

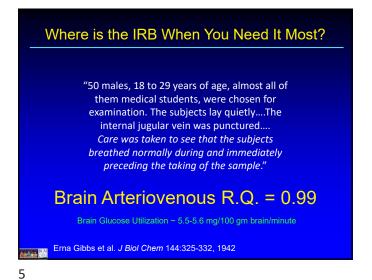
Disclosures

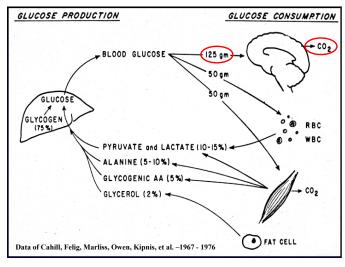
- I have consulted for governments, NGOs, Scientific Societies, trade organizations and private industry. I am completely conflicted. However, I contend that opposing vested interests cancel out potential COI.
- Regardless, virtually nothing I intend to "sell" is less than 50 years old, well beyond usual shelf life and 'best used by' pull date.

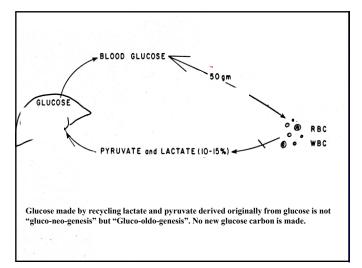
AND AND SOL

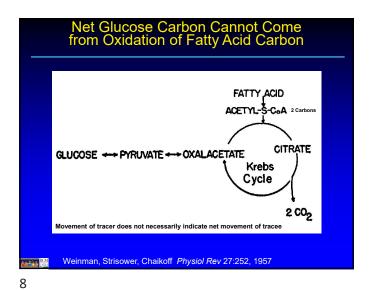
2

In a galaxy long ago, but not very far away....

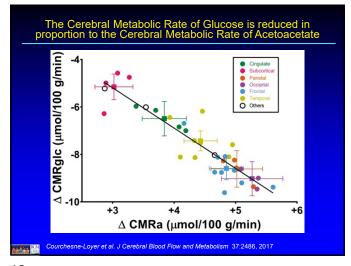



- Before PubMed, in the prehistoric days of *Index Medicus*
- Scientists did not have artificial intelligence
- So they were forced to use the real thing!
- "Good experiments are right forever."
 (Otto Warburg)

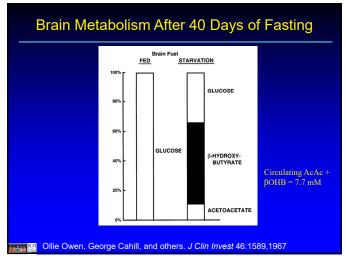

Sugars are Mother Nature's Most Essential Nutrients


- Humans can make every sugar necessary for life.
- Irrespective of maternal diet, the fetus, the future of the human species, obtains essentially all of its energy supply from glucose.
- The brain, the peak of human evolutionary progression, prefers to consume only glucose.

3 4

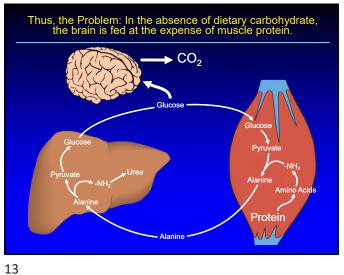


But, some new glucose carbon can be made from lipolysis of adipose tissue


Release of glycerol

9

- Usually, a relatively minor contribution
- Hepatic Ketogenesis from FFA
 - Quantitatively important only when ketone body concentrations are elevated.



10

Alanine Glycine Threonine Cysteine Serine Tryptophan Phosphoenolpyruvate Pyruvaté Tryptophan Tyrosine Glucose Acetyl-CoA Phenylalanine Threonine Aspartate Asparagine Isoleucine Citrate Oxaloacetate Lysine _eucine Legend: Proline Arginine Histidine Glucogenic Malate Isocitrate Glutamine Ketogenic Both glucogenic and ketogenic Fumarate Glutamate α-Ketoglutarate ← Threonine Methionine Succinyl-CoA Phenylalanine soleucine Valine Aspartate m, Mikael (2014). "Medical gallery of Mikael Häggström 2014". WikiJournal of Medicine 1 (2). 5347/wim/2014 008 ISSN 2002-4436

11 12

"We find that the average respiratory quotient for 74 infants on the first day of life was 0.80....This value of 0.80 represents a fasting value not widely different from that observed during the first 24 hours with fasting man...0.79." Benedict & Talbot The Physiology of the New-Born Infant

14

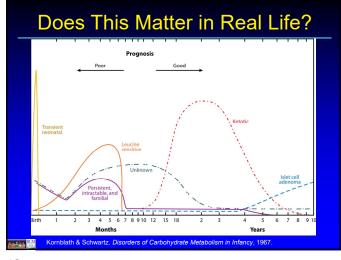
Neonatal Cerebral Fuel Metabolism

- > Amino & fatty acids are not significant CNS fuels
- Glucose is the preferred brain fuel.
 - Newborn glucose production rates can barely meet the brain's glucose requirements.
- Ketones are the principal alternative fuel.
 - Lactate may serve as a fuel in rare instances.
- > Ketone utilization is proportional to arterial level.
- > The human fetal brain can oxidize ketones.
 - Adam, et. al. Acta Paed Scand 64:17, 1975
- > The newborn brain can oxidize ketones.
 - Kraus, et. al Hoppe Seylers Z Physiol Chem 355:164, 1974.

Brain Weight as Function of Age N = 2,773 men; 1,963 women 3 6-7 10-12 16-18 22-30 41-50 56-60 66-70 81-85 86-Dekaban et al. Ann Neurol 4:345-356, 1978 16

Daily Brain Glucose Utilization Measured With Positron Emission Tomography

(yrs) (gran	se Utilization
D'	
Birth	20
1	60
2	80
3 1	120
4 - 8 1	130
10 - 16 1	120
Adult 1	110
rom Chugani, et. al., Ann. Neurol. 22:487	7,1987.


Der

Daily Brain Glucose Utilization Measured With Positron Emission Tomography

Age (yrs)	Brain Glucose Utilization (grams/day)	Snack Equivalency Units	
Birth	20	300 ml Human Milk	
1	60	40 Animal Crackers	
2	70	130 M&Ms	
3	130	4.5 Hershey Bars	
4 - 8	140	3.5 Coca Colas	
10 - 16	120	3.5 Snickers Bars	
Adult	100	Case of Light Beer	

Derived from Chugani, et. al., Ann. Neurol. 22:487,1987.

17 18

19 20