

PEDIATRICS

Developmental Origins of Chronic Disease – The Influence of Diet

Rob Waterland, PhD

waterland@bcm.edu

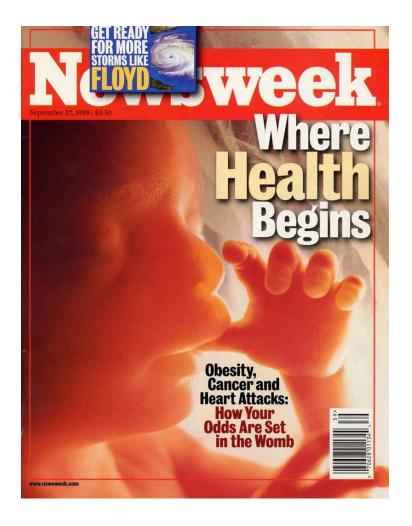
Food Forum
Dietary Patterns to Prevent and Manage Diet-Related Disease
Across the Lifespan
Washington, DC
15 August 2023

No conflicts of interest to disclose.

Cutberto Garza, MD, PhD

Cutberto Garza, MD, PhD

PAGE NO. Garta	FREFARED BY	
MC Garta	DATE	9/14/95
PROJECT ACTION NOTES PROJECT PLANNING NOTES		
Important Questions - What are protectly reclamins at importantly - prove importantly is there evidence numerous findings in animal studies extended to humans	,	Zoot M
- What are polecular reclasions at imprint	my,	() (
- prove inpurtantly is there evidence	1497	the though
extended to hurrans	1396	
De la la mana	- /	
Doget Co spector on NHAHES TO	dag	4
		,
- Put most recent Cuba shift on rec	9//	a library
Parvel Penta, 170 Parveices health organ (Pr	140	Netr. unit
- child growth / tat	/ Kea	1 intake
2 will Coba provide of "laboratory" we	· He	· type
Fact access # from Jeens Z	de.	she
Aget access # from Juena Z	ppry). Wasser
CG will call 1st Socurrents	1	
€ CG ~1/1 Call 1.0		19076
Basker - parkags has not considered	po	tertia !
contoundes		
poss recharisors -> retyletion of on -genetic imprinting Seperative of whether got tooks hat a pat so	111 -	?
-genetic imprinting		
Lependerce of whether	es	art
1400 - 140 S		



Developmental Origins of Adult Disease (DOHaD)

– What are the underlying mechanisms?

Konrad Lorenz and his imprinted goslings

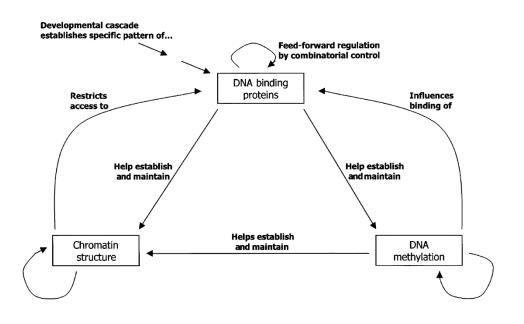
Metabolic Imprinting

Adaptive responses to early nutrition

Susceptibility limited to critical period of development

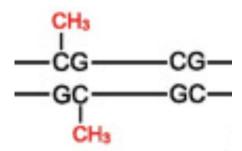
Persistent effect

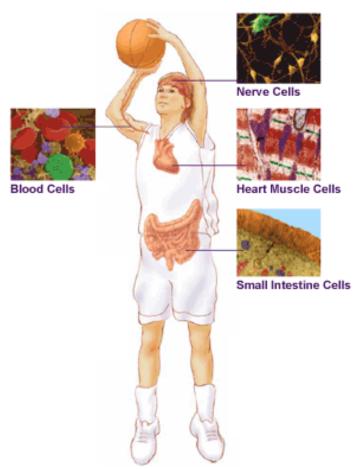
Dose-response or threshold effect between exposure and outcome



Potential Mechanisms of Metabolic Imprinting

- Induced alterations in
 - Organ structure
 - Cell number
 - Hepatocyte polyploidization
 - Clonal selection
 - Metabolic differentiation (epigenetics)





EPIGENETICS: Mitotically heritable, stable alterations in gene expression *potential* that are NOT caused by changes in DNA sequence

Our focus: DNA methylation

Epigenetic Mechanisms in DOHaD – Causal Pathway

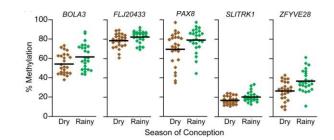
Environmental Exposure

Epigenetic Change

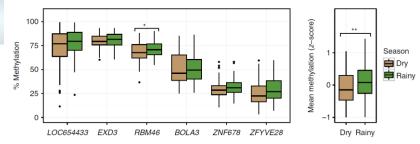
Risk of Disease In Later Life

Maternal dietary methyl supplementation before and during pregnancy alters offspring phenotype by increasing DNA methylation at metastable epialleles

- At Agouti Viable Yellow

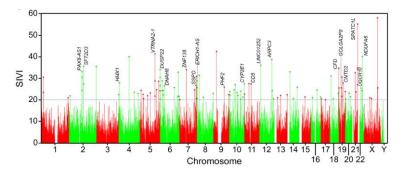

- At AxinFused

Season of Conception in Rural Gambia Affects DNA Methylation at Putative Human Metastable Epialleles


Robert A. Waterland ^{1,2*}, Richard Kellermayer¹, Eleonora Laritsky¹, Pura Rayco-Solon³, R. Alan Harris², Michael Travisano⁴, Wenjuan Zhang¹, Maria S. Torskaya¹, Jiexin Zhang⁵, Lanlan Shen¹, Mark J. Manary¹, Andrew M. Prentice³

Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

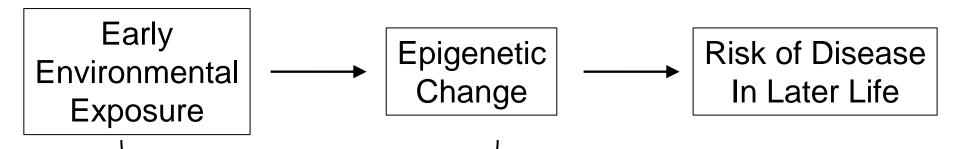
Paula Dominguez-Salas¹, Sophie E. Moore¹, Maria S. Baker², Andrew W. Bergen³, Sharon E. Cox¹, Roger A. Dyer⁴, Anthony J. Fulford¹, Yongtao Guan^{2,5}, Eleonora Laritsky², Matt J. Silver¹, Gary E. Swan⁶, Steven H. Zeisel⁷, Sheila M. Innis⁴, Robert A. Waterland^{2,5}, Andrew M. Prentice¹ & Branwen J. Hennig¹



Silver et al. Genome Biology (2015) 16:118 DOI 10.1186/s13059-015-0660-y

Independent genomewide screens identify the tumor suppressor *VTRNA2-1* as a human epiallele responsive to periconceptional environment

Matt J Silver^{1,2+}, Noah J Kessler³⁺, Branwen J Hennig^{1,2}, Paula Dominguez-Salas^{4,5}, Eleonora Laritsky³, Maria S Baker³, Cristian Coarfa⁶, Hector Hernandez-Vargas⁷, Jovita M Castelino⁸, Michael N Routledge⁸, Yun Yun Gong⁹, Zdenko Herceg⁷, Yong Sun Lee¹⁰, Kwanbok Lee¹⁰, Sophie E Moore^{1,2,11}, Anthony J Fulford^{1,2}, Andrew M Prentice^{1,2*} and Robert A Waterland^{3,12*}



In Humans, at Metastable Epialleles/CoRSIVs, first step of pathway is well established

Epigenetic Mechanisms in DOHaD – Causal Pathway

Evidence at Metastable Epialleles/CoRSIVs

- Periconceptional nutrition in The Gambia (Waterland/Prentice et al. 2010, 2014, 2015, 2018, 2019)
- Assisted reproductive technology (ART) Estill et al. 2016 Fert Steril
- Early famine exposure (Bangladesh) Finer et al. 2016 *BMJ Open*
- Prenatal perfluoroalkyl exposure (Japan) Miura et al. 2018 *Environment Intl*.

Epigenetic Epidemiology – Well Known Obstacles

Epigenetic regulation is generally cell-type specific

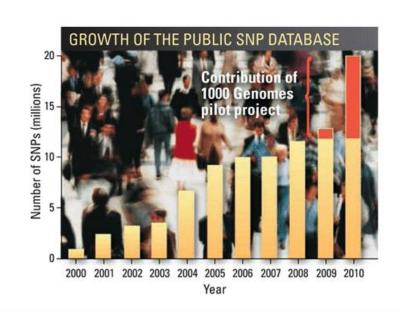
- Reverse causality
 - Epigenetic changes associated with disease may be causes – or consequences – of the disease

Systemic Interindividual Variation in DNA Methylation Circumvents Both Obstacles

 DNA methylation in blood is an indication of epigenetic regulation throughout the body

 Methylation is established in the very early embryo and stable thereafter

We recently reported another important but less recognized obstacle



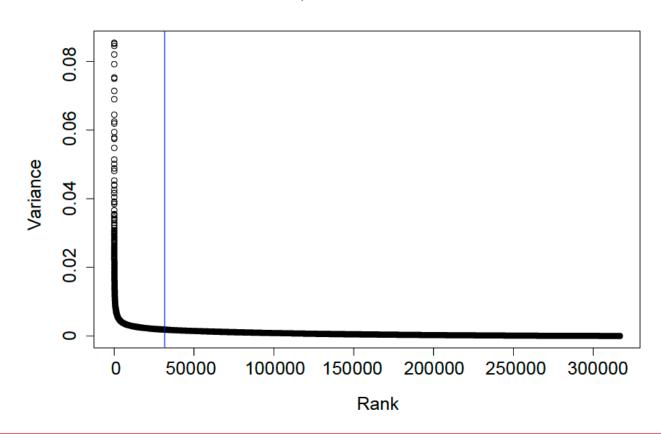
To Launch the GWAS Era, the First Step was to Map Common Sequence Variants

- 2001 First draft human genome published
- 2002 International HapMap Project launched
- 2008 1000 Genomes Project launched

"... the HapMap will characterize... the 0.1% (of the genome) where we differ from each other."

But, So Far, No 'Epi-HapMap' Project

- Instead, epigenetic epidemiologists relied upon methylation microarrays by Illumina
 - 2011 HM450 array (450,000 probes), designed to cover
 - 99% of RefSeq genes, and 96% of CpG islands
 - 2016 EPIC array (850,000 probes), designed to cover
 - >90% of probes on HM450 array, 58% of FANTOM5 enhancers, and additional regulatory elements

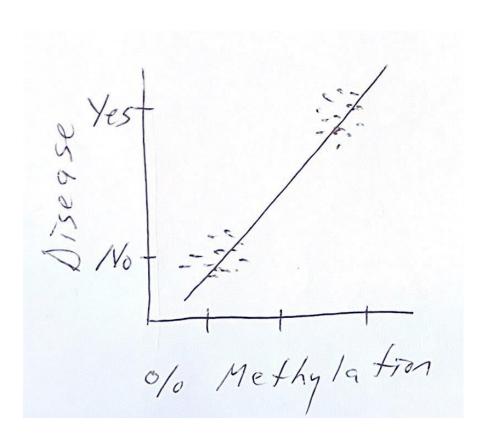

But, So Far, No 'Epi-HapMap' Project

- Instead, epigenetic epidemiologists relied upon methylation microarrays by Illumina
 - 2011 HM450 array (450,000 probes), designed to cover
 - 99% of RefSeq genes, and 96% of CpG islands
 - 2016 EPIC array (850,000 probes), designed to cover
 - >90% of probes on HM450 array, 58% of FANTOM5 enhancers, and additional regulatory elements

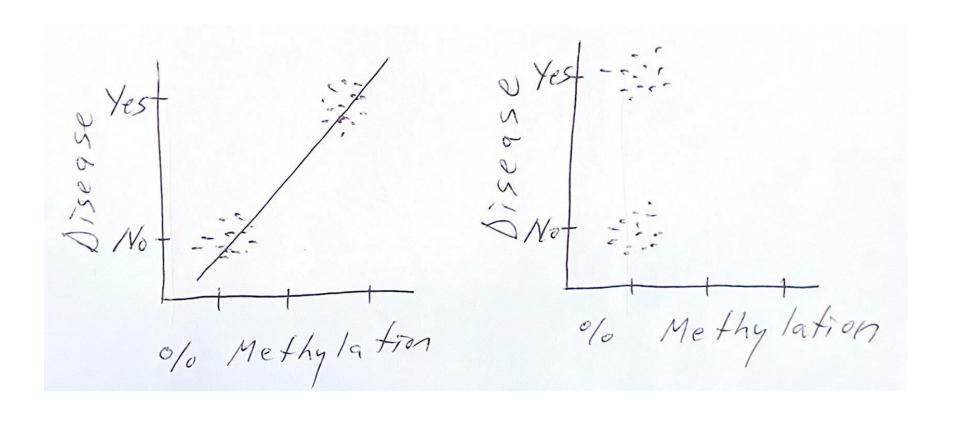
 Unfortunately, ~95% of the probes show negligible interindividual variation in normal somatic tissue

Most HM450 and EPIC Probes Show Negligible Interindividual Variance

HM450 – Adipose tissue of 648 women


Without Interindividual Variation, Epigenetic Epidemiology is Impossible

Epigenetic epidemiology: The study of the associations between <u>interindividual epigenetic</u> variation and risk of disease


Why Is Interindividual Variation Crucial?

Why Is Interindividual Variation Crucial?

Editorial

A new era for epigenetic epidemiology

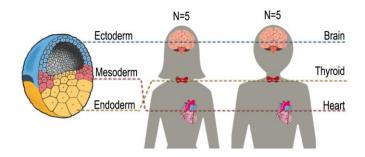
Chathura J Gunasekara¹ & Robert A Waterland*, 1,2

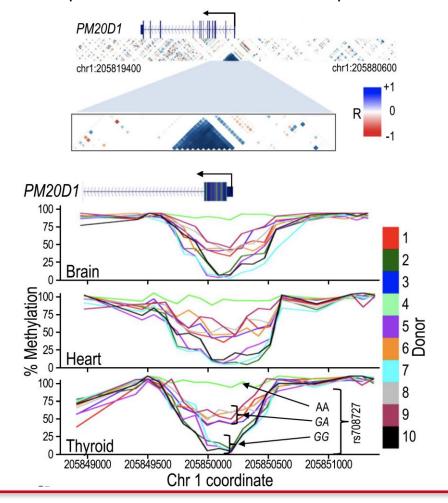
¹USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA

²Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA

^{*}Author for correspondence: waterland@bcm.edu

How did this problem come to our attention?

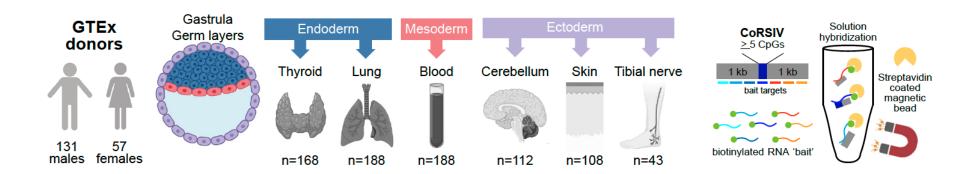




In 2019 we reported ~10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in humans

Studied 10 GTEx donors

Example of a CoRSIV at the PM20D1 promoter



We set out to validate CoRSIVs in a larger number of individuals.

Studying Multiple Tissues of 188 GTEx Donors Validates CoRSIVs

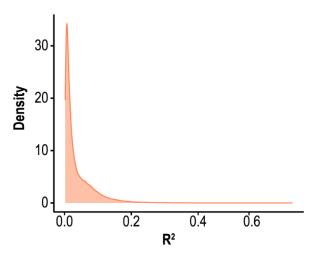
Validated systemic interindividual variation.

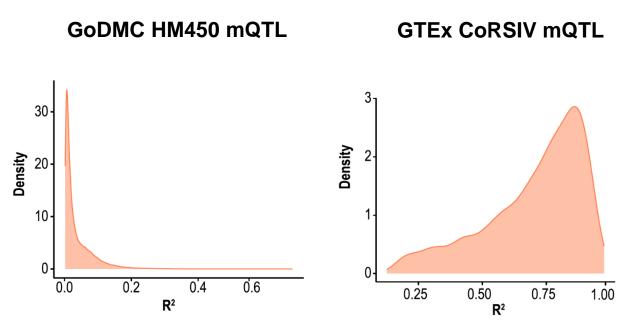
 Assessment of genetic influences on CoRSIV methylation (mQTL) yielded the biggest surprise.

The Genetics of DNA Methylation Consortium (GoDMC) analyzed HM450 data on >30,000 people

ARTICLES

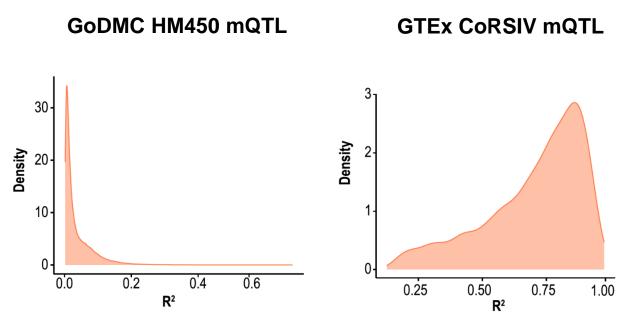
https://doi.org/10.1038/s41588-021-00923-x

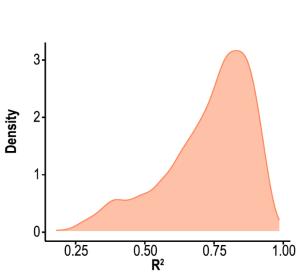

Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation



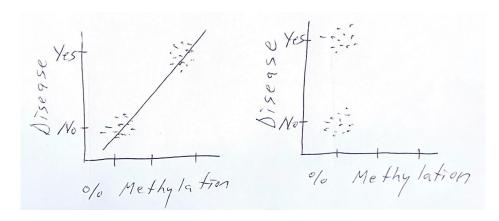
We Compared our mQTL Results with Those of GoDMC

GoDMC HM450 mQTL




We Discovered 70-Fold More Genetic Influence on Human Methylation Than Ever Detected

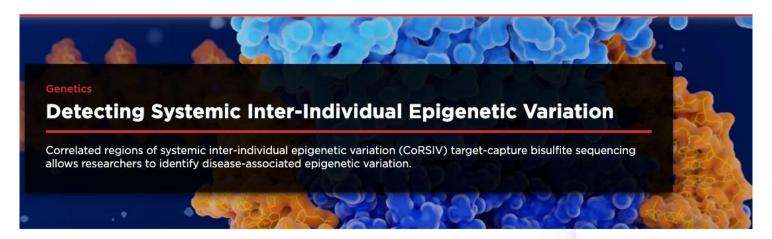
We Discovered 70-Fold More Genetic Influence on Human Methylation Than Ever Detected


USC CoRSIV mQTL

How is this relevant to epigenetic epidemiology?

Interindividual variation is essential for not only mQTL, but also epigenetic epidemiology

- A focus on interindividual variants will improve the ability to detect associations with disease.
- 90% of known CoRSIVs are not covered by the Illumina arrays.
 - <1% of probes are within CoRSIVs, but these are often top hits in published EWAS.


Somebody needs to develop a commercial platform for the study of CoRSIVs!

PUBLICATIONS NEWS & OPINION CATEGORIES TS UNIVER:

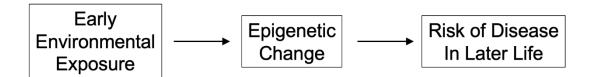
Epigenetic epidemiology is rising in popularity, but the field presents technical challenges not found in genetic epidemiology. DNA methylation is often cell type-specific, making it difficult to epigenotype an individual using peripheral blood DNA. However, correlated regions of systemic inter-individual epigenetic variation (CoRSIV) target-capture bisulfite sequencing allows researchers to use easily biopsied tissues such as peripheral blood to study systemic epigenetic differences among individuals and identify disease-associated epigenetic variation.

Download this application note from Agilent Technologies to learn more about how researchers use CoRSIV panels to assay SIVs in large population studies and discover associations with human diseases.

Sponsored by

Emai	*
Coun	try*
Plea	se Select
Stree	t Address*

representative by telephone c



Time for a Fresh Start

- The Illumina methylation platform has handicapped the field of epigenetic epidemiology
- CoRSIVs are a logical focus for DOHaD
 - Stable and systemic interindividual variants
 - Measurements in blood are relevant to any tissue
 - Establishment of methylation is sensitive to early environment

- We have developed and validated a technology to study human CoRSIVs at the population level
 - Commercially available from Agilent

