE-E4, other fruits intake, and total calories).

Prevention of Early Alzheimer's Disease by Erinacine A-Enriched *Hericium erinaceus* Mycelia Pilot Double-Blind Placebo-Controlled Study



What is the All of Us program?





https://allofus.nih.gov

Goals of NPH

- •To develop algorithms to predict individual responses to foods and dietary patterns
- To create a discovery science resource for the nutrition researcher community

What is the Nutrition for Precision Health Program?

NPH Overview

- ~\$170 million investment from the NIH Common Fund over 5 years
- NIH-wide effort
- 14 awardees from around the US
- First ancillary study to the All of Us Research Program
- First Common Fund program with primary and central focus on nutrition research
- First major initiative to advance the goals of the 2020-2030
 Strategic Plan for NIH Nutrition Research

NPH Study Design (Study launch date: Feb 15, 2023)

Module 1 – Detailed characterization of 10,000 people – food recall, body and performance measures, physiological, MICROBIOME, blood chemistry, etc. on normal diets.

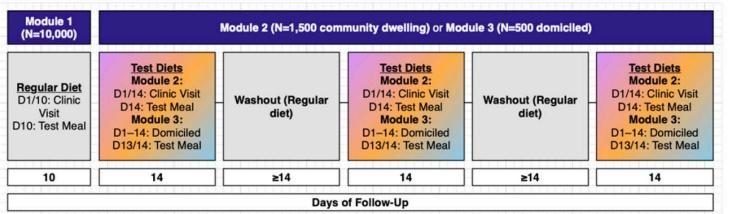
Module 2 -

Longitudinal analysis of 2500 people on 3 cross-over prescribed diets at home.

Module 3 –

Longitudinal analysis of 500 people on 3 crossover diets in domiciled clinical centers.

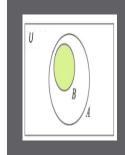
Figure 1. Participant Flow Diagram



Parent Model

To develop algorithms to predict individual responses to foods and dietary patterns

Precision Nutrition Machine Learning Framework



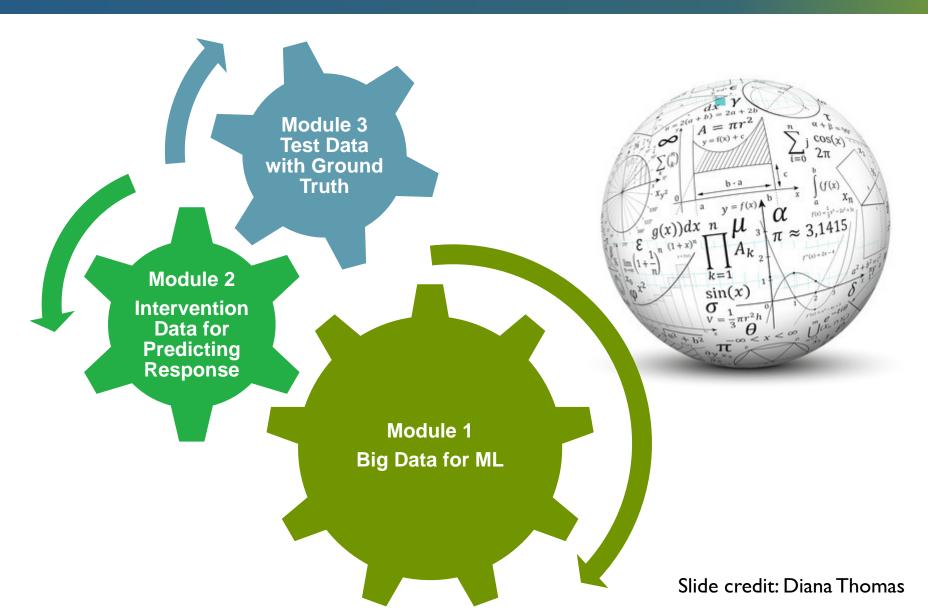
Minimal Input Algorithm

Uncover relationships between diet related diseases and individual metabolic phenotypes

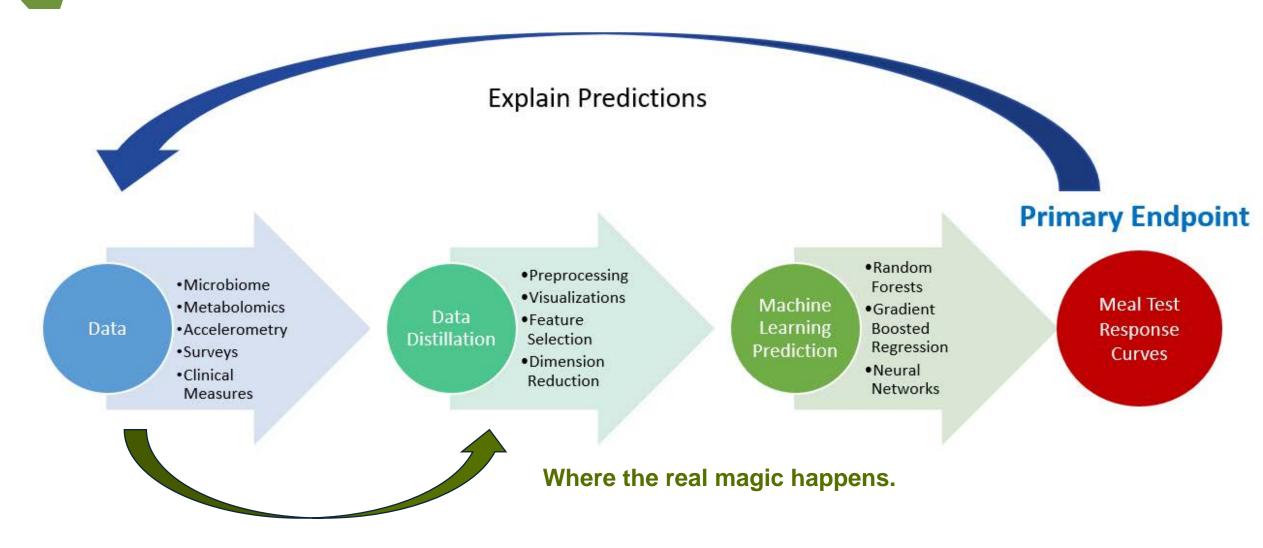
Identify drivers of diet- and nutrition-related health disparities

Why three modules?

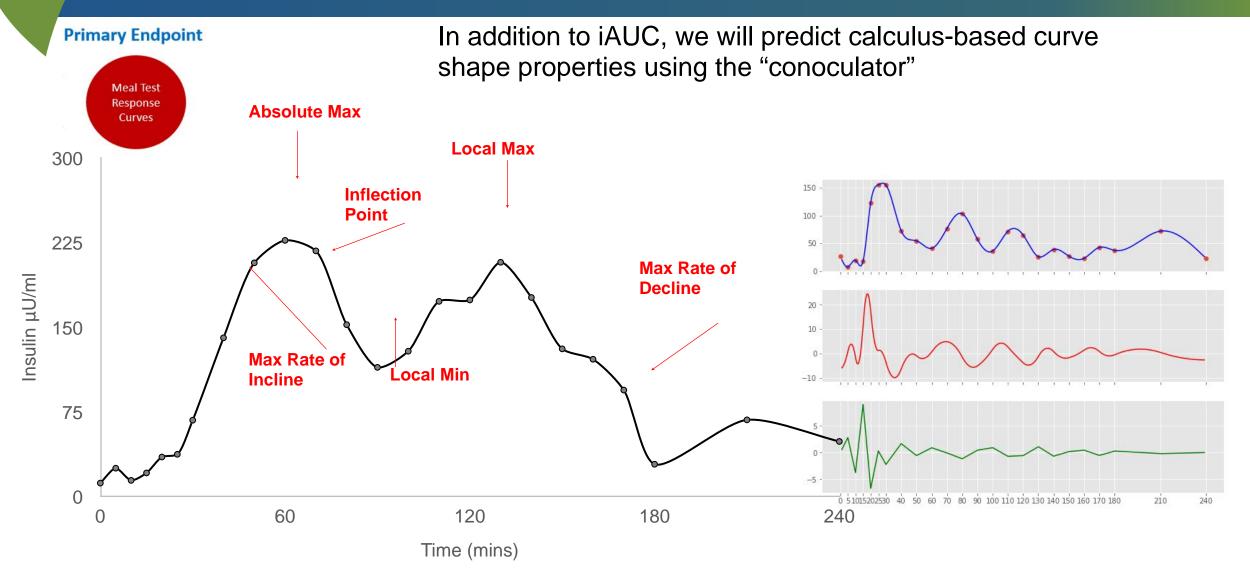
Number of Features	Sample Size		
Cluster Analysis			
50	3000-3500		
	omponents		
Ana	lysis		
50	250		
Neural N	letworks		
500	10,750		



A Discovery Science Algorithm



What are we predicting? Diet specific post-prandial analyte response curves



The future: engineer bacteria from an individual

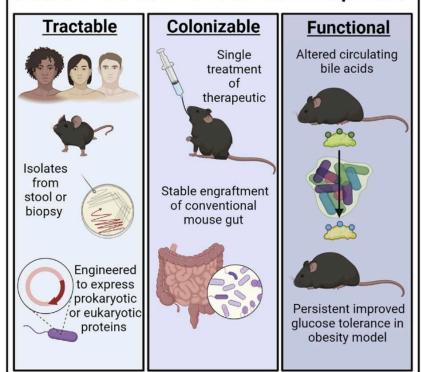
Resource

Cell

Intestinal transgene delivery with native *E. coli* chassis allows persistent physiological changes

Graphical abstract

Native E. coli as Live Bacterial Therapeutics



Authors

Baylee J. Russell, Steven D. Brown, Nicole Siguenza, ..., Alan Saghatelian, Rob Knight, Amir Zarrinpar

Correspondence

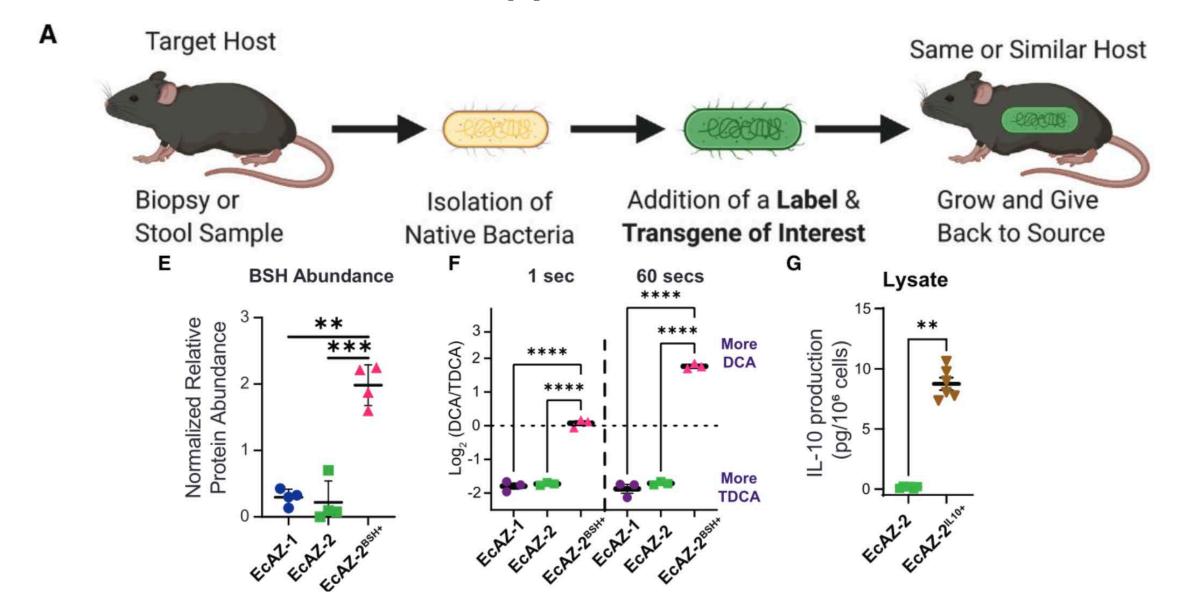
azarrinpar@ucsd.edu

In brief

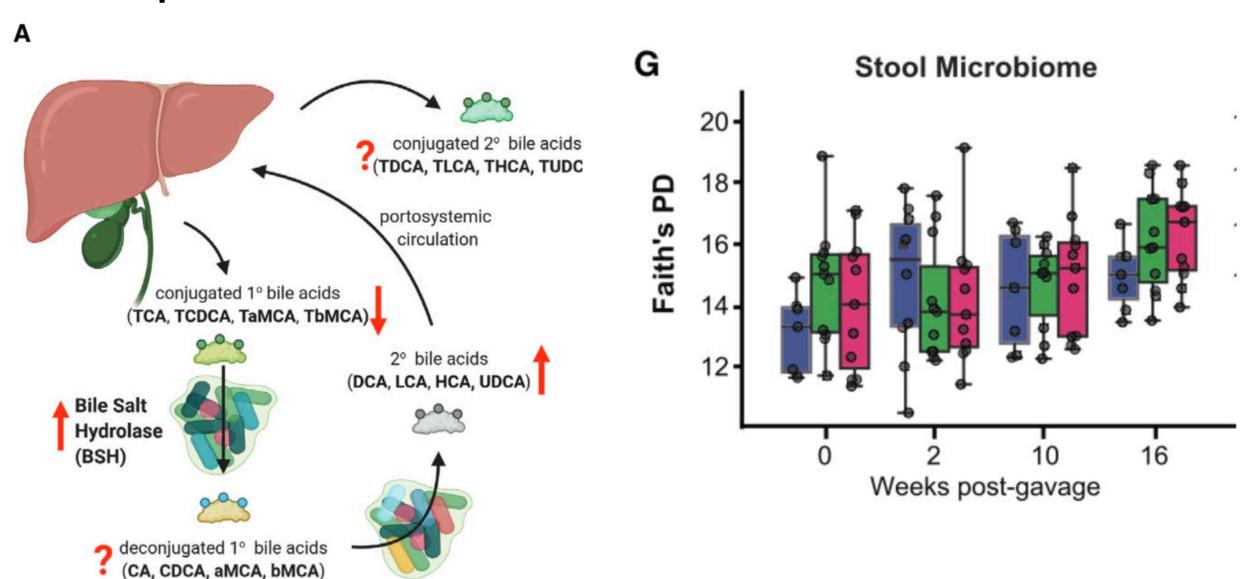
Native *E. coli* strains isolated from mouse stool are genetically engineered for long-term engraftment in the conventional mouse gut and enable long-term systemic effects on the host, such as improvements in insulin sensitivity in mouse models of type 2 diabetes.

Amir Zarrinpar

Like CART cell therapy but for microbes



Impacts metabolome but not microbiome



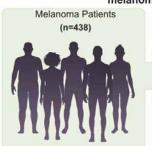
Microbiome-directed cancer interventions already saving lives

IMMUNOTHERAPY

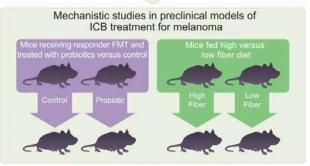
Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response

Christine N. Spencer¹+±, Jennifer L. McQuade²+, Vancheswaran Gopalakrishnan¹+§, John A. McCulloch³†, Marie Vetizou³†, Alexandria P. Cogdill^{1,4}†¶, Md A. Wadud Khan¹, Xiaotao Zhang⁵, Michael G. White¹, Christine B. Peterson⁶, Matthew C. Wong¹, Golnaz Morad¹, Theresa Rodgers², Jonathan H. Badger³, Beth A. Helmink¹#, Miles C. Andrews^{1,7}, Richard R. Rodrigues⁸, Andrey Morgun⁹, Young S. Kim¹⁰, Jason Roszik², Kristi L. Hoffman¹¹, Jiali Zheng⁵**, Yifan Zhou⁴, Yusra B. Medik⁴, Laura M. Kahn^{4,12}, Sarah Johnson¹, Courtney W. Hudgens¹³, Khalida Wani¹³, Pierre-Olivier Gaudreau¹⁴, Angela L. Harris¹⁵, Mohamed A. Jamal¹⁶, Erez N. Baruch¹⁷, Eva Perez-Guijarro¹⁸, Chi-Ping Day¹⁸, Glenn Merlino¹⁸, Barbara Pazdrak², Brooke S. Lochmann², Robert A. Szczepaniak-Sloane¹, Reetakshi Arora¹, Jaime Anderson², Chrystia M. Zobniw², Eliza Posada², Elizabeth Sirmans², Julie Simon¹, Lauren E. Haydu¹, Elizabeth M. Burton¹, Linghua Wang¹⁶, Minghao Dang¹⁶, Karen Clise-Dwyer^{19,20}, Sarah Schneider¹⁹, Thomas Chapman¹, Nana-Ama A. S. Anang⁴, Sheila Duncan¹, Joseph Toker^{21,22}, Jared C. Malke¹, Isabella C. Glitza², Rodabe N. Amaria², Hussein A. Tawbi², Adi Diab², Michael K. Wong², Sapna P. Patel², Scott E. Woodman², Michael A. Davies², Merrick I. Ross¹, Jeffrey E. Gershenwald¹, Jeffrey E. Lee¹, Patrick Hwu²++, Vanessa Jensen²³, Yardena Samuels²⁴, Ravid Straussman²⁴, Nadim J. Ajami¹⁶, Kelly C. Nelson²⁵, Luigi Nezi²⁶, Joseph F. Petrosino¹¹, P. Andrew Futreal¹⁶, Alexander J. Lazar^{12,16,27}, Jianhua Hu²⁸, Robert R. Jeng^{16,29}, Michael T. Tetzlaff³⁰, Yan Yan³¹, Wendy S. Garrett³², Curtis Huttenhower^{31,33,34,35}, Padmanee Sharma^{4,36,37}, Stephanie S. Watowich⁴, James P. Allison^{4,37}, Lorenzo Cohen³⁸±±, Giorgio Trinchieri³*±±, Carrie R. Daniel⁵*±±, Jennifer A. Wargo^{1,16}*±±

Overall schema for current study: to assess gut microbiota profiles, dietary habits and probiotic use with outcomes in melanoma patients



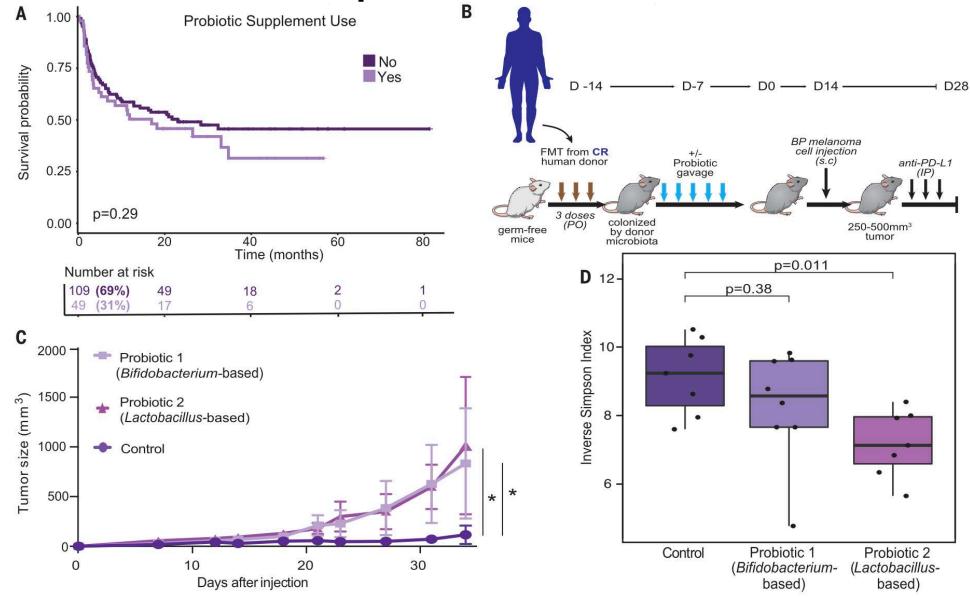




Assessment of response-associated taxa from current study in baseline and on-treatment fecal microbiome samples of responders from recently published trials of FMT for ICB refractory melanoma

Science 2021

...but caution about probiotics is warranted...



Key messages:

- Microbiome and diet are intimately linked
- Machine learning and AI methods have been critical for microbiome analysis for a decade, and many principles are applicable to other multivariate dataset e.g. food
- Ethics considerations around microbiome interventions, especially around bias, stratification, and safety, also likely apply to dietary intervention
- Lots of potential for benefit from improved communication

Funding: NIH, Gates, HHMI, CCFA, NIJ, DOE, DARPA, USDA, Keck, Sloan, Moore, Templeton, DOD, NSF, Wolfe Family, tens of thousands of members of the public

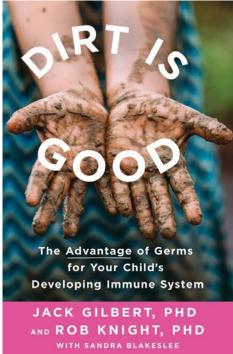
Thanks!

robknight@ucsd.edu

qiita.ucsd.edu

gnps.ucsd.edu





Quantitative Analysis of Metabolomics Data to Inform Precision Health

Susan McRitchie, MA/MS

Nutrition Research Institute University of North Carolina at Chapel Hill North Carolina Research Campus Kannapolis, NC

NIH Common Fund 1U24DK097193 (Sumner)
NIEHS U2CES026544 (Fennell)
NIEHS HHEAR Program U2CES030857 (Fennell, Du, Sumner)
NIH Common Fund U23CA268153 (Sumner)
National Science Foundation 1262416 (Du)

1

Disclosure

No Conflicts of Interest to Disclose

Outline

- Define Metabolomics and Metabolic Individuality
- Study Design and Data Capture
- Modeling Metabolomics Data
- Example Study
 - Placental Abruption and Nutritional Intervention Strategy
- Concept of the Exposome
- Example Studies
 - Opium Use Disorder, Exposure Reduction Strategies, and Nutrient Cocktails
 - Osteoarthritis, Exposure Reduction Strategies, and Nutrient Cocktails
- Public Databases, Public Data Analysis Resources, and Accessible Metabolomics Data

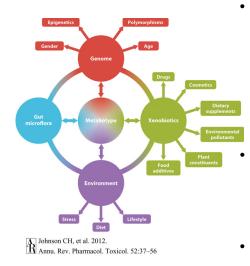
3

Metabolomics

- Metabolomics involves the study of the low molecular complement of cells, tissues, and biological fluids.
- An individual's metabotype is the signature, or biochemical fingerprint, of low molecular weight metabolites that are present at any time in tissues or biological fluids.
- The metabolomics signature is composed of endogenous metabolites that are present as a read out of the genome, as well as exogenous metabolites that are derived from external sources of exposures.

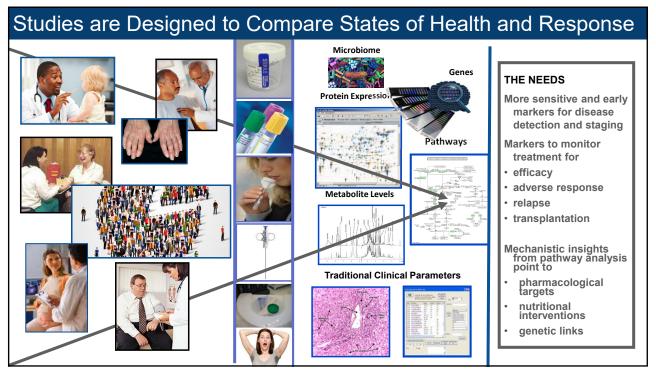
Δ

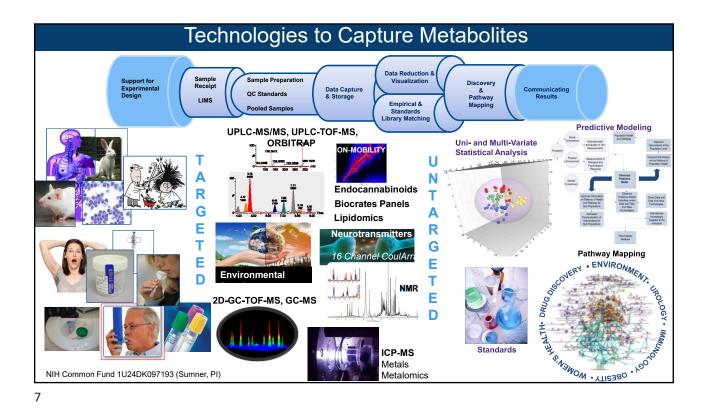
What Contributes to Metabolic Individuality



- Model system and human subject investigations have shown metabolomics signatures (the metabotype) to correlate with gender, race, age, ethnicity, polymorphism, stress, weight status, mental health status, blood pressure, many disease states, behaviors, gut microbes, diet, and physical activity.
- Each of these factors contribute to differences in levels of endogenous metabolites - which can also be considered as differences in our internal exposure.
- Many chemicals, drugs, medications, and nutrients perturb the endogenous metabotype, and many can be analyzed simultaneously with host and microbial metabolites using untargeted methods.

5



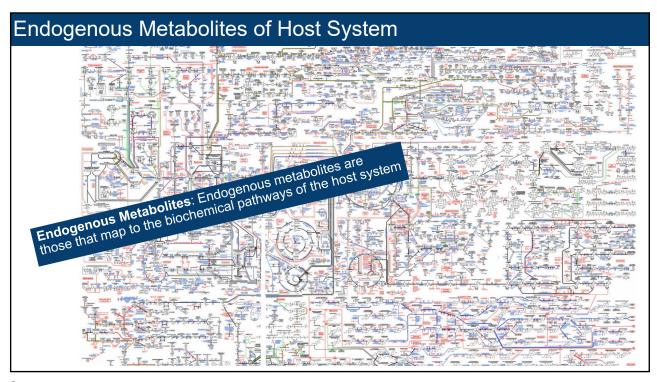


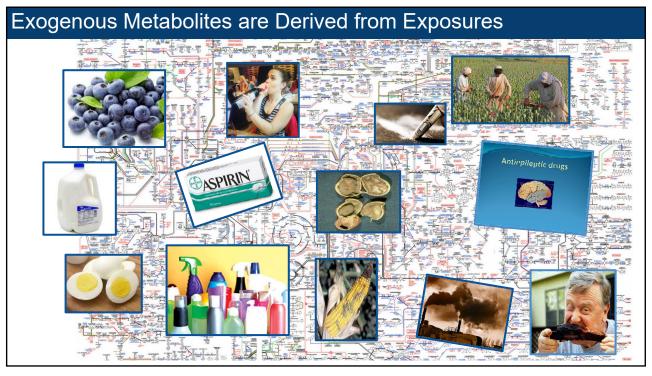
Machine Learning Methods for Analysis of Metabolomics Data

Many different machine learning methods are being used in metabolomics including:

- Principal Component Analysis
- Partial Least Squares Discriminant Analysis (PLS-DA)
- Orthogonal PLS-DA (OPLS-DA)
- O2PLS
- PLS and OPLS Regression
- Principal Component Regression
- Hierarchical Clustering
- K-Means Clustering
- Support Vector Machines
- Self-Organizing Maps
- Random Forest
- Random Survival Analysis

- Logistic and Linear Regression
- Penalized Regression
 - LASSO and Elastic Net
- Neural Networks
- Weighted Quantile Sum Regression
- Probit Extension of Bayesian Kernal Machine Regression
- Deep Learning Methods
 - Convolutional Neural Networks
 - Deep Neural Networks/Deep Neural Networks-Mean Decrease Accuracy
- Ensemble machine learning ranking procedures to identify important metabolites across multiple models





Logistic Regression Modeling in a Metabolomics Study of Placental Abruption

- Placental abruption (PA) is an ischemic placental disorder that results from premature separation of the placenta before delivery and is reported to occur in 1% of all pregnancies.
- PA has severe health consequence to the mother (e.g., maternal hemorrhagic shock) and neonate, including preterm birth and death.
 - · There is no universal accepted diagnosis for PA.
- The earliest, but non-specific, symptoms include vaginal bleeding or abdominal pain, and appear for some women in the 3rd trimester of pregnancy.
- For this study, serum samples that had been collected from women at approximately 16
 weeks of gestation were selected from a cohort of women who delivered at the Swedish
 Medical Center, WA.
- Half of the samples selected from the biorepository were from women who had PA
 (sonographic diagnosis) in the third trimester, and half of the samples were from women who
 had a normal vaginal delivery.
- Goal of our collaboration with Michelle Williams and Bizu Gelaye at Harvard University was to determine biomarkers from the 2nd trimester serum that predicts PA in the 3rd trimester.

Gelaye et al., 2016. Maternal Early Pregnancy Serum Metabolomics Profile and Abnormal Vaginal Bleeding as Predictors of Placental Abruption: PlosOne 11(6).

11

Metabolites were Significantly Associated with PA (p<0.05)

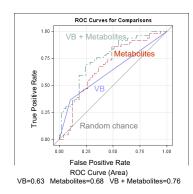
Biocrates AbsoluteIDQ® p180 Kit for Quantitative Targeted Analysis of 188 Host Metabolites

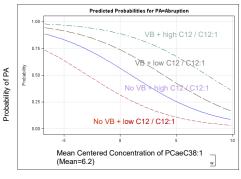
Classification	Metabolite Abbreviation	Metabolite	p-value
Acylcarnitines	C16-OH	Hydroxyhexadecanoyl-L-carnitine	0.021
Amino Acids	Arg	Arginine	0.029
Biogenic Amines	Histamine	Histamine	0.034
Custom Ratios	C12 / C12:1	Dodecanoyl-L-carnitine/Dodecenoyl-L-carnitine	0.045
Glycerophospholipids	PC aa C36:0	Phosphatidylcholine diacyl C 36:0	0.040
	PC aa C38:0	Phosphatidylcholine diacyl C 38:0	0.048
	PC aa C40:1	Phosphatidylcholine diacyl C 40:1	0.038
	PC ae C38:1	Phosphatidylcholine acyl-alkyl C 38:1	0.021
	lysoPC a C18:1	lysoPhosphatidylcholine acyl C18:1	0.040

Gelaye et al., 2016. Maternal Early Pregnancy Serum Metabolomics Profile and Abnormal Vaginal Bleeding as Predictors of Placental Abruption: PlosOne 11(6).

Logistic regression was used to model the probability of PA in the 3rd trimester based on serum biomarkers in 2nd trimester





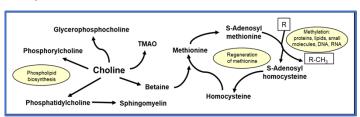


Gelaye et al., 2016. Maternal Early Pregnancy Serum Metabolomics Profile and Abnormal Vaginal Bleeding as Predictors of Placental Abruption: PlosOne 11(6).

13

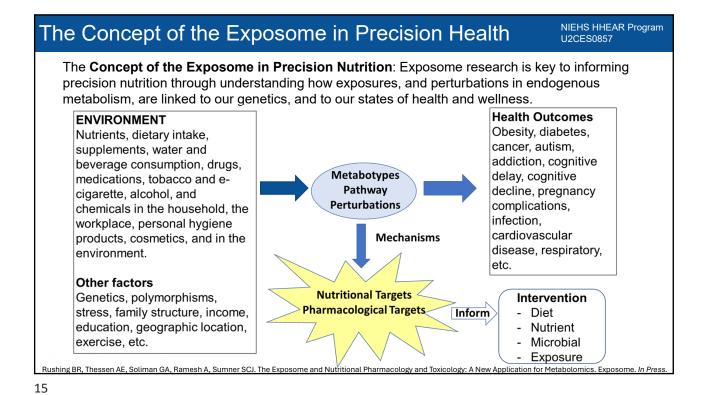
Potential Role of Choline in PA

- · The probability of PA was increased with an increase in acylcarnitines and a decrease in phosphatidylcholine
- Low levels of choline have been associated with cognition and memory disorders, mood disorders, liver disease, pregnancy complications, fertility, and eye disease.
- While humans and other animals can synthesize choline, the amount produced is often not sufficient. Thus, choline must be obtained from the diet in the form of choline or choline phospholipids. Many factors influence the amount of dietary choline that individuals need, including several common genetic polymorphisms that have a substantial impact on choline



 It is possible that PA could be mitigated by increased choline early in pregnancy or for women of childbearing age.

Gelaye et al., 2016. Maternal Early Pregnancy Serum Metabolomics Profile and Abnormal Vaginal Bleeding as Predictors of Placental Abruption: PlosOne 11(6).



UHPLC-Q-Exactive HFx Orbitrap Mass Spectrometry

 10,000- 40,000 features: urine, stool, plasma/serum, seminal plasma, blood spots, sweat, hair, cells, and tissue extracts

ECHO Secretaria separate para la constanti de la constanti de

In-house Physical Standards Library - over 2,500 compounds

 Metabolites of the host system, microbial metabolism, exposures (e.g., nicotine, illicit drugs, environmentally relevant compounds), treatments (e.g., medications, supplements, natural products), and dietary intake (e.g., nutrients, vitamins and vitamin-like compounds, components of foods, food stabilizers, and polyphenols).

Progenesis Software

- · Peak Picking and Deconvolution
- · Match Peaks to the In-house Physical Standards Library
- Match Peaks to Public Databases (e.g., NIST, Metlin; HMDB)

Computational Exposome Framework - ADAP

- Pre-processing & extraction of analyte information via ADAP-BIG
- Statistical and artificial intelligence analysis ADAP-ML
- Annotation of peaks via ADAP- KDB:
 - Metabolomics Workbench and Public Database
- · Prediction of known unknown and unknown unknown peaks

Timothy Fennell RTI, Drug & Chemical Metabolism

Range of Analytes Detected (>10,000 signals)

- Uses ADAP software for preprocessing large scale metabolomics data.
- Rapid algorithms to match signals to the inhouse RT, Exact Mass, MS/MS library.
- Rapid Algorithms to match signals to 1.7M public
- ADAP is launched at metabolomics workbench.org acids, lipids, steroids, bile acids, hormones

Host and Microbial Metabolism

> 1,200 metabolites

Amino acids, carboxylic acids, biogenic amines, BCAA, polyamines, bases, nucleosides and nucleotides, carnitines. sugars, mono- and disaccharides, fatty

FOOD Metabolome: 50 Sub-Classes

- > 500 metabolites
- Phytoestrogens
- Aromatic ketones
- Benzoic acids
- Elagic acids
- Flavonoids
- Caffeoylquinic acids Catecholamines
- Coumarins

Hippuric acids Hydroxytoluenes Phenylamines Stilbenes

Urolithins Valerolactones Xanthonoids

- Drugs and Medications > 50
- Essential nutrients = 100s
 - · Choline Metabolism
 - Folate Metabolism
 - · Vitamins, and vitamin-like compounds
 - Carnitines and acylcarnitines
 - · Amino Acids
 - · Omega 3 and Omega 6 Fatty Acids

ENVIRONMENTAL METABOLITES > 550

- PFAS
- Phenols
- Parabens
- Phthalates
- Tobacco Related
- VOCs
- · PBDEs, PCBs

Sumner Lab, UNC-CH, NRI

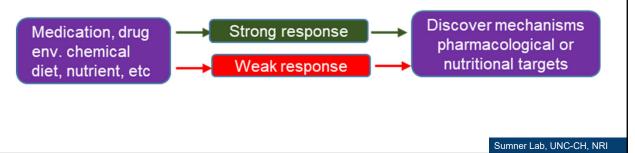
17

Healthy Biochemistry

- The simultaneous detection of metabolites is crucial because our healthy biochemistry depends on our essential nutrients which:
 - serve as cofactors for 100s of reactions of our biochemical pathways
 - are involved in transcription
 - serve as antioxidants and
 - are involved in many specialized functions.
- Different exposures including medications, alcohol, tobacco, supplements, environmentally relevant chemicals as well as your diet:
 - can affect the speed of your metabolism
 - and how your body absorbs or transports nutrients and vitamins.

Responder vs Non-Responder

- Precision Medicine: some Individuals respond well to a drug treatment, while others do not have a positive response.
- Precision Nutrition: Individuals have different nutrient requirements, or different responses to nutrient intake.
- Precision Environmental Health: Individuals have difference response to exposures.



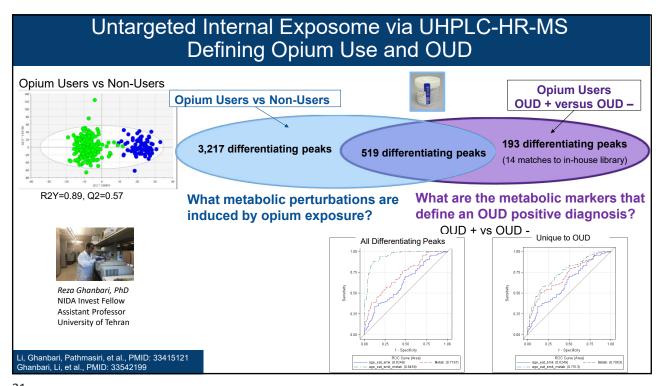
19

Objective Biomarkers and Nutritional Intervention Opium Use Disorder (OUD)

- *Current Diagnosis*: Diagnosis of OUD is obtained through interview or questionnaires to determine if the patients meet the DSM-5 qualitative criteria.
 - Criteria include impaired control, social impairment, risky use, tolerance, and withdrawal.
 - Having at least two of these criteria meets the diagnoses of OUD with the number of criteria met as an indicator of the severity of the OUD.
- The Need: There is a need for objective biological markers that define OUD, and that provide insights into mechanisms for the development of intervention strategies.
 - Identification of gene candidates
 - Nutrients to mitigate against addiction
 - Chemical exposures

Li, Ghanbari, Pathmasiri, et al., PMID: 33415121 Ghanbari, Li, et al., PMID: 33542199

 Collaboration between the Sumner Lab (UNC-CH NRI), Dr. Reza Malekzadeh (Tehran University), Dr. Arash Etemadi (NCI), and Dr. Jonathan Pollock (NIDA)

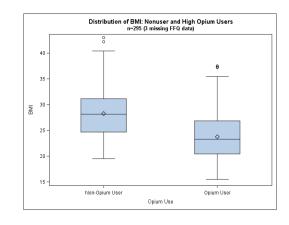


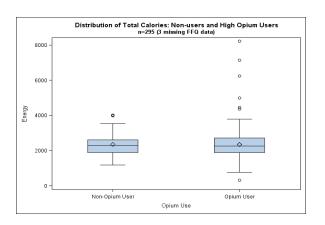
21

Opium Users vs Nonusers Li, Ghanbari, Pathmasiri, et al., PMID: 33415121 Ghanbari, Li, et al., PMID: 33542199 **Opium Metabolites Tobacco Related Endogenous** Codeine Anatabine Morphine Perturbations in Cotinine 3- and 6- glucuronides Neurotransmitter metabolism Hydroxycotinine (p-value as low as E-40) Krebs cycle metabolism **Nicotine** One carbon metabolism Nicotine-N-oxide Glucogenesis (p-value as low as E-15) Lipid metabolism, and expected based on subject Vitamin and Vitamin-Like characteristics Compounds **Environmentally Relevant Metabolites** Phthalates that could be derived from plastics/tubing in opium use (p-value as low as E-8)

- Phthalates that could be derived from plastics/tubing in opium use (p-value as low as E-8)
 Implicated in obesity, diabetes, learning, cognition
- Metabolites that are known to be derived from parent compounds (e.g., acrylamide) that are formed in curing and combustion of plants (p-value as low as E-21)
 - Cancer rates are higher in this cohort of opium users and may be due to the high levels
 of toxins that can be produced on curing or combustion of plant matter.

BMI and Total Calories of Opium Users and Non-Users





Sumner Lab Unpublished Results

IUNC

NUTRITION RESEA

23

Perturbations in Neurotransmitters

Opium User vs Non-Opium User

- A general metabolic disruption in the neurotransmitter pathway. e.g, tyrosine, tryptophan, serotonin, kynurenine, phenylalanine, etc.
- · Perturbations in B2 and B6

Tyrosine
$$\xrightarrow{B6}$$
 L-Dopa $\xrightarrow{B6}$ Dopamine

Tryptophan $\xrightarrow{B6}$ 5-HTP $\xrightarrow{B6}$ Serotonin

 \downarrow B6

Kynurenine $\xrightarrow{B2}$ 3-hydroxy Kynurenine

OUD Positive Opium User vs OUD Negative Opium User

 Four metabolites in the neurotransmitter pathway were significantly different between opium users diagnosed as OUD positive and opium users diagnosed as OUD negative.

> Li, Ghanbari, Pathmasiri, et al., PMID: 33415121 Ghanbari, Li, et al., PMID: 33542199

Perturbations in Sugar Metabolism and Krebs Cycle

Opium User vs Non-Opium User

- General disruption in sugar e.g., inositol, fucose, sucrose, manose, glucose
- General disruption in Krebs cycle e.g., citrate, cis-aconitate, succinate, malate

OUD Positive Opium User vs OUD Negative Opium User

- Several metabolites in sugar and Krebs cycle metabolism differed between opium users diagnosed as OUD positive and opium users diagnosed as OUD negative
 - malate, glucose, fucose, sucrose, manose

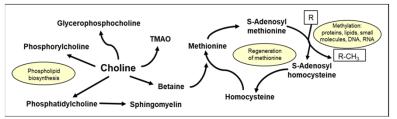
Li, Ghanbari, Pathmasiri, et al., PMID: 33415121 Ghanbari, Li, et al., PMID: 33542199

25

Perturbations in One Carbon Metabolism

Opium User vs Non-Opium User

 General disruption in one carbon metabolism – e.g., choline, phosphorylcholine, betaine, methionine, threonine, s-adenosyl methionine, s-adenosyl homocysteine, dimethyl glycine, taurine



- Low levels of choline are associated with cognition and memory disorders, mood disorders, liver disease, pregnancy complications, and eye disease.
- Choline is metabolism to acetyl-CoA, a precursor to neurotransmitters.

OUD Positive Opium User vs OUD Negative Opium User

 Phosphorylcholine, serine, and sarcosine decreased in OUD positive vs OUD negative Opium Users

Li, Ghanbari, Pathmasiri, et al., PMID: 33415121. Ghanbari, Li, et al., PMID: 33542199.

Opium Use and OUD

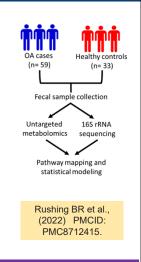
- Opium Users have significant metabolic perturbations compared with nonusers.
 - A nutrient cocktail composed of vitamins, vitamin-like compounds, fatty acids, sugars, etc. may find use in mitigating against addiction.
 - A next step is to test a combination cocktail to mitigate against addiction.
- Metabolites were identified or annotated that are unique to an OUD positive diagnosis.
 - Validation of a metabolite signature may find clinical use to as an objective biological maker, since current diagnosis relies on the DSM-5 questionnaire.
- Exposures to environmentally relevant compounds such as phthalates or metabolites derived from plant combustion may exacerbate the impact opium use, and be related to the high incidences of cancers, CVD, and diabetes in this cohort.

Li, Ghanbari, Pathmasiri, et al., PMID: 33415121 Ghanbari, Li, et al., PMID: 33542199.

27

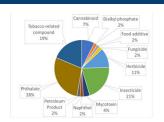
Metabolomics, Osteoarthritis (OA), and Nutrient Intervention

- Sumner Lab collaboration with UNCs Dr. Richard Loeser and Dr. Amanda Nelson
- Conducted 16SrRNA sequencing and UHPLC-HR-MS Metabolomics
- Increased excretion of products of proteolysis (small peptides and indoles) in OA vs non-OA – role for intestinal permeability.
- Perturbations in leukotriene metabolism related to precursor poly-unsaturated fatty acids – like OMEGA 3
- Perturbations in fatty acid synthesis, and in tryptophan metabolism
- Decreased **SCFA**s (propionate) in OA vs non-OA
 - Propionate is produced by colon microbes (e.g., clostridia)
 - Related to the amount of dietary fiber
 - · Lower clostridia was associated with OA in our microbiome data.
 - No differences in gut microbiota when analyzed without the metabolomics data (Loeser et al, (2022) PMCID: PMC8795472)
 - · SCFAs regulate energy utilization (FA metabolism) and inflammation
 - · SCFAs are used to mitigate inflammation
- Decrease in N-Acetyl-D-glucosamine, a natural compound in cartilage
 - Used as a supplement for joint pain, inflammation, and Inflammatory bowel disease.
 Some studies have shown that this compound protects the lining of the stomach and gut.

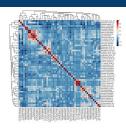


OMEGA-3/OMEGA-6 Fiber/Protein Glucosamine, SCFA

Environmental Relevance and OA



53 environmental compounds, in these stool samples, across 11 classes, matched to a physical standards library.



Correlation analysis of metabolites showed connectivity between environmentally relevant metabolites, inflammation markers, and endogenous and microbial metabolism with gut microbes. As an example: a peak that matches to an insecticide correlated with

- Herbicide indicating potential co-exposure
- Polyphenolic compound hydroxycinnamic acid abundant in fruits and vegetables potential source of exposure
- Gut microbes from a phylum which produces SCFAs consistent with observed decrease in SCFAs
- Neurotransmitter related metabolites products of tryptophan formed in the gut
- Several metabolites associated with mitochondrial fatty acid beta oxidation

Sumner Lab Unpublished Results

29

Accessing Metabolomics Data

- Metabolomics Workbench
 - NIH-Funded Data Repository for Metabolomics Data (Untargeted and Targeted Data)
 - · Includes processed data and raw spectral data
 - Over 2,000 studies are publicly available
 - https://www.metabolomicsworkbench.org/
- Example Large-Scale NIH Consortia that are Including Metabolomics Data
 - Nutrition for Precision Health (NPH)
 - All of Us Workbench: https://www.researchallofus.org/data-tools/workbench/
 - Molecular Transducers of Physical Activity Consortium (MoTrPAC)
 - MoTrPAC Data Hub: https://motrpac-data.org/
 - Human Health Exposure Analysis Resource (HHEAR)
 - HHEAR Data Center: https://hhearprogram.org/data-center
 - Environmental Influences on Child Health Outcomes (ECHO)
 - ECHO Data Center: https://publichealth.jhu.edu/echo
 - Trans-Omics for Precision Medicine (TOPMed)
 - Data Access: https://topmed.nhlbi.nih.gov/topmed-data-access-scientific-community

Public Databases for Metabolite Annotations

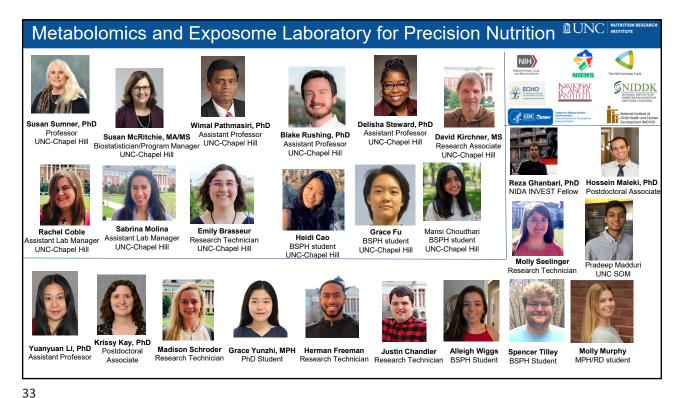
Public databases for metabolite annotation include:

- Human Metabolome Database (HMDB)
 - · Annotations for over 220,000 metabolites
 - https://hmdb.ca/
- FoodDB
 - https://foodb.ca/
- Phenol-Explorer
 - Annotations for over 500 polyphenols
 - http://phenol-explorer.eu/
- PhytoHub
 - · Includes in silico predicted metabolites
 - https://phytohub.eu/
- Metabolomics Workbench
 - https://www.metabolomicsworkbench.org/

31

Publicly Available Data Analysis Resources

- Examples of publicly available data analysis resources:
- MetaboAnalyst (https://www.metaboanalyst.ca/) is accessible through a web interface or an R package and includes a variety of tools such as:
 - · Statistical and machine learning algorithms
 - Pathway analysis
 - Peaks to Pathways module utilizes the Mummichog algorithm which incorporates machine learning and utilizes the retention time and mass of the peak rather than the metabolite name
 - · Integration of gene and metabolite data through joint pathway analysis
- Metabolomics Workbench (https://www.metabolomicsworkbench.org) data analysis tools can be accessed from Workbench or through Jupyter Notebooks
 - Analysis of data uploaded to Metabolomics Workbench can be analyzed within Workbench and does not require downloading the data
 - Data analysis tools include statistical and machine learning algorithms and pathway analysis



22

Healthy Biochemistry

- Vitamins assist in hundreds of reactions of biochemical pathways of host metabolism
 - Vitamins B₁ (thiamin, TPP), B₂ (riboflavin, FAD), B₃ (niacin, NAD⁺), and B₅ (pantothenic acid, CoA) are involved in the conversion of pyruvate to acetyl-CoA, which feeds the Krebs cycle.
 - B2 Riboflavin and B3 Niacin work together in the Electron Transport Chain to produce ATP.
 - Vitamin B5, or pantothenic acid, IS part of the structure of CoA, needed to make acetyl-CoA, succinyl-CoA, and fatty acyl-CoA and is needed for very important pathways.
 - **B2** Riboflavin is needed for **beta-oxidation of fatty acids**, and deamination of AAs.
 - B7 Biotin is involved in conversion of pyruvate to oxaloacetate, in fatty acid elongation, in production of acetoacetate, and the breakdown of AAs.
 - B6 Pyridoxine/al/amine are involved in heme synthesis, glucogenesis, and lipid metabolism.
 - B9 Folate accepts and donates one carbon group (methylation), and is involved in synthesis of purines/pyrimidine, and conversion of homocysteine to methionine.
 - B12 Cobalamin is a cofactor for methionine synthase and L-methylmalonyl-CoA mutase.
 - Vitamin C is involved in recycling oxidized vitamin E, reducing nonheme iron (Fe³+ → Fe²+) in plant foods (improves absorption in the small intestine), and converting Vitamin D₃ to its active form, calcitriol.
- Vitamins are important in transcription (Vitamin A, D), as antioxidants (Vitamin E, C), and formation of Gla domains (Vitamin K) of proteins.
- Fe and minerals: Ca, Zn, Na/K, Mg, etc are co-factors for 100s of reactions of host metabolism, and involved in hormonal regulation, specialized membrane pumps, muscle relaxation and contraction, bone structure and formation.

Sumner Lab, UNC-CH, NRI

Absorption, Metabolisms, Disposition, and Transport

- Medications or other exposures can speed up or slow down the metabolism of nutrients/vitamins or block their transport.
 - e.g, Orlistat is an anti-obesity drug that inhibits gastric and pancreatic lipases and can interfere with digestion of TAGs.
- Aging decreases acidity in stomach: ~ 30% of older adults have atrophic gastritis that can interfere with absorption of some nutrients.
- · Inflammation in ileum area
 - IBD, celiac or Crohn's disease or dietary intolerances
- Surgery on stomach, removal of intestinal sections, or removal of gall bladder.
- · Liver injury
 - e.g., bile acids are synthesized in the liver and concentrated in the gallbladder. Bile is needed to emulsify lipids and provides access for lipases.
- Exposures (e.g., alcohol, tobacco, cannabis, illicit drugs, supplements, natural products, environmentally relevant chemicals, food additives and impurities).
- Dietary constituents (e.g., the amount and type of fat can increase or decrease intestinal Ca absorption).