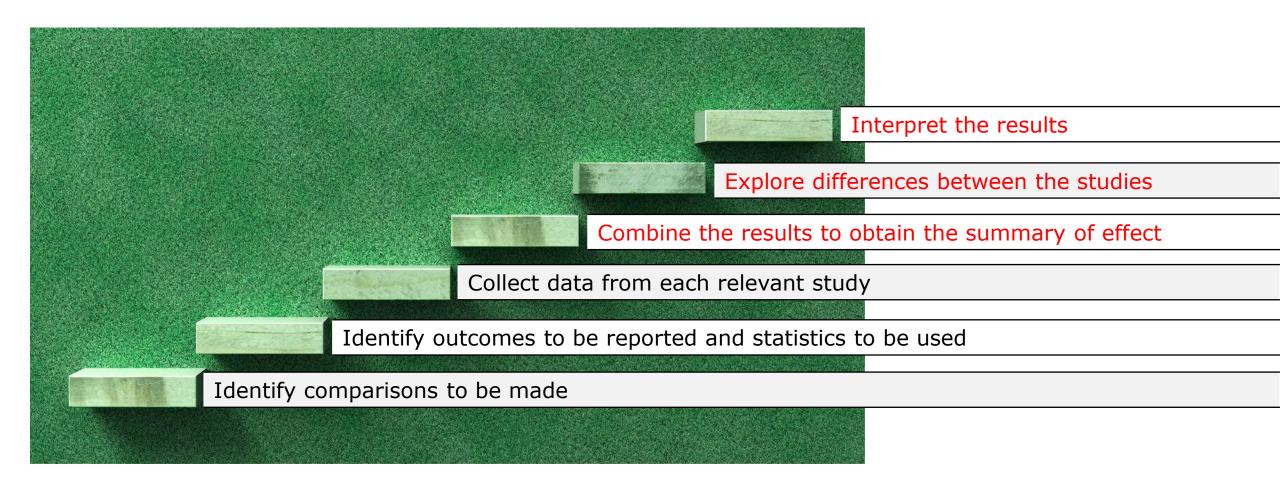
Best practices of meta-analysis in nutrition research:
A case study of food marketing evidence synthesis to
inform policy guidelines

Part 4: Interpreting the results of meta-analysis, including statistical heterogeneity

Use of Meta-Analyses in Nutrition Research and Policy: Best Practices of Conducting Meta-Analysis The Second in the Series


September 25, 2022

Interpreting Results of a Meta-Analysis

George Wells

Steps in a Meta-Analysis

Presentation of Results – A Forest Plot

A forest plot is a graphical display of estimated results from a number of scientific studies addressing the same question, along with the overall results

Cochrane Database of Systematic Reviews

Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women (Review)

Brand A, Visser ME, Schoonees A, Naude CE

Brand A, Visser ME, Schoonees A, Naude CE.

Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women. *Cochrane Database of Systematic Reviews* 2022, Issue 8. Art. No.: CD015207.

DOI: 10.1002/14651858.CD015207.

www.cochranelibrary.com

Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women (Review)

WILEY

Copyright © 2022 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

Objectives

To assess the effects and safety of replacing salt with low-sodium salt substitutes (LSSS) to reduce sodium intake on cardiovascular health in adults, pregnant women and children.

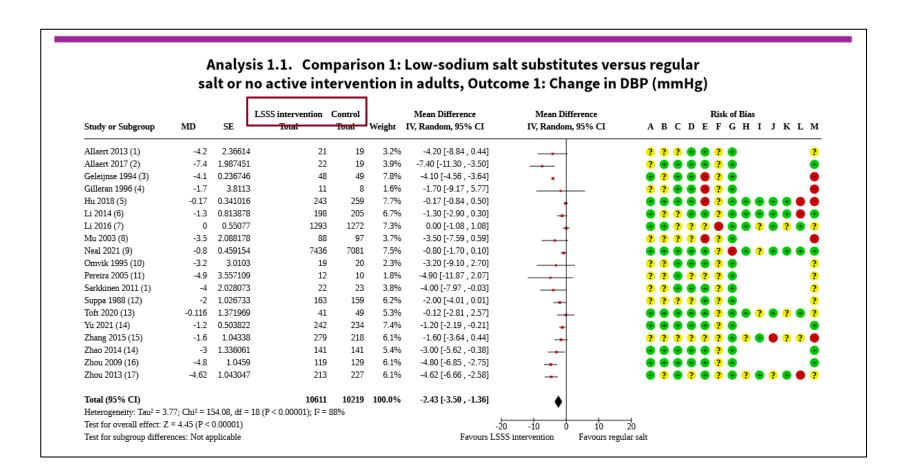
PICO

Types of study designs

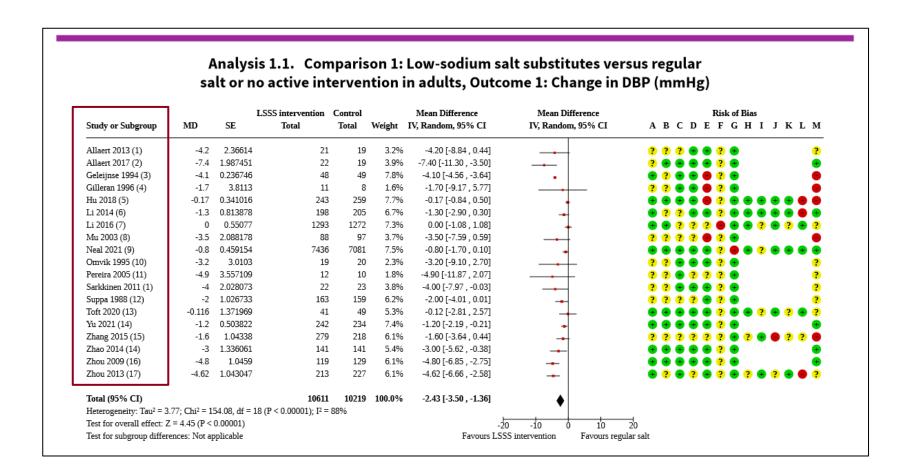
- RCTs (participants randomized) [16]
- Cross-over RCTs (data available for 1st phase) [1]
- Cluster RCTs (at least 2 clusters per group) [10]
- Prospective cohort studies [0]

Outcome – Change in Diastolic Blood Pressure

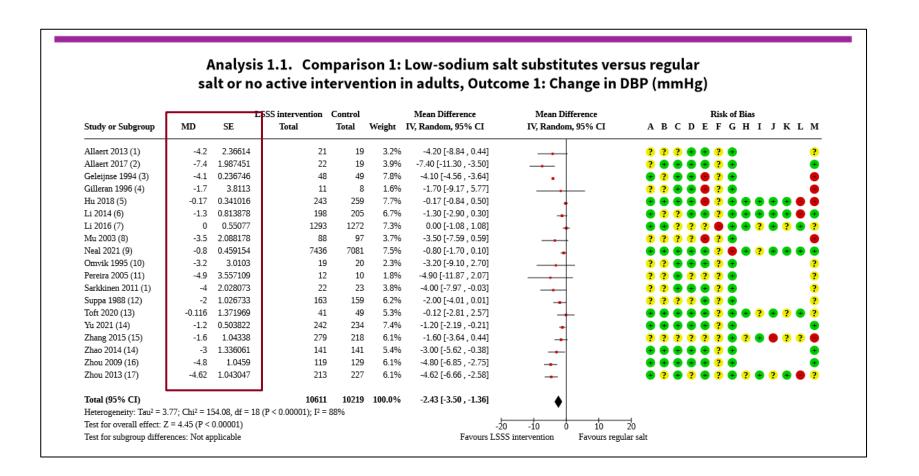
Trusted evidence. Informed decisions. Better health.

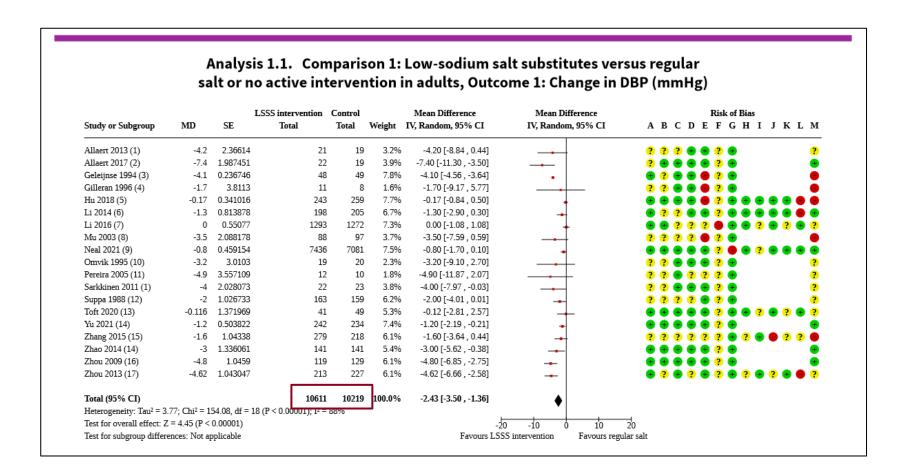

Cochrane Database of Systematic Reviews

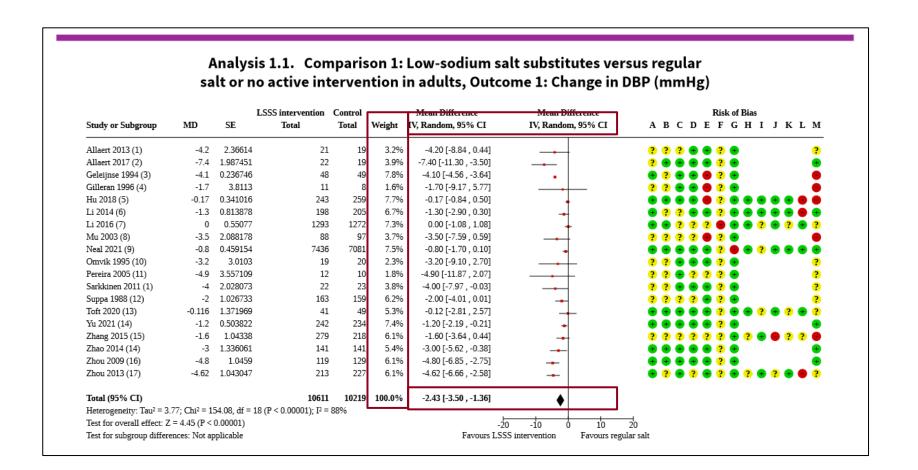
Analysis 1.1. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 1: Change in DBP (mmHg)


		I	SSS intervention	Control		Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	MD	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% C	A B C D E F G H I J K L M
Allaert 2013 (1)	-4.2	2.36614	21	19	3.2%	-4.20 [-8.84 , 0.44]	-	2 2 2 0 0 2 0 2
Allaert 2017 (2)	-7.4	1.987451	22	19	3.9%	-7.40 [-11.30 , -3.50]		? • • • • ? • • •
Geleijnse 1994 (3)	-4.1	0.236746	48	49	7.8%	-4.10 [-4.56 , -3.64]		● ? ● ● ? ●
Gilleran 1996 (4)	-1.7	3.8113	11	8	1.6%	-1.70 [-9.17, 5.77]		2 2 • • • 2 •
Hu 2018 (5)	-0.17	0.341016	243	259	7.7%	-0.17 [-0.84, 0.50]		
Li 2014 (6)	-1.3	0.813878	198	205	6.7%	-1.30 [-2.90, 0.30]	-	
Li 2016 (7)	0	0.55077	1293	1272	7.3%	0.00 [-1.08 , 1.08]	+	$\bullet \bullet ? ? ? \bullet \bullet \bullet ? \bullet ? \bullet ?$
Mu 2003 (8)	-3.5	2.088178	88	97	3.7%	-3.50 [-7.59, 0.59]	-	2 2 2 2 8 2 8
Neal 2021 (9)	-0.8	0.459154	7436	7081	7.5%	-0.80 [-1.70, 0.10]	-	
Omvik 1995 (10)	-3.2	3.0103	19	20	2.3%	-3.20 [-9.10, 2.70]		2 2 • • • 2 •
Pereira 2005 (11)	-4.9	3.557109	12	10	1.8%	-4.90 [-11.87 , 2.07]		3 3 a 3 3 3 a 3
Sarkkinen 2011 (1)	-4	2.028073	22	23	3.8%	-4.00 [-7.97 , -0.03]		? ? ● ● ? ● ?
Suppa 1988 (12)	-2	1.026733	163	159	6.2%	-2.00 [-4.01, 0.01]	-	3 3 3 3 8 3 8
Toft 2020 (13)	-0.116	1.371969	41	49	5.3%	-0.12 [-2.81, 2.57]		$\bullet \bullet \bullet \bullet \bullet ? \bullet \bullet ? \bullet ? \bullet ?$
Yu 2021 (14)	-1.2	0.503822	242	234	7.4%	-1.20 [-2.19 , -0.21]	•	$\bullet \bullet \bullet \bullet \bullet ? \bullet$
Zhang 2015 (15)	-1.6	1.04338	279	218	6.1%	-1.60 [-3.64, 0.44]	-	2 2 2 2 2 3 4 3 6 8 2 3 6
Zhao 2014 (14)	-3	1.336061	141	141	5.4%	-3.00 [-5.62 , -0.38]	-	$\bullet \bullet \bullet \bullet \bullet ? \bullet$
Zhou 2009 (16)	-4.8	1.0459	119	129	6.1%	-4.80 [-6.85 , -2.75]	-	$\bullet \bullet \bullet \bullet \bullet ? \bullet$
Zhou 2013 (17)	-4.62	1.043047	213	227	6.1%	-4.62 [-6.66 , -2.58]	-	$\bullet \ 2 \ \bullet \ 2$
Total (95% CI)			10611	10219	100.0%	-2.43 [-3.50 , -1.36]	•	
Heterogeneity: Tau ² = 3.	.77; Chi ² = 1	54.08, df = 18	(P < 0.00001); I ² = 8	88%			'] .	
Test for overall effect: Z	= 4.45 (P <	0.00001)					-20 -10 0 10	0 20
Test for subgroup differe	ences: Not ap	pplicable				Favours I	SSS intervention Favour	rs regular salt

11 RCTs


8 Cluster RCTs (adjusted for clustering)


Headings at top of the table indicate what the comparison is – LSSS Intervetion and control


- On the left is a list of included studies (often by first author's name, publication year)
- Order of the studies is alphabetical; many prefer by year of study or by treatment effect

• Individual data are presented for each study – in this case, mean change from baseline and the standard error

 The simple total of the data for all the included studies is given – the total number of events and participants in the intervention groups and control groups

- The weight assigned to each study in the meta-analysis is given sums to 100%
- The weights depend on the chosen model fixed vs random effects model

Fixed Effects vs Random Effects Model

- RE meta-analyses are:
 - Almost identical to FE when there is no heterogeneity
 - Similar to FE but with wider confidence intervals when there is heterogeneity
 - <u>Different from FE</u> meta-analyses when results are related to study size (RE model gives relatively more weight to smaller studies)

weight =
$$\frac{1}{\text{variance of estimate}} = \frac{1}{SE^2}$$

Random Effects

weight =
$$\frac{1}{\text{variance within} + \text{variance between}} = \frac{1}{\text{SE}^2 + \text{tau}^2}$$

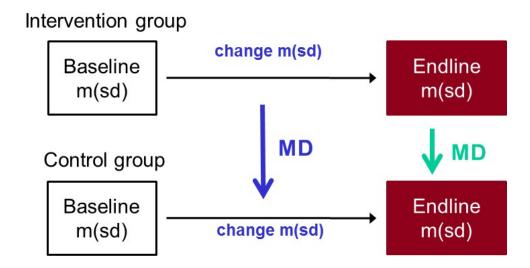
$$pooled estimate = \frac{sum of (estimate \times weight)}{sum of weights}$$

Choice FE vs RE

- FE may be unrealistic ignores heterogeneity
- RE allows for heterogeneity estimate of distribution of studies may not be accurate if biases present, few studies or few events

Analysis 1.1. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 1: Change in DBP (mmHg) LSSS intervention Control Mean Difference Mean Difference Risk of Bias Study or Subgroup MD SE Total Total Weight IV, Random, 95% CI IV, Random, 95% CI ABCDEFGHIJKLM Allaert 2013 (1) -4.2 2.36614 21 19 3.2% -4.20 [-8.84, 0.44] 22 19 Allaert 2017 (2) -7.4 1.987451 3.9% -7.40 [-11.30, -3.50] Geleijnse 1994 (3) -4.1 0.236746 49 7.8% -4.10 [-4.56, -3.64] Gilleran 1996 (4) 3.8113 11 8 1.6% -1.70 [-9.17, 5.77] -1.7 Hu 2018 (5) -0.17 0.341016 243 259 7.7% -0.17 [-0.84, 0.50] 198 205 Li 2014 (6) -1.3 0.813878 6.7% -1.30 [-2.90, 0.30] Li 2016 (7) 0.55077 1293 1272 7.3% 0.00 [-1.08, 1.08] Mu 2003 (8) -3.5 2.088178 88 97 3.7% -3.50 [-7.59, 0.59] -0.8 0.459154 7436 7081 7.5% Neal 2021 (9) -0.80 [-1.70, 0.10] 20 2.3% Omvik 1995 (10) 3.0103 -3.20 [-9.10, 2.70] Pereira 2005 (11) -4.9 3.557109 12 10 1.8% -4.90 [-11.87, 2.07] Sarkkinen 2011 (1) -4 2.028073 22 23 3.8% -4.00 [-7.97, -0.03] -2 1.026733 163 159 6.2% -2.00 [-4.01, 0.01] Suppa 1988 (12) Toft 2020 (13) -0.116 1.371969 41 49 5.3% -0.12 [-2.81, 2.57] Yu 2021 (14) -1.2 0.503822 242 234 7.4% -1.20 [-2.19, -0.21] 279 218 Zhang 2015 (15) -1.6 1.04338 6.1% -1.60 [-3.64, 0.44] 141 141 -3.00 [-5.62 , -0.38] Zhao 2014 (14) -3 1.336061 5.4% 129 -4.80 [-6.85, -2.75] Zhou 2009 (16) -4.8 1.0459 119 6.1% Zhou 2013 (17) -4.62 1.043047 213 227 6.1% -4.62 [-6.66, -2.58] Total (95% CI) 10611 10219 100.0% -2.43 [-3.50, -1.36] Heterogeneity: $Tau^2 = 3.77$; $Chi^2 = 154.08$, df = 18 (P < 0.00001); $I^2 = 88\%$ Test for overall effect: Z = 4.45 (P < 0.00001) Test for subgroup differences: Not applicable Favours LSSS intervention Favours regular salt

• The individual result for each study is given (here, MD with 95% confidence interval)


Effect Measures for Comparing Means: Mean Difference (others Standardized Mean Difference)

Mean Difference (MD)

MD = (Mean in Intervention Group) - (Mean in Control Group)

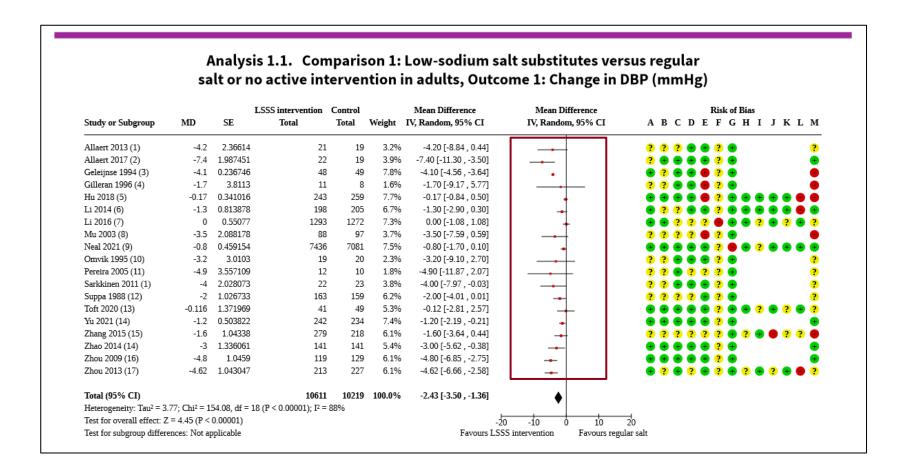
Expresses the difference of the means

- Should be presented with a confidence interval
- MD=0 indicates the mean of the outcome is the same in the 2 groups

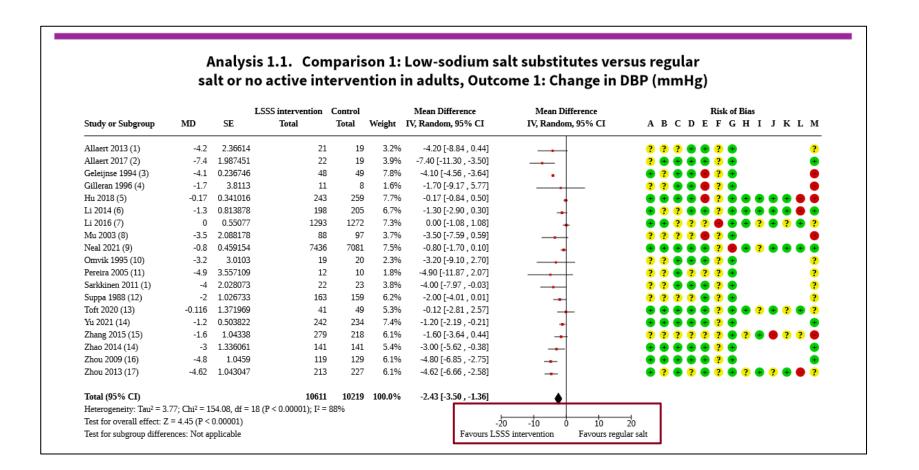
Point and Confidence Interval Estimators of Effect Measures

• 95% Confidence Interval (CI): 19 times out of 20 the 'true' value of the effect measure will be the specified range

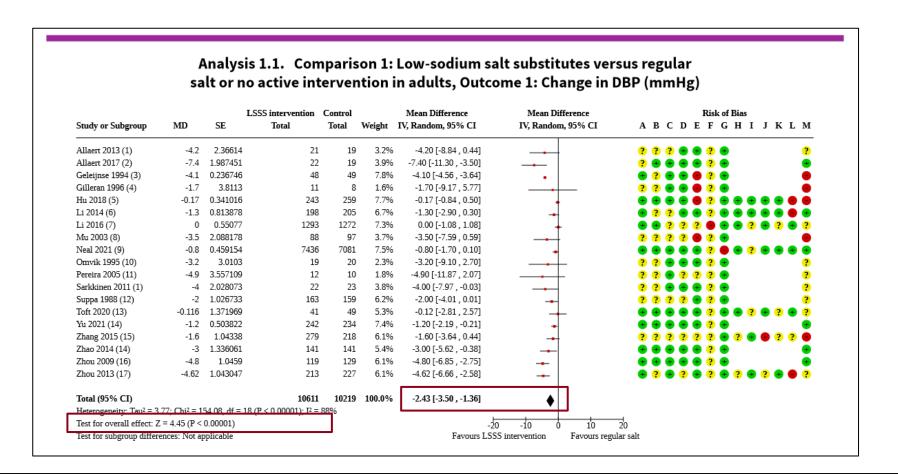
Point estimator of effect measure

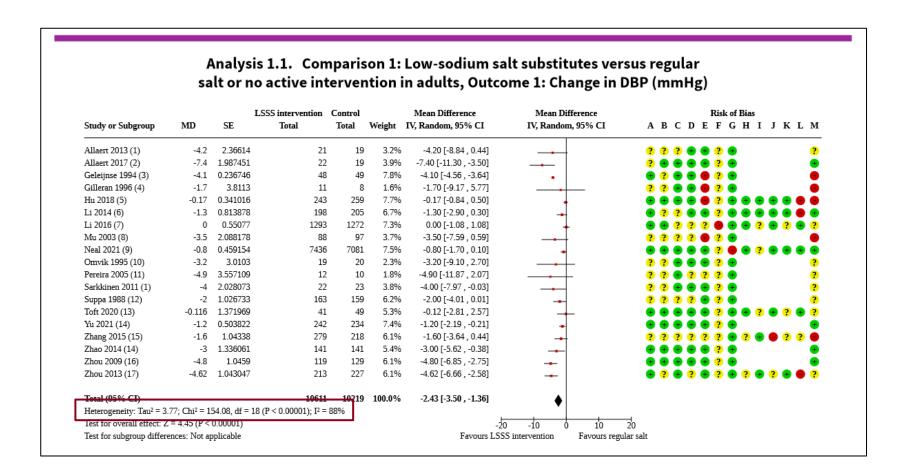

<u>±</u>

Percentile of distribution of point estimator

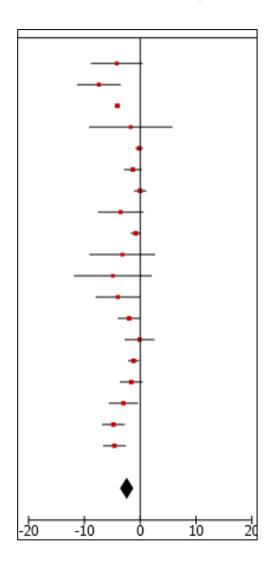

X

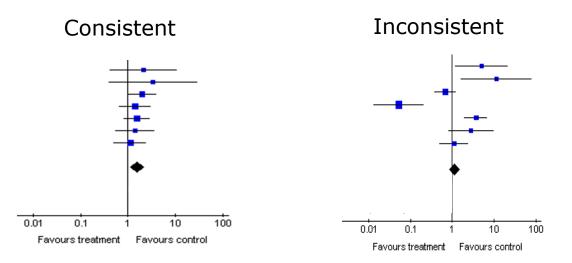
Standard error of point estimator


- Important to present estimates with a CI
 - Point estimate is the best guess of the effect measure
 - CI expresses uncertainty range of values that can reasonably include the true effect
 - A narrow confidence interval means we have a precise estimate of the effect


- Individual study results are presented graphically
 - Coloured square represents the effect estimate with the size of the square proportional to the weight given to the study
 - Horizontal line represenst the confidence interval (in this case 95% CI)
- Vertical line indicates the line of no effect (in this case for a MD=0)
- If 95% CI crosses vertical line it means result for that study is not statistically significant

- The scale for absolute effects (such as MD), scale is symmetrical, showing positive and negative values around 0 as the point of no effect.
- The scale labels indicates the side of the plot that favours the intervention. This will depend on the outcome; the right side of the scale always indicates a higher score for the intervention




- The pooled effect estimate for all the studies combined is presented, both in graphically and nunerically
 - Graphically result is presented as a black diamond the top and bottom points of the diamond correspond to the overall effect estimate, and the width of the diamond represents the CI
 - Numerically the pooled esimate and 95% CI is provided; if the 95% CI crosses vertical line it means result for that study is not statistically significant (at least with a p-value <0.05)
- Test for the overall effect is provided with the exact p-value

- Heterogeneity variations across the studies
 - Identifying heterogeneity (visual inspection of forest plots, chi-square test (Q test), I² statistic)
 - Types of heterogeneity
 - Exploring heterogeneity

1. Visual Inspection of the Forest Plot

- Look for overlap in the CI not just differences in effect estimate
- Can have consistent studies whose results are slightly on either side of the line
- Can have inconsistent studies even though results on same side of the line

2. Chi-square test (Q test)

```
Heterogeneity: Tau^2 = 3.77 Chi<sup>2</sup> = 154.08, df = 18 (P < 0.00001) I^2 = 88\% Test for overall effect: Z = 4.45 (P < 0.00001) Test for subgroup differences: Not applicable
```

- Test of the null hypothesis of homogeneity
- A small p-value means homogeneity rejected (studies are too different to combine)
- Test not reliable
 - When few studies, then test is not sensitive enough and can wrongly conclude that there
 is no heterogeneity (low power)
 - When many studies, then test may be too sensitive and can detect that there is heterogeneity but it might detect heterogeneity that is not very important (may detect clinically unimportant differences)
- Only yes/no test for heterogeneity

3. I² statistic to quantify heterogeneity

```
Heterogeneity: Tau^2 = 3.77; Chi^2 = 154.08, df = 18 (P < 0.00001); I^2 = 88\%

Test for overall effect: Z = 4.45 (P < 0.00001)

Test for subgroup differences: Not applicable
```

- I² statistic describes percentage of observed variability in effect estimates due to heterogeneity rather than random chance (0% to 100%)
 - Low values indicate no or little heterogeneity
 - High values indicate a lot of heterogeneity
- I² statistic is more informative than a simple yes/no test for heterogeneity
- No universal cut-off points for interpretation, roughly speaking
 - Below 30-40% might represent low or unimportant heterogeneity
 - 30-60% might represent moderate heterogeneity
 - 50-90% might represent substantial heterogeneity
 - 75-100% might represent quite high heterogeneity

Types of Heterogeneity

Туре	Description
Clinical	 Across studies Participants may vary by type or severity of condition, demographics, location Interventions may vary in implementation (e.g., dose or intensity), components included, experience of practitioners, nature of control (placebo, none, standard care) Outcomes may vary by measurement methods, event definition, cut-points, follow-up duration
Methodological	 Studies may vary in how they are designed and conducted Design (e.g., randomized vs non-randomied, crossover vs parallel, individual vs cluster) Conduct (e.g., risk of bias), approach to analysis (e.g., statistics used, imputation of missing data)
Statistical	 True differences in the underlying effect that studies are trying to measure that can be caused by clinical and methodological variation Results observed are more different across studies than expected to occur by chance (there will always be random variation of results across studies)

Exploring Heterogeneity – Subgroups and Meta-Regression

- Two methods available to assess effect modification what factors appear to modify the effect
 - Subgroup analysis group studies by pre-specified factors, look for differences in results and heterogeneity
 - Meta-regression examine interaction with variables

Exploring Heterogeneity - Sensitivity Analysis

- Robustness of results
 - Sensitivity analysis is done by repeating the meta-analysis using alternative options to assess consistency/robustness of the results
 - Can evaluate alternative options during the review (e.g., inclusion of studies)

Subgroup Analysis - Interpreting

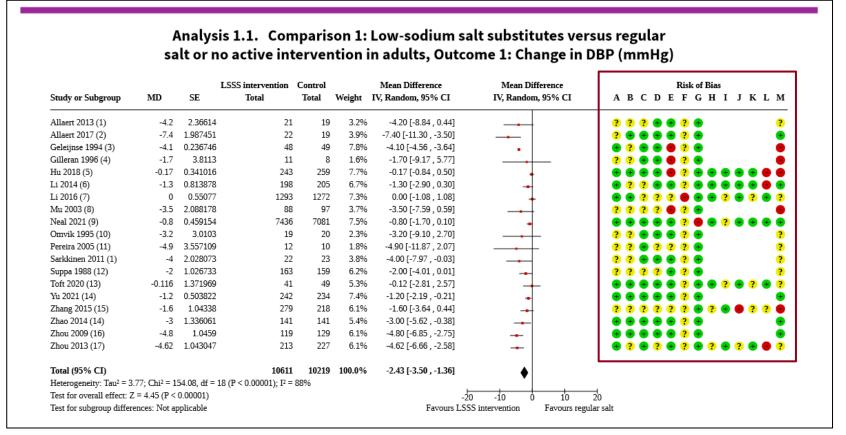
- Consider heterogeneity within subgroups
 - Is heterogeneity within each subgroup different from overall heterogeneity indicating studies more consistent within than between subgroups
- Are the subgroups really different
 - Must directly compare subgroups to see whether findings are consistent with the possibility that the true underlying effects in each subgroup are the same
 - Statistical tests for subgroup difference
- Can be more confident if
 - Effect clinically plausible and supported by evidence from outside the review

Sensitivity Analysis - Interpreting

- Consider heterogeneity
 - Consistency of the results in the sensitivity analysis

Analysis 1.2. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 2: Change in DBP (mmHg); subgroup study duration

		L	SSS intervention	Control		Mean Difference	Mean Difference					R	isk	of B	sias)				
Study or Subgroup	MD	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	A	В	C :	D	E	F	G	H	I	J	K	L	N
1.2.1 ≤ 3 months																				
Allaert 2013 (1)	-4.2	2.36614	21	19	3.2%	-4.20 [-8.84, 0.44]		?	?	? (•	• (?	•						(
Allaert 2017 (2)	-7.4	1.987451	22	19	3.9%	-7.40 [-11.30 , -3.50]		?	⊕ (•	•	• (?	•						(
Li 2014 (3)	-1.3	0.813878	198	205	6.7%	-1.30 [-2.90, 0.30]		•	?	? (•	• (?	•	₽ (•	•	•		•
Pereira 2005 (4)	-4.9	3.557109	12	10	1.8%	-4.90 [-11.87, 2.07]		?	? (Đ (?	? (?	•						
Sarkkinen 2011 (1)	-4	2.028073	22	23	3.8%	-4.00 [-7.97 , -0.03]		?	?	•	•	Ō (?	•						(
Suppa 1988 (5)	-2	1.026733	163	159	6.2%	-2.00 [-4.01, 0.01]	-	?	?	? (?	Ō (?	•						
Yu 2021 (6)	-1.2	0.503822	242	234	7.4%	-1.20 [-2.19, -0.21]	•	•	•	Ď,	Ď,	ě (?	ě						(
Zhao 2014 (6)	-3	1.336061	141	141	5.4%	3.00 [5.62 , 0.38]		•	Đ (Ď	Ď,	ě (?	•						(
Subtotal (95% CI)			921	810	38.4%	-2.54 [-3.77 , -1.31]	•													
Heterogeneity: Tau ² = 1	.25; Chi ² = 1	3.53, df = 7 (P	= 0.06); I ² = 48%																	
Test for overall effect: Z	z = 4.05 (P <	0.0001)		ı																
1.2.2 > 3 to 12 months																				
Geleijnse 1994 (7)	-4.1	0.236746	48	49	7.8%	-4.10 [-4.56, -3.64]		•	? (Ð	•		?	•						(
Gilleran 1996 (8)	-1.7	3.8113	11	8	1.6%	-1.70 [-9.17, 5.77]		?	?	Ď	Ď,	Ŏ (?	Ē						(
Hu 2018 (9)	-0.17	0.341016	243	259	7.7%	-0.17 [-0.84 , 0.50]	1	•	•	Ď	Ď,	ŏ (?	Ă (•	•	•			
Omvik 1995 (10)	-3.2	3.0103	19	20	2.3%	-3.20 [-9.10, 2.70]		?	?	Ď	Ď,	ě (?	•	_	_	_	_	_	(
Toft 2020 (11)	-0.116	1.371969	41	49	5.3%	-0.12 [-2.81, 2.57]		•	•	Ď	Ď,	ě (?	Ă (•	?	•	?	•	6
Zhou 2009 (12)	-4.8	1.0459	119	129	6.1%	-4.80 [-0.85 , -2./5]	-	ě	ě	Ď	Ď,	ě (?	ě	Τ.		_		Τ.	i
Subtotal (95% CI)			491	514	30.9%	-2.38 [-4.79 , 0.03]			_		_			•						
Heterogeneity: Tau² = 6. Test for overall effect: Z		,	< 0.00001); I ² = 95	i%																
rest for overall effect: 2	. – 1.93 (P –	0.05)		_																
1.2.3 > 12 months Li 2016 (13)	0	0.55077	1293	1272	7.3%	0.00 [-1.08 , 1.08]		•		2 (2	2 (• (•	2	_	2	_	4
Mu 2003 (14)	-3.5		88		3.7%	-3.50 [-7.59 , 0.59]	_ T	2	2	2	2	Ä	2	Ĭ.		•	•	•	•	1
Neal 2021 (15)	-0.8	0.459154	7436		7.5%	-0.80 [-1.70 , 0.10]		<u> </u>					2	Ĭ.,	•	2	•	•	•	7
Zhang 2015 (16)	-1.6	1.04338	279		6.1%	-1.60 [-3.64 , 0.44]		2	2	2	2	2	2		2	×	×	2	2	1
Zhou 2013 (17)		1.043047	213		6.1%	-4.02 [-0.00 , -2.58]		_	2		2		2		2	ĭ	<u> </u>		Ä	7
Subtotal (95% CI)	-4.02	1.043047	9309		30.8%	-1.73 [-3.24 , -0.22]		•	•	•	•	•	•	•	•	•	•	•	•	١
Heterogeneity: Tau² = 2	00: Chi2 = 1	7 20 df = 1 (D			30.0 /0	-1.75 [-5.24 ; -6.22]														
Test for overall effect: Z			0.002,1 7770	l																
Total (95% CI)			10611	10219	100.0%	-2.43 [-3.50 , -1.36]														
	.77; Chi ² = 1	54.08, df = 18			100.070		▼													
Heterogeneity: $Tan^2 = 3$																				
Heterogeneity: Tau ² = 3.	- 4.45 (P -	0.00001)		-		-20	-10 0 10	20												


Test for difference in subgroups

Subgroup and Sensitivity Analysis

Subgroup (factor)		Subgroups ME) [95% CI] (I²)		P-value
Overall	-2.43 [-3.50 , -1.36] (88%)				
Study duration	≤3 months -2.54 [-3.77 , -1.31] (48%)	> to 12 months -2.38 [-4.79 , 0.03] (95%)	>1.12 months -1.73 [-3.24 , -0.22] (77%)		P = 0.71
Age	≥ 65 years -3.16 [-5.67 , -0.64] (95%)	< 65 years -2.36 [-3.44 , -1.28] (67%)	Unknown -0.55 [-2.05 , 0.94] (46%)		P = 0.09
Gender	Mixed -2.69 [-3.85 , -1.54] (88%)	Unknown -0.55 [-2.05 , 0.94] (46%)			P=0.03
Ethnicity	Asian -1.72 [-2.64 , -0.80] (77%)	Conducted in Europe (ethnicity unspecified) -3.28 [-4.76 , -1.79] (54%)	Mixed -4.90 [-11.87 , 2.07] (NA)		P = 0.16
ВМІ	Normal (18.5 to 24.9 kg/m2 for adult Europids, 18.5 to 22.9 kg/m2 for adult Asians)	Overweight (25 to 29.9 kg/m2 for adult Europids, 23 to 24.9 kg/m2 for adult Asians)	Obese (≥ 30 kg/m2 for adult Europids, ≥ 25 kg/m2 for adult Asians)	Unknown	P = 0.85
	-3.50 [-7.59 , 0.59] (NA)	-2.58 [-4.07 , -1.09] (88%)	-2.75 [-6.60 , 1.10] (89%)	-1.88 [-3.41 , -0.35] (68%)	

Subgroup and Sensitivity Analysis

Subgroup (factor)		Subgroups MD [95%	CI] (I ²)		P-value
Blood pressure status	Participants with hypertension	Participants with normal blood pressure	Unknown	Mixed	P = 0.17
	-2.80 [-4.22 , -1.37] (84%)	-2.87 [-5.93 , 0.20] (88%)	-0.55 [-2.05 , 0.94] (46%)	-2.07 [-4.09 , -0.05] (82%)	
LSSS implementation	Discretionary only	Non-discretionary only	Discretionary and non- discretionary		P < 0.0001
	-2.11 [-3.00 , -1.23] (72%)	-0.12 [-2.81 , 2.57] (NA)	-4.10 [-4.56 , -3.64] (0%)		
Type of LSSS	≥ 30% KCl	< 30% KCl	Non-potassium containing LSSS		P = 0.0001
	-2.35 [-3.86 , -0.84] (90%)	-1.72 [-3.01 , -0.43] (73%)	-6.06 [-9.15 , -2.96] (7%)		
Baseline sodium excretion (mmol/24-h)	High baseline 24-h sodium excretion (≥ 172 mmol Na/24-h, 3.95 g Na/24-h or 9.88 g NaCl/24-h)	Low baseline 24-h sodium excretion (< 172 mmol Na/24-h, 3.95 g Na/24-h or 9.88 g NaCl/24-h)	Unknown/Not 24-h		P = 0.45
	-2.41 [-4.76 , -0.05] (84%)	-3.07 [-4.83 , -1.32] (81%)	-1.73 [-2.93 , -0.52] (73%)		
Baseline potassium excretion (mmol/24-h)	High baseline 24-h potassium excretion (≥ 59 mmol K/24-h or 2.3 g K/24-h)	Low baseline 24-h potassium excretion (< 59 mmol K/24-h or 2.3 g K/24-h)	Unknown/Not 24-h		P = 0.27
	-3.28 [-4.76 , -1.79] (54%)	-1.99 [-3.72 , -0.27] (84%)	-1.73 [-2.93 , -0.52] (73%)		
Sensitivity analysis: study quality	k=14 -2.36 [-3.37 , -1.34] (71%)				
Sensitivity analysis: study design	k=12 studies -3.45 [-4.64 , -2.25] (69%)				

(E) Incomplete outcome data (attrition bias)

(D) Blinding of outcome assessment (detection bias)

(F) Selective reporting (reporting bias)

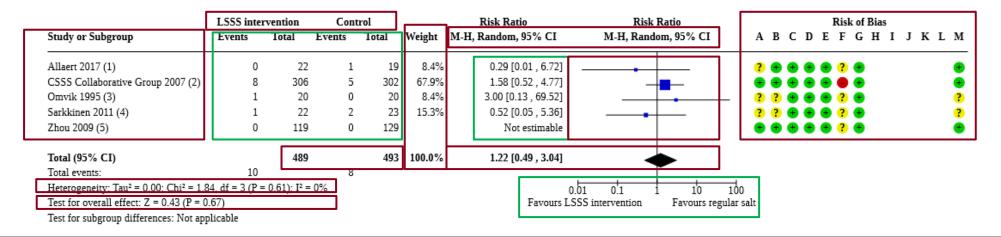
- (J) Loss of clusters (cluster-RCTs)
- (K) Baseline imbalance (cluster-RCTs)
- (L) Incorrect analysis (cluster-RCTs)
- (M) Overall risk of bias

Analysis 1.1. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 1: Change in DBP (mmHg)

		I	SSS intervention	Control		Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	MD	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFGHIJKLM
Allaert 2013 (1)	-4.2	2.36614	21	19	3.2%	-4.20 [-8.84 , 0.44]		2 2 2 • • 2 • 2
Allaert 2017 (2)	-7.4	1.987451	22	19	3.9%	-7.40 [-11.30 , -3.50]		2 • • • • 2 •
Geleijnse 1994 (3)	-4.1	0.236746	48	49	7.8%	-4.10 [-4.56 , -3.64]	.	• 2 • • • 2 • •
Gilleran 1996 (4)	-1.7	3.8113	11	8	1.6%	-1.70 [-9.17, 5.77]		2 2 0 0 2 0
Hu 2018 (5)	-0.17	0.341016	243	259	7.7%	-0.17 [-0.84, 0.50]	↓	
Li 2014 (6)	-1.3	0.813878	198	205	6.7%	-1.30 [-2.90, 0.30]	-	
Li 2016 (7)	0	0.55077	1293	1272	7.3%	0.00 [-1.08 , 1.08]	+	
Mu 2003 (8)	-3.5	2.088178	88	97	3.7%	-3.50 [-7.59, 0.59]		2 2 2 2 0 2 0
Neal 2021 (9)	-0.8	0.459154	7436	7081	7.5%	-0.80 [-1.70, 0.10]	•	
Omvik 1995 (10)	-3.2	3.0103	19	20	2.3%	-3.20 [-9.10, 2.70]		2 2 0 0 2 0 2
Pereira 2005 (11)	-4.9	3.557109	12	10	1.8%	-4.90 [-11.87 , 2.07]		3 3 🖶 3 3 3 🖶
Sarkkinen 2011 (1)	-4	2.028073	22	23	3.8%	-4.00 [-7.97 , -0.03]		2 2 0 0 2 0 2
Suppa 1988 (12)	-2	1.026733	163	159	6.2%	-2.00 [-4.01, 0.01]	-	2 2 2 2 4 2 4
Toft 2020 (13)	-0.116	1.371969	41	49	5.3%	-0.12 [-2.81, 2.57]		$\bullet \bullet \bullet \bullet \bullet \circ \circ \bullet \circ \circ$
Yu 2021 (14)	-1.2	0.503822	242	234	7.4%	-1.20 [-2.19 , -0.21]	•	• • • • • • • •
Zhang 2015 (15)	-1.6	1.04338	279	218	6.1%	-1.60 [-3.64, 0.44]	-	2 2 2 2 2 2 9 9 2 9 9 2 2 9
Zhao 2014 (14)	-3	1.336061	141	141	5.4%	-3.00 [-5.62 , -0.38]		• • • • • • • •
Zhou 2009 (16)	-4.8	1.0459	119	129	6.1%	-4.80 [-6.85 , -2.75]		• • • • • • • •
Zhou 2013 (17)	-4.62	1.043047	213	227	6.1%	-4.62 [-6.66 , -2.58]	-	$\bullet \ 2 \ \bullet \ 2$
Total (95% CI)	77. Ch:? - 1	E4.00 at = 10	10611		100.0%	-2.43 [-3.50 , -1.36]	•	
Heterogeneity: Tau ² = 3.			(P < 0.00001); 12 =	0070		<u>}</u>		-
Test for overall effect: Z		,				-2i		20
Test for subgroup differ	ences: Not a	ppiicable				Favours LSS	S intervention Favours reg	uiar sait

Outcome - Cardiovascular Events

Trusted evidence.
Informed decisions.


Cochrane Database of Systematic Reviews

Analysis 1.32. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 32: Cardiovascular events: various events

	LSSS inter	vention	Cont	rol		Risk Ratio	Risk Ratio	Risk of Bias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFGHIJ	K L M
Allaert 2017 (1)	0	22	1	19	8.4%	0.29 [0.01 , 6.72]		? • • • • ? •	•
CSSS Collaborative Group 2007 (2)	8	306	5	302	67.9%	1.58 [0.52 , 4.77]			•
Omvik 1995 (3)	1	20	0	20	8.4%	3.00 [0.13, 69.52]		2 2 0 0 2 0	?
Sarkkinen 2011 (4)	1	22	2	23	15.3%	0.52 [0.05, 5.36]		2 2 • • • 2 •	?
Zhou 2009 (5)	0	119	0	129		Not estimable		\bullet \bullet \bullet \bullet \bullet \bullet	•
Total (95% CI)		489		493	100.0%	1.22 [0.49 , 3.04]			
Total events:	10		8				T		
Heterogeneity: Tau ² = 0.00; Chi ² = 1.8	34, df = 3 (P =	0.61); I ² =	0%			0.	.01 0.1 10 1	00	
Test for overall effect: Z = 0.43 (P = 0).67)	,					SSS intervention Favours regula		
Test for subgroup differences: Not app	plicable								

5 RCTs

Analysis 1.32. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 32: Cardiovascular events: various events

Analysis 1.32. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 32: Cardiovascular events: various events

	LSSS inte	rvention	Cont	rol		Risk Ratio	Risk Ratio	Risk of Bias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFGHIJ	K L M
Allaert 2017 (1)	0	22	1	19	8.4%	0.29 [0.01 , 6.72]	1	? ● ● ● ? ●	•
CSSS Collaborative Group 2007 (2)	8	306	5	302	67.9%	1.58 [0.52 , 4.77]			ě
Omvik 1995 (3)	1	20	0	20	8.4%	3.00 [0.13 , 69.52]		_ ??•••?•	?
Sarkkinen 2011 (4)	1	22	. 2	23	15.3%	0.52 [0.05 , 5.36]		? ? • • • ? •	?
Zhou 2009 (5)	0	119	0	129]	Not estimable		$\bullet \bullet \bullet \bullet \bullet ? \bullet$	•
Total (95% CI)		489		493	100.0%	1.22 [0.49 , 3.04]			
Total events:	10		8				—		
Heterogeneity: Tau ² = 0.00; Chi ² = 1.0	84, df = 3 (P :	= 0.61); I ² =	= 0%				0.01 0.1 10	100	
Test for overall effect: Z = 0.43 (P = 0	0.67)	,-				Favours 1	LSSS intervention Favours reg		
Test for subgroup differences: Net an	nlicable								

Test for subgroup differences: Not applicable

Effect Measure for Events: Risk Ratio (others Odds Ratio, Risk Difference)

Risk

 $Risk = \frac{Number\ of\ participants\ with\ event}{Total\ number\ of\ participants}$

Expresses the chances that an event will occur

	Event	No event	Total
Intervention	8	298	306
Control	5	297	302

Risk=8/306=0.0261=2.61%

Risk=5/302=0.0165=1.65%

RR=(8/306)/(5/302)= 1.58

Risk Ratio RR (Relative Risk)

 $RR = \frac{Risk \ of \ event \ in \ Intervention \ group}{Risk \ of \ event \ in \ Control \ group}$

Expresses the relative chance that an event will occur when 2 groups are compared (i.e., ratio of 2 risks (risk ratio))

- Range (0, ∞)
- RR=1 indicates the risk of event is equally likely in the 2 groups

Analysis 1.32. Comparison 1: Low-sodium salt substitutes versus regular salt or no active intervention in adults, Outcome 32: Cardiovascular events: various events

	LSSS inter	vention	Cont	rol		Risk Ratio	Risk Ratio	Risk of Bias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFGHIJKL	M
Allaert 2017 (1)	0	22	1	19	8.4%	0.29 [0.01 , 6.72]		2 • • • • 2 •	•
CSSS Collaborative Group 2007 (2)	8	306	5	302	67.9%	1.58 [0.52 , 4.77]	—	\bullet \bullet \bullet \bullet \bullet \bullet	•
Omvik 1995 (3)	1	20	0	20	8.4%	3.00 [0.13 , 69.52]		- ?? • • • ? •	?
Sarkkinen 2011 (4)	1	22	2	23	15.3%	0.52 [0.05, 5.36]		? ? • • • ? •	?
Zhou 2009 (5)	0	119	0	129		Not estimable		• • • • • · · ·	•
Total (95% CI)		489		493	100.0%	1.22 [0.49, 3.04]	•		
Total events:	10		8						
Heterogeneity: Tau ² = 0.00; Chi ² = 1.8	34, df = 3 (P =	0.61); I ² =	: 0%			(0.01 0.1 10 1	100	
Test for overall effect: Z = 0.43 (P = 0	.67)	-					SSS intervention Favours regul		
Test for subgroup differences: Not app	plicable						<u> </u>		

- The scale for relative effects (such as RR), scale is a log scale. The lowest value a ratio can take is 0, 1 represents no effect, and highest value it can take is ∞. Data are presented on a log scale to make the scale and the confidence intervals appear symmetrical.
- The scale labels indicates the side of the plot that favours the intervention. This will depend on the outcome; the right side of the scale always indicates a higher event rate for the intervention

PICO

Intervention

- LSSS interventions/exposures of any type or duration provided aimed to replace the dietary intake of any amount of sodium with another mineral or compound
- Included studies investigating either discretionary (i.e. salt on table or added during cooking) or non-discretionary use of LSSS (i.e. included during food manufacturing)

Control

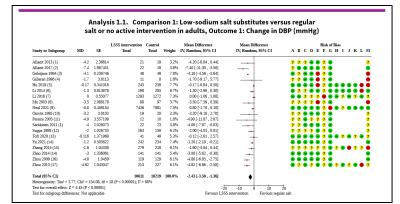
- Includes use of regular salt or no active intervention to reduce salt intake
- Included studies where control group received only basic information on sodium reduction at baseline

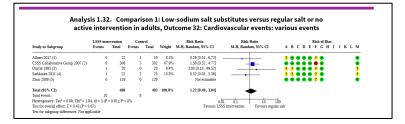
Multicomponent Interventions

- Included if effects of LSSS could be isolated from the multifactorial design
- Excluded if additional intervention components were not aimed primarily at promoting LSSS but focussed more broadly on reducing sodium intake or aimed at improving health in general such that LSSS effects could not be isolated.

Summary of Findings (SoF) table and the GRADE approach for assessing the certainty of evidence ...

Summary of findings 1. Summary of findings table - LSSS intervention compared to regular salt in adults (≥ 18 years) in the general population


LSSS intervention compared to regular salt in adults (≥ 18 years) in the general population


Patient or population: adults (≥ 18 years) in the general population

Setting: any setting in any country Intervention: LSSS intervention Comparison: regular salt

Outcomes	Anticipated absolu	ıte effects* (95% CI)	Relative effect (95% CI)	№ of partici- pants	Certainty of the evidence	Comments
	Risk with regular salt	Risk with LSSS in- tervention	(40 / 00 /	(studies)	(GRADE)	
Change in DBP (mmHg) follow-up: range 56 days to 3 years	The mean change in DBP (mmHg) was -0.74 mmHg	MD 2.43 mmHg low- er (3.5 lower to 1.36 lower)	-	20830 (19 RCTs)	⊕⊕⊕⊝ Moderate ^a	LSSS interventions probably reduce DBP (mmHg) slightly.
Change in SBP (mmHg) follow-up: range 56 days to 3 years	The mean change in SBP (mmHg) was -1.32 mmHg	MD 4.76 mmHg low- er (6.01 lower to 3.5 lower)	-	21414 (20 RCTs)	⊕⊕⊕⊝ Moderate ^b	LSSS interventions probably reduce SBP (mmHg) slightly.
Hypertension follow-up: 18 months	580 per 1000	563 per 1000 (522 to 598)	RR 0.97 (0.90 to 1.03)	2566 (1 RCT)	⊕⊕⊝⊝ Low ^c ,d	LSSS interventions may result in lit- tle to no difference in hypertension.
Blood pressure control follow-up: range 8 weeks to 3 months	128 per 1000	271 per 1000 (169 to 436)	RR 2.12 (1.32 to 3.41)	253 (2 RCTs)	⊕⊙⊙ Very low ^{e,f,} g	The evidence is very uncertain about the effect of LSSS interventions on blood pressure control.
Cardiovascular events: various follow-up: range ≤ 3 to > 3-12 months	1623 per 100,000	1980 per 100,000 (795 to 4933)	RR 1.22 (0.49 to 3.04)	982 (5 RCTs)	⊕⊝⊝⊝ Very low ^{h,i}	The evidence is very uncertain about the effect of LSSS interventions on various other cardiovascular events.

https://gdt.gradepro.org/presentatio ns/#/isof/isof question revman web 431386681611398744

- a Serious inconsistency: Substantial heterogeneity ($I^2 = 88\%$), not explained by subgroup analyses (study duration, ethnicity, BP status, type of LSSS, baseline Na excretion) or meta-regression (type of LSSS, baseline Na excretion, overall risk of bias)
- h Serious indirectness: Pooled effect is driven by a large study in high-risk individuals (participants selected based on high risk of future vascular disease) that is less likely to be directly applicable to the general population
- i Very serious imprecision: Using the OIS approach, the ratio of the upper to the lower boundary of the 95% CI is more than 3 (RR); 18 events in total

GRADE – many reasons for uncertainty of the evidence of an effect

HIGH ⊕⊕⊕⊕

MODERATE ⊕⊕⊕○

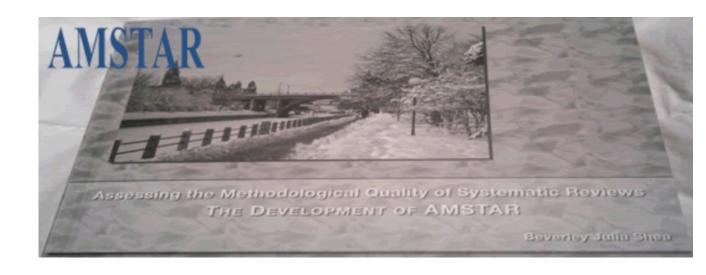
LOW ⊕⊕○○

VERY LOW ⊕○○○

- Are the studies poorly conducted? Risk of bias
- Are the results inconsistent across studies? Inconsistency
- Do the results not really apply to my question? Indirectness
- Are there too few people, wide confidence intervals? Imprecision
- Are we missing studies, or have selective studies? Publication bias
- Plus large effect, dose response, opposing confounding

Levels of Evidence

Levels of Evidence	Statement
High certainty	We are very confident that the true effect lies close to that of the estimate of the effect
Moderate certainty	We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low certainty	Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low certainty	We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect


Cochrane Database of Systematic Reviews

Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women (Review)

Authors' conclusions

When compared to regular salt, LSSS probably reduce blood pressure, non-fatal cardiovascular events and cardiovascular mortality slightly in adults. However, LSSS also probably increase blood potassium slightly in adults. These small effects may be important when LSSS interventions are implemented at the population level. Evidence is limited for adults without elevated blood pressure, and there is a lack of evidence in pregnant women and people in whom an increased potassium intake is known to be potentially harmful, limiting conclusions on the safety of LSSS in the general population. We also cannot draw firm conclusions about effects of non-discretionary LSSS implementations. The evidence is very uncertain about the effects of LSSS on blood pressure in children.

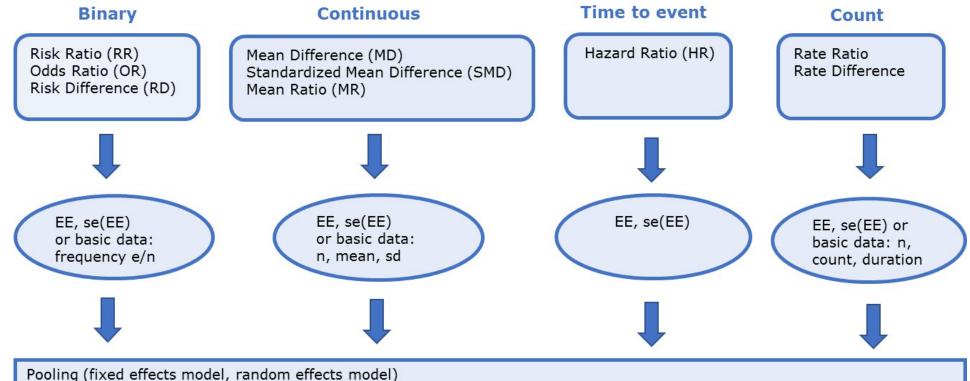
Critical appraisal tool for systematic reviews

RESEARCH METHODS AND REPORTING

AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both

Beverley J Shea, ^{1,2,3} Barnaby C Reeves, ⁴ George Wells, ^{3,5} Micere Thuku1, ² Candyce Hamel, ¹ Julian Moran, ⁶ David Moher, ^{1,3} Peter Tugwell1, ^{2,3,7} Vivian Welch, ^{2,3} Elizabeth Kristjansson, ⁸ David A Henry^{9,10,11}

BMJ 2017;358:j4008 http://dx.doi.org/10.1136/bmj.j4008


AMSTAR Website https://amstar.ca/

Shea 2017 - AMSTAR2

AMSTAR2 Instrument

AMSTAR2 Guidance Document

Overview

Pooling (fixed effects model, random effects model)
Heterogeneity: identifying, types (clinical, methodological), exploring (meta-regression, subgroups)
Sensitivity analysis

Overall estimates and analyses Displays: Forest plot, Summary of Findings (SoF) table Certainty of evidence

Questions or Thoughts