Nutrition and Health Implications: Chemical Hazards

Margaret Rita Karagas, MS, PhD
James Squires Professor and Chair
Department of Epidemiology
Geisel School of Medicine at Dartmouth College

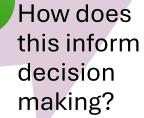
Disclosure Statement

I have no conflicts to disclose.

What do we need to know?

Approaches we can take to learn:

Are individuals' levels of toxic chemicals


associated

foods they

with the

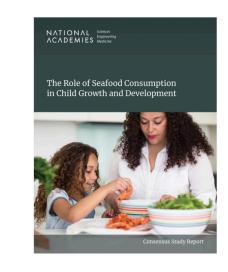
eat?

How do these exposures impact our health?

What do people eat?

Are chemical hazards are present in foods people eat?

- When?
- Mechanisms?
- Modifiers?


What Do People Eat?

Commonly Consumed Seafood Among Women of Childbearing Age and Children

TABLE 3-4 Seafood Species Commonly Consumed, U.S. Women of Childbearing Age, by Percentage of Seafood Meals

creeniage of Scarood Mears		
Seafood Species	Sample Size (n)	Frequency, Weighted
		(percent)

1.	Shrimp
----	--------

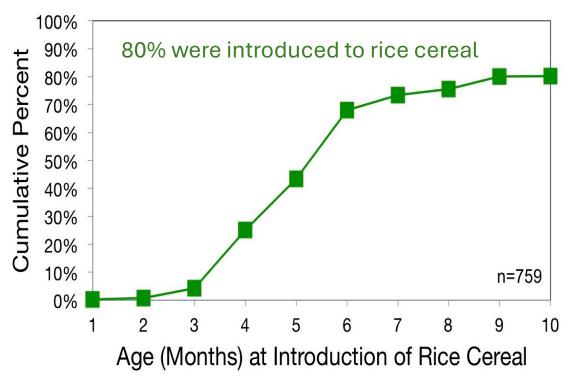
- 2. Tuna
- 3. Salmon
- 4. Other fish
- 5. Crab
- 6. Breaded Fish
- 7. Catfish
- 8. Cod
- 9. Scallops10. Lobster
- SOURCE: NHANES, 2011–2012 through 2017 frequency questionnaire.

TABLE 3-7 Seafood Species Frequently Consumed, U.S. Children by Percentage of Seafood

	Seafood Species	Sample Size (n)	Frequency, weighted (percent)
1.	Shrimp	7,168	28.7
2.	Tuna	3,466	14.4
3.	Salmon	3,172	12.1
4.	Other fish	2,586	7.8
5.	Breaded fish	1,732	6.7
6.	Crab	1,292	5.2
7.	Catfish	1,344	4.3
8.	Cod	633	2.6
9.	Other unknown	838	2.2

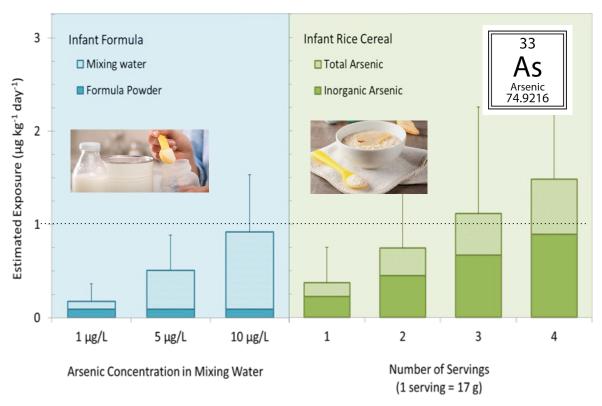
NHANES

- Limited number of pregnant and lactating people, very young children
- One time sample


- Children ages 1-2 years ate <2 seafood meals/month on average
- Children 2-19 years only 6% ate 2 or more seafood meals/week (DGA)

What Do People Eat?

Prospective Study of Early Diet



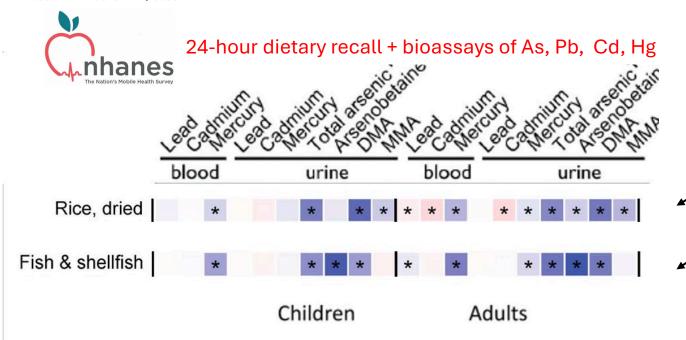
Longitudinal Assessment of the Timing of Introduction of Rice Cereal in the First Year of Life

Courtney Carignan, PhD

Incorporated Data from the FDA to Estimate Arsenic Exposure from Rice Cereal

Carignan et al., 2016

Directly Measuring Exposure via Biomarkers


OPEN & ACCESS Freely available online

A Dietary-Wide Association Study (DWAS) of Environmental Metal Exposure in US Children and Adults CrossMark

Matthew A. Davis^{1,2,3,4}*, Diane Gilbert-Diamond^{1,2,4}, Margaret R. Karagas^{1,2,4}, Zhigang Li^{1,2,4}, Jason H. Moore^{1,2,4,5}, Scot

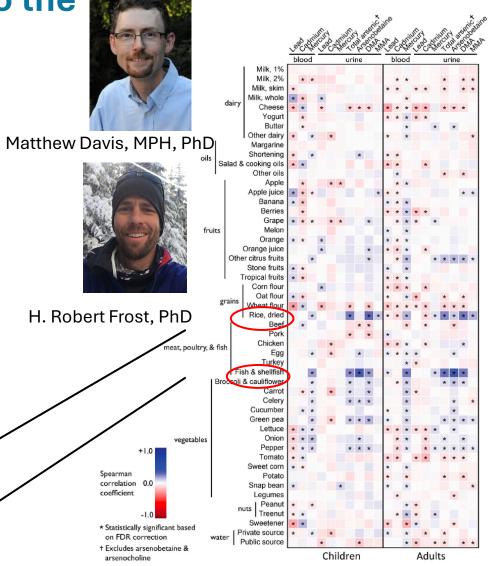


Figure 2. Spearman correlation coefficients between grams of food per day and lead cadmium, mercury, and arsenic biomarket concentrations among children versus adults. Abbreviations: DMA, dimethylarsinic acid; MMA, monomethylarsonic acid; FDR, false discovery

Prospective Study of Emerging Dietary Exposures During Pregnancy and Lactation

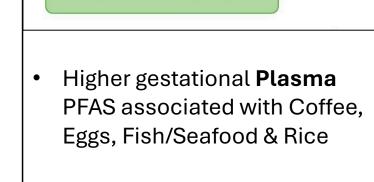
Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

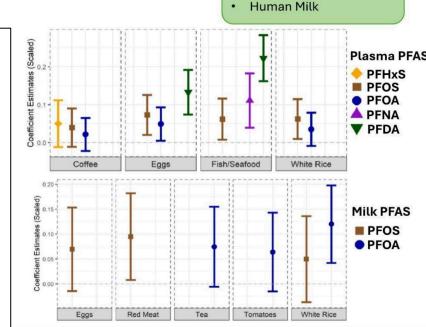
Yuting Wang, PhD

PFAS Concentrations


Maternal Plasma

Association of diet with per- and polyfluoroalkyl substances in plasma and human milk in the New Hampshire Birth Cohort Study

Yuting Wang ^{a,*,1}, Jiang Gui ^b, Caitlin G. Howe ^a, Jennifer A. Emond ^b, Rachel L. Criswell ^{a,c}


Yuting Wang ^{a, s, 1}, Jiang Gui ^b, Caitlin G. Howe ^a, Jennifer A. Emond ^b, Rachel L. Crisw Lisa G. Gallagher ^a, Carin A. Huset ^d, Lisa A. Peterson ^{e, f}, Julianne Cook Botelho ^g, Antonia M. Calafat ^g, Brock Christensen ^a, Margaret R. Karagas ^a, Megan E. Romano ^a

adaptive elastic net variable selection of prenatal diet & PFAS

Dietary Factors During Pregnancy

 Higher Human Milk PFAS during lactation related to Eggs, Meat, Tea, Tomatoes and Rice

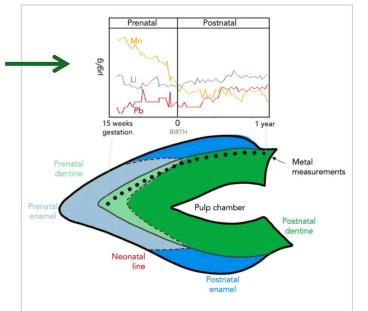
Pinpointing the timing of dietary exposures using novel biomarkers

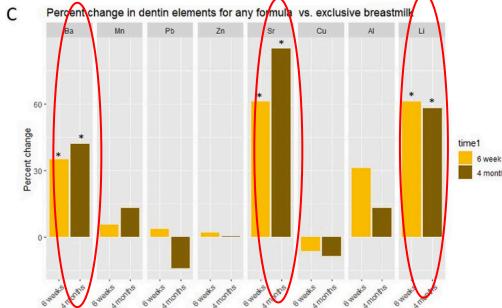
Contents lists available at ScienceDirect

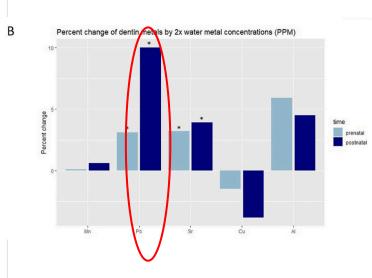
Environmental Research

journal homepage: www.elsevier.com/locate/envres

Tracy Punshon, PhD


nh birth cohort study




Julia Bauer, PhD

Deciduous teeth from the New Hampshire birth cohort study: Early life environmental and dietary predictors of dentin elements

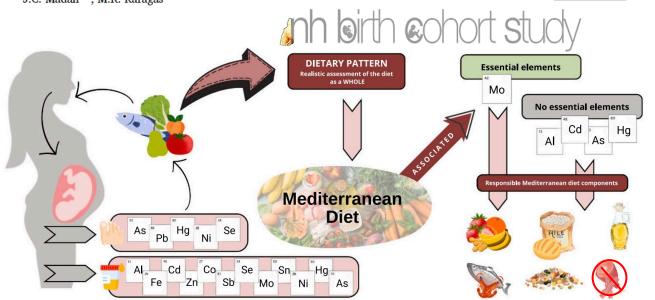
Julia A. Bauer ^{a,b,*}, Tracy Punshon ^c, Matthew N. Barr ^d, Brian P. Jackson ^d, Marc G. Weisskopf ^e, Felicitas B. Bidlack ^f, Modupe O. Coker ^{a,g}, Janet L. Peacock ^a, Margaret R. Karagas ^a

Investigating Dietary Patterns & Elemental Mixtures

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv



Association between Mediterranean diet and metal mixtures concentrations in pregnant people from the New Hampshire Birth Cohort Study

L. Notario-Barandiaran ^{a,*}, A.J. Signes-Pastor ^{a,b,c,d}, H.E. Laue ^a, A. Abuawad ^a, B.P. Jackson ^e, J.C. Madan ^{a,f}, M.R. Karagas ^a

Leyre Notario-Barandiaran, PhD

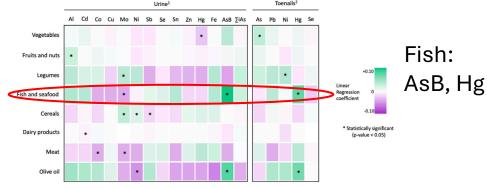
L. Notario-Barandiaran et al.

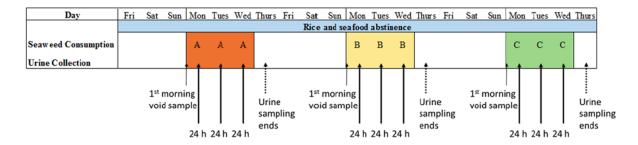
Science of the Total Environment 912 (2024) 169127

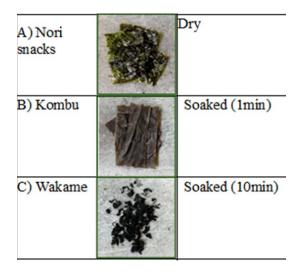
Adherence to the MD associated with

- Higher AsB, Hg,
 Ni, Pb, Al, Cd
- Lower Cu & Sn

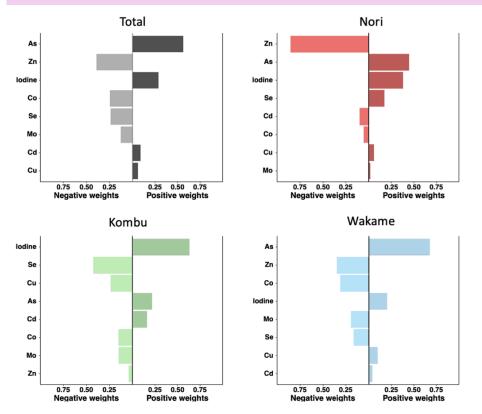
Fig. 3. Metal mixtures exposure and rMED score among pregnant people from the NHBCS (n = 907). WQS regression models. rMED, relative Mediterranean diet score; NHBCS, New Hampshire Birth Cohort Study; WQS, Weighted Quantile Sum. Models were adjusted by age, pre-pregnancy BMI, pregnant person's education



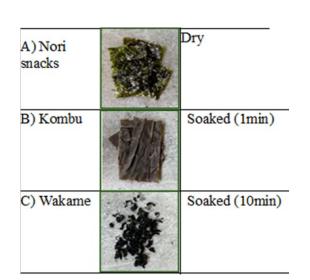

Fig. 2. Linear regression coefficient (beta) between rMED components (g/d, continuous) and urinary and toenail metal exposure among pregnant people from the NHBCS. rMED, relative Mediterranean diet score; NHBCS, New Hampshire Birth Cohort Study. ¹Adjusted by specific gravity, age, pre-pregnancy BMI, pregnant person's education level, smoking status during pregnancy plus metals urine concentrations. ²Adjusted by toenail sample weight, sample collection season, age, pre-pregnancy BMI, pregnant person's education level, smoking status during pregnancy plus metals toenails concentrations.

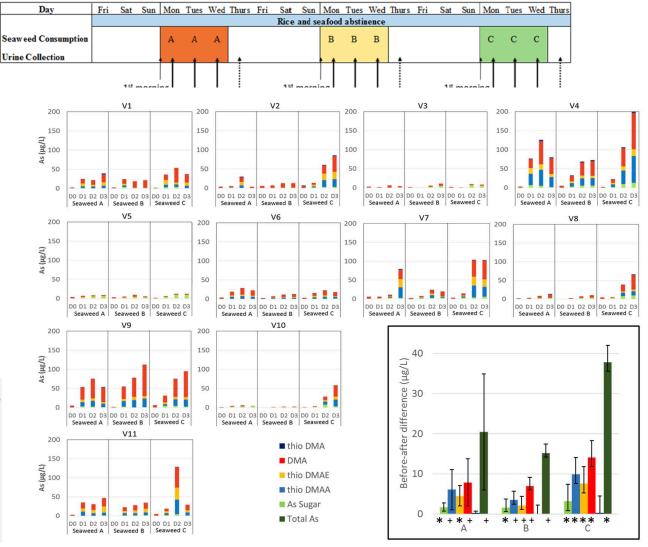


Seaweed Feeding Experiment: Multi-Element Analysis


Vivien Taylor, PhD

- 3-week intervention
- 3 common seaweeds
- 3-day, 24 hr urine
- No seafood or rice


Urinary As & Iodine concentrations increased


Taylor et al., 2017; Notario-Barandiaran et al., 2024

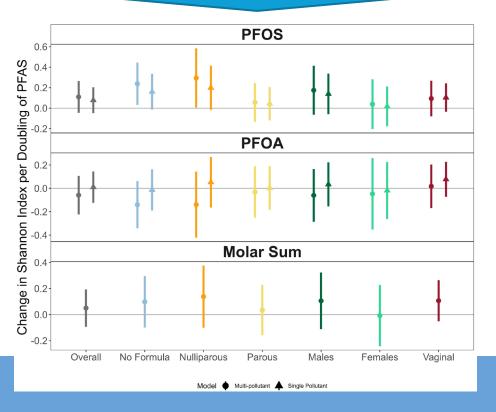
Seaweed Feeding Experiment: Individual As Results

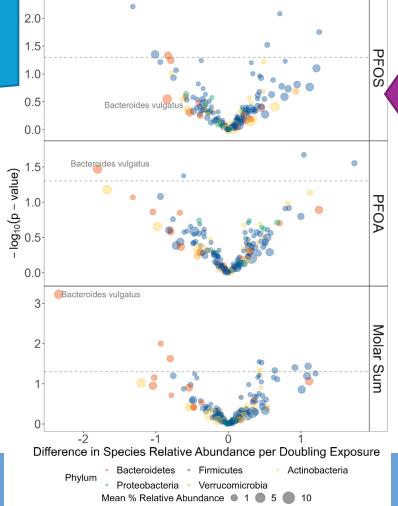
*Seaweed contains arsenosugars
*Metabolized into multiple forms
of As i.e., thiolated compounds
*Large inter-person variability
*Potentially involving the gut
microbes

Trials – costly, large samples & long follow-up to capture clinical outcomes

Vivien Taylor, PhD

Taylor et al., 2017; Notario-Barandiaran et al., 2024


How do these exposures impact our health?

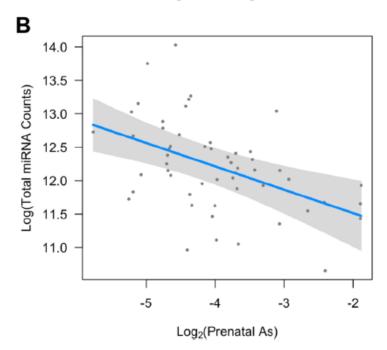

Human Milk PFAS and the Infant Gut Microbiome

Hannah Laue, ScD

Increased PFOS associated with **increased bacterial diversity** at six weeks, which has been associated with increased odds of early-life infection.

Increased PFOA associated with decreased *Bacteroides* vulgatus at one year, which has been implicated in type I diabetes.

How do these exposures impact our health?

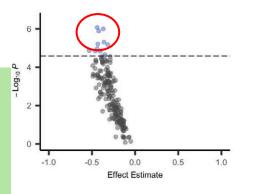

Human Milk Extracellular Vesicle (EV) miRNA: a transgenerational epigenetic mechanism that may be impacted by chemical hazards in our food

Exposure and Health (2023) 15:731-743 https://doi.org/10.1007/s12403-022-00520-1

ORIGINAL PAPER

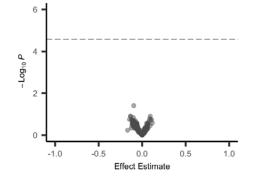
Periconceptional and Prenatal Exposure to Metals and Extracellular Vesicle and Particle miRNAs in Human Milk: A Pilot Study

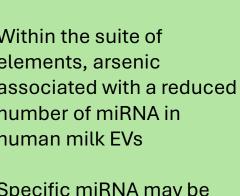
Caitlin G. Howe¹ David A. Armstrong^{2,3} · Meghan E. Muse¹ · Diane Gilbert-Diamond¹ · Jiang Gui⁴ · Anne G. Hoen¹ · Thomas J. Palys¹ · Roxanna L. Barnaby⁵ · Bruce A. Stanton⁵ · Brian P. Jackson⁶ · Brock C. Christensen¹ · Margaret R. Karagas¹

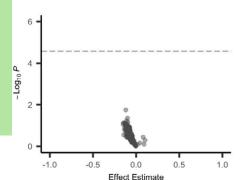

EV/P miRNA carried to an infant during lactation

Within the suite of elements, arsenic associated with a reduced number of miRNA in human milk EVs

Specific miRNA may be important for reducing inflammation






Prenatal Mn

Prenatal As

Prenatal Hg

0.0

Effect Estimate

0.5

-1.0

-0.5

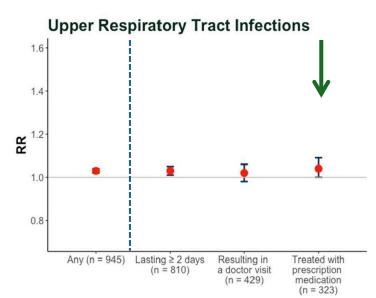
Prenatal Pb

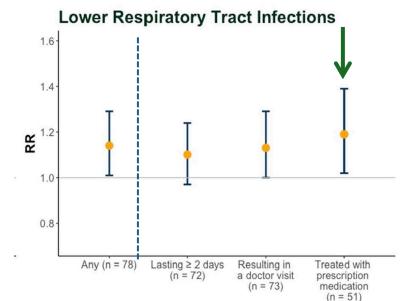
How do these exposures impact our health? Risks and benefits of foods on clinical outcomes

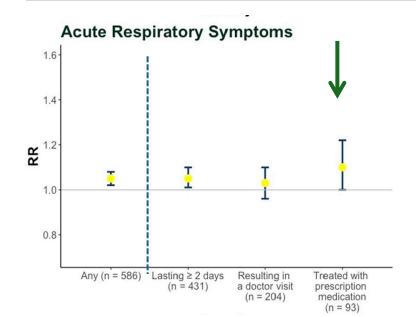
scientific reports

Rice cereal contains As, and As is associated with immune-related outcomes

Infant infections, respiratory symptoms, and allergy in relation to timing of rice cereal introduction in a United States cohort


Check for updates


Yuka Moroishi^{1,7}, Antonio J. Signes-Pastor¹, Zhigang Li³, Kathryn L. Cottingham^{6,5}, Brian P. Jackson⁶, Tracy Punshon^{6,5}, Juliette Madan^{1,5,7}, Kari Nadeau⁸, Jiang Gui² & Marqaret R. Karaqas^{1,5⊠}



Yuka Moroishi, PhD

Earlier introduction of rice cereal associated with higher risks of URI, LRI & respiratory symptoms

How do these exposures impact our health?

A program supported by the NIH

journal homepage: https://ajcn.nutrition.org/

Original Research Article

Association of maternal fish consumption and ω -3 supplement use during pregnancy with child autism-related outcomes: results from a cohort consortium analysis

Kristen Lyall ^{1,*}, Matt Westlake ², Rashelle J Musci ³, Kennedy Gachigi ⁴, Emily S Barrett ⁵, Theresa M Bastain ⁶, Nicole R Bush ⁷, Claudia Buss ⁸, Carlos A Camargo Jr. ⁹, Lisa A Croen ¹⁰, Dana Dabelea ¹¹, Anne L Dunlop ¹², Amy J Elliott ^{13,14}, Assiamira Ferrara ¹⁰, Akhgar Ghassabian ¹⁵, James E Gern ¹⁶, Marion E Hare ¹⁷, Irva Hertz-Picciotto ¹⁸, Alison E Hipwell ¹⁹, Christine W Hockett ^{13,14}, Margaret R Karagas ²⁰, Claudia Lugo-Candelas ²¹, Thomas G O'Connor ²², Rebecca J Schmidt ¹⁸, Joseph B Stanford ²³, Jennifer K Straughen ²⁴, Coral L Shuster ²⁵, Robert O Wright ²⁶, Rosalind J Wright ²⁶, Qi Zhao ¹⁷, Emily Oken ²⁷, on behalf of program collaborators for Environmental influences on Child Health Outcomes, ECHO Components, Coordinating Center, Data Analysis Center, Person-Reported Outcomes Core, ECHO Awardees and Cohorts

Large, geographically, racially/ethnically diverse prospective national cohort

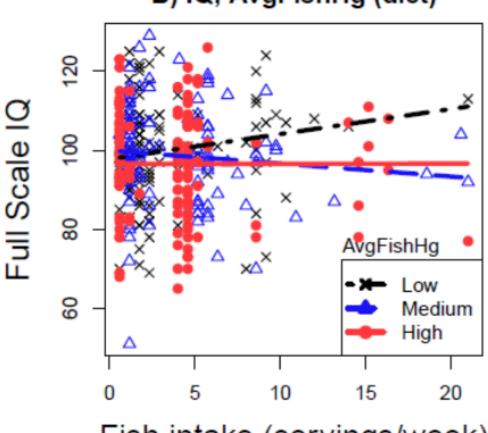
Association of maternal fish intake and (i)-3 supplement use during pregnancy with child autism diagnosis.

	n	Adjusted OR (95% CI)			
Fish intake					
No	664	1.0 (referent)			
Yes	3275	0.84 (0.77, 0.92)			
Fish intake categories					
Never	664	1.0 (referent)			
<1x/wk	1373	0.81 (0.71, 0.92)			
1-2x/wk	1167	0.89, (0.75, 1.06)			
>2x/wk	735	0.84 (0.73, 0.97)			

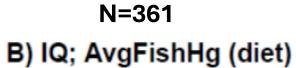
Reduced risk, no dose-response relationship

Ideas are welcomed!

nttps://pubmed.ncbi.nlm.nih.gov/38940366,


How do these exposures impact our health? Weighing the risks vs benefits of foods

> Am J Epidemiol. 2024 Jun 28:kwae149. doi: 10.1093/aje/kwae149. Online ahead of print.


A Novel Approach to Assessing the Joint Effects of Mercury and Fish Consumption on Neurodevelopment in the New Bedford Cohort

Sally W Thurston 1 2, David Ruppert 3 4, Susan A Korrick 5 6

Association with fish consumption varied by Hg concentrations of fish

Fish intake (servings/week)

How does this inform decision making?

ADVICE ABOUT EATING FISH

For Those Who Might Become or Are Pregnant or Breastfeeding and Children Ages 1 – 11 Years

Fish‡ provide key nutrients that support a child's brain development.

Fish are part of a <u>healthy eating pattern</u> and provide key nutrients during pregnancy, breastfeeding, and/or early childhood to support a **child's brain development**:

- · Omega-3 (called DHA and EPA) and omega-6 fats
- Iron
- lodine (during pregnancy)
- Choline

Choline also supports development of the **baby's spinal cord**. Fish provide iron and zinc to support **children's immune systems**. Fish are a source of other nutrients like protein, vitamin B12, vitamin D, and selenium too.

Choose a variety of fish that are lower in mercury.

While it is important to limit mercury in the diets of those who are pregnant or breastfeeding and children, many types of fish are both nutritious and lower in mercury.

This chart can help you choose which fish to eat, and how often to eat them, based on their mercury levels.

What is a serving? As a guide, use the palm of your hand.

Pregnancy and breastfeeding: 1 serving is 4 ounces

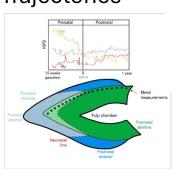
Eat 2 to 3 servings a week from the "Best Choices" list (OR 1 serving from the "Good Choices" list).

Childhood:

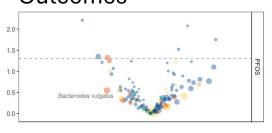
On average, a serving is about:

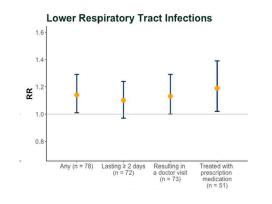
1 ounce at age 1 to 3 2 ounces at age 4 to 7 3 ounces at age 8 to 10 4 ounces at age 11

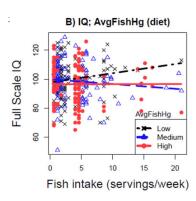
Eat 2 servings a week from the "Best Choices" list.

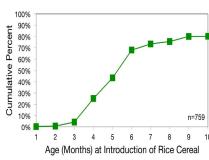


Summary of Study Designs

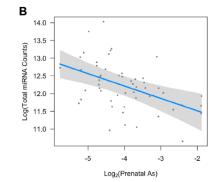

National, Cross-Sectional Data


Biomarkers of Exposure Trajectories


Intermediary/Mediating Outcomes


Relevant Clinical Outcomes

Teasing Apart Effects of Nutrients-Toxicants


Prospective Studies

Experimental Designs to Identify Novel Exposures

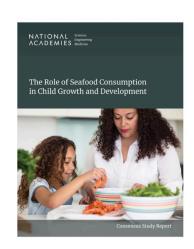
Transgenerational Effects/Novel Mechanisms

Consortium Efforts

Informing Guidelines

Acknowlegements

Investigators/Trainees: Emily Baker, Leyre Notario-Barandiaran, Julia Bauer, Courtney Carignan, Kathy Cottingham, Matt Davis, H. Robert Frost, Diane Gilbert-Diamond, Anne Gatewood Hoen, Caitlin Howe, Brian Jackson, Susan Korrick (Harvard), Hannah Laue, Juliette Madan, Yuka Moroishi, Thomas Palys, Antonio Signes-Pastor, Tracy Punshon, Vicki Sayarath, Vivien Taylor, the families and staff of the New Hampshire Birth Cohort Study, collaborators on the NASEM Seafood Study, and Many Others


Dartmouth Toxic Metals Superfund Research Program

